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Abstract. In this paper, some properties of pre-monotone operators are

proved. It is shown that in a reflexive Banach space, a full domain multi-
valued σ-monotone operator with sequentially norm×weak∗ closed graph
is norm×weak∗ upper semicontinuous. The notion of σ-convexity is in-
troduced and the relations between the σ-monotonicity and σ-convexity

is investigated. Moreover, some results on the sum and difference of two
σ-monotone operators is considered.
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convex function.
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1. Introduction

Throughout this paper, X is a Banach space with norm ∥·∥, X∗ is the
topological dual of X. Also X and X∗ are paired by ⟨·, ·⟩ . We denote by →,
w→ and

w∗

→ the strong, weak and weak∗ convergence of nets, respectively. We
also write R+ = [0,+∞).

Let T : X ⊸ X∗ be a multivalued operator. For convenience, we will use
D (T ) := {x ∈ X : T (x) ̸= ∅} and R (T ) := T (X) to denote the domain and
range of T . The graph of T is

gr (T ) := {(x, x∗) ∈ X ×X∗ : x∗ ∈ T (x)} ,

and T is monotone if

⟨x∗ − y∗, x− y⟩ ≥ 0

for all (x, x∗) ∈ grT and (y, y∗) ∈ grT. We recall that T is maximal monotone
if it is monotone and its graph is not properly included in any other monotone
graph.
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The notion of monotone operator has been found appropriate in various
branches of Mathematics such as Operator Theory, Partial Differential Equa-
tions, Differentiability Theory of Convex Functions, Numerical Analysis and
has brought a new life to Nonlinear Functional Analysis and Nonlinear Oper-
ator Equations. In particular, monotone operators are a powerful tool for the
study of variational inequalities. All these reasons have convinced many math-
ematicians, to start research in this rich and important branch of mathematics.

Monotone operators have been generalized in many ways; see [7]. One of
these generalizations is the so-called σ-monotone operators which is introduced
and studied by Iusem, Kassay and Sosa in the seminal paper [8]. Pre-monotone
operators included many important classes of operators such as monotone and
ε-monotone operators (see [2, 4] and [8]).

In this paper we introduce the notion of σ-convexity and we investigate
its relation with σ-monotonicity. We also show that, given two maximal σ-
monotone operators T and S, a weak condition on the mutual position of their
domains implies that T + S is weak∗ closed valued. Moreover, we will study
conditions under which difference of two maximal σ-monotone operators is
maximal σ-monotone.

The paper is organized as follows. The current section contains some nota-
tions, and a short review of basic concepts of σ-monotone operators. In Section
2, we will introduce the notion of σ-convexity and study the relation between
σ-monotonicity and σ-convexity. Some more results on σ-monotonicity are in-
vestigated in Section 3. In fact, we show that in a reflexive Banach space if the
graph of a σ-monotone operator, with full domain, is closed then the operator
is upper semicontinuous. Section 4 is devoted to some results on the sum of
σ-monotone operators. Finally, in Section 5, it is shown that under some mild
additional assumptions the difference of two maximal σ-monotone operators is
a maximal σ-monotone operator.

We recall the notion of σ-monotonicity based on some ideas from [2–4].

Definition 1.1 ( [4, Definition 2.1]). Given an operator T : X ⊸ X∗ and a
map σ : D(T ) → R+.

(i) T is said to be σ-monotone, if

⟨x∗ − y∗, x− y⟩ ≥ −min{σ(x), σ(y)}∥x− y∥,(1.1)

for every (x, x∗), (y, y∗) ∈ gr(T ).
(ii) T is called pre-monotone, if it is σ-monotone for some σ : D(T ) → R+.
(iii) A σ-monotone operator T is called maximal σ-monotone, if for every

σ′-monotone operator T ′ with gr(T ) ⊆ gr(T ′), where σ′ is an extension
of σ, one has T = T ′.
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Example 1.2. Consider the functions φ, σ : R → R defined by

φ(x) =

{
x sin2 x if x ≥ 0,

0 if x < 0,

and
σ(x) = max{φ(x),max

z≤x
φ(z)− φ(x)}.

In [4, Example 2.8], it is shown that φ is σ-monotone, but not ε-monotone.
Another example can be found in [8, Example 3.6].

Remark 1.3 ([4, Remark 2.2]). (i) The notion of pre-monotone operators
for the finite-dimensional case was introduced and studied in [8].

(ii) An operator T : X ⊸ X∗ is σ-monotone if and only if

⟨x∗ − y∗, x− y⟩ ≥ −σ(y)∥x− y∥, x, y ∈ D (T ) , x∗ ∈ T (x) , y∗ ∈ T (y) .

(iii) Every globally bounded operator is pre-monotone, [8, Proposition
3.3(i)].

(iv) A σ-monotone operator is maximal σ-monotone if and only if, for every
σ′-monotone operator T ′ which is with gr(T ) ⊆ gr(T ′) and σ′(x) ≤ σ(x)
for all x ∈ D(T ), one has T = T ′.

Definition 1.4 ([4, Definition 2.4]). Let A be a subset of X. Given a mapping
σ : A→ R+, two pairs (x, x∗), (y, y∗) ∈ A×X∗ are σ-monotonically related if

⟨x∗ − y∗, x− y⟩ ≥ −min{σ(x), σ(y)}∥x− y∥.
Proposition 1.5 ([4, Proposition 2.5]). The σ-monotone operator T : X ⊸ X∗

is maximal σ-monotone if and only if, for every point (x0, x
∗
0) ∈ X ×X∗ and

every extension σ′ of σ to D(T ) ∪ {x0} such that (x0, x
∗
0) is σ′-monotonically

related to all pairs (y, y∗) ∈ gr(T ), we have (x0, x
∗
0) ∈ gr(T ).

Given an operator T : X ⊸ X∗, in [4] the function σT : D(T ) → R+ ∪ {∞}
is defined by

σT (y) = inf{a ∈ R+ : ⟨x∗ − y∗, x− y⟩ ≥ −a ∥x− y∥ ,∀(x, x∗) ∈ gr(T ), y∗ ∈ T (y)}.

Note that if the operator T is pre-monotone, then

σT = inf{σ : T is σ-monotone,}
and thus σT is finite, and T is σT -monotone. In this case, it is obvious that

σT (y) = max

{
sup{⟨x

∗ − y∗, y − x⟩
∥y − x∥

: x ̸= y, (x, x∗) ∈ gr(T ), y∗ ∈ T (y)}, 0
}
.

Proposition 1.6 ([4, Proposition 2.6]). For an operator T : X ⊸ X∗,

(i) σT is finite and T is σT -monotone if and only if T is σ-monotone for
some σ.

(ii) σT is finite and T is maximal σT -monotone if and only if T is maximal
σ-monotone for some σ.
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2. Continuity and σ-monotonicity

In this section, the interrelation between σ-monotonicity and continuity is
investigated. First we recall the following result from [4].

Proposition 2.1 ( [4, Proposition 2.7]). Let T : X ⊸ X∗ be a maximal σ-
monotone operator. Then T has convex and weak∗ closed values. If σ is defined
and upper semicontinuous on cl(D(T )), then gr(T ) is sequentially norm×weak∗

closed.

Example 2.2. Let φ, σ : R → R be as in Example 1.2. Define T, σ1 : R → R
by

T (x) =

{
φ(x) if x ̸= π

2 ,
π
4 if x = π

2 ,
and σ1(x) =

{
σ(x) if x ̸= π

2 ,
π
4 if x = π

2 .

Alizadeh et al. in [4, Example 2.8] proved that T is σ1-monotone, while its
graph is not closed. So upper semicontinuity of σ in Proposition 2.1 is essential.

Note that in Proposition 2.1 we observed that if T is maximal σ-monotone
and σ is upper semicontinuous, then gr(T ) is sequentially norm×weak∗ closed.
As for monotone operators (see [5]), in general gr(T ) is only sequentially
norm×weak∗ closed, not norm×weak∗ closed. Moreover, in Example 2.2 it
is shown that upper semicontinuity of σ cannot be omitted from the statement
of Proposition 2.1. Now in the following we show that closedness of the graph of
a σ-monotone and single-valued operator T implies the continuity of σT . Next
we give an elementary proof for the local boundedness of T in R, however, it
is also true for a general Banach space, ([8, Proposition 3.5], see also [2]).

Proposition 2.3. Suppose that T : R → R is σ-monotone. Then T is locally
bounded. Moreover, if gr(T ) is closed, then T is continuous.

Proof. First we show that T is locally bounded on R. Assume that a < b. Note
that, for each y ∈ R,

σT (y) = max

{
sup
x≤y

{T (x)− T (y)}, sup
x≥y

{T (y)− T (x)}
}
.

Thus σT (b) ≥ supx≤b{T (x) − T (b)} and so T (x) ≤ σT (b) + T (b) for all x ≤ b.
i.e. T is bounded above on (−∞, b]. Likewise, σT (a) ≥ supa≤x{T (a)− T (x)}.

Therefore, T (x) ≥ T (a) − σT (a), that is T is bounded below on [a,+∞).
Hence T is bounded on every interval [a, b]. Now assume that gr(T ) is closed
but T is not continuous. Then there exists a sequence {xn} in R converging
to some x, such that {T (xn)} does not converge to T (x). Thus there exists
ε > 0 such that |T (xn)−T (x)| ≥ ε for infinitely many n ∈ N. Since T is locally
bounded, there would be a subsequence (which we denote again by {T (xn)}
for simplicity) converging to a point a ∈ R such that |a − T (x)| ≥ ε. This
means that (xn, T (xn)) → (x, a) ̸= (x, T (x)), which contradicts the fact that
T is closed. □
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The last proposition can be generalized as the following. Note that, upper
semicontinuity (usc, for short) is equivalent to the continuity when T is single-
valued, and then we have the same result as Proposition 2.3. The following
proposition and its proof are due to Professor Nicolas Hadjisavvas (private com-
munication), a proof for finite dimensional spaces can be found in [8, Proposi-
tion 3.5].

Proposition 2.4. Suppose X is a reflexive Banach space and T : X ⊸ X∗ is
σ-monotone with D(T ) = X. Then T is locally bounded. Moreover, if gr(T ) is
sequentially norm×weak∗ closed, then T is norm×weak∗ usc.

Proof. The first part is an immediate consequence of [3, Corollary 3.11]. As
for the second part, assume that T is not usc at some point x0. Then there
exists an weakly open set V ⊆ X∗ such that T (x0) ⊆ V and for every ε > 0,
T (B(x0, ε)) ⊈ V . By taking ε = 1/n we can construct a sequence {xn} ⊆ X
with ∥xn − x0∥ < 1

n and x∗n ∈ T (xn)∩ V c. Since T is locally bounded, {x∗n} is
a bounded sequence. Since any closed ball in X∗ is weak∗ compact (Alaoglu)
there exists a subsequence {x∗nk

} weakly converging to some x∗ ∈ X∗ (Eberlein-
Smulian). We have (xnk

, x∗nk
) → (x0, x

∗) (norm×weak∗) so x∗ ∈ T (x0) by the
closedness assumption. This contradicts the assumption that x∗nk

/∈ V . □

Proposition 2.5. Suppose that T : R → R is σ-monotone and gr(T ) is closed.
Then σT is continuous.

Proof. For the continuity of σT it is enough to show that supx≤y{T (x)−T (y)}
and supx≥y{T (y) − T (x)} are continuous as functions of y. By Proposition
2.3, T is continuous. So it is enough to prove that f(y) = supx≤y T (x) is
continuous. The continuity of T implies that T is locally uniformly continuous.
Let y0 ∈ R. For a given ε > 0 there exists a δ > 0 such that

|T (x)− T (y0)| <
ε

2
, ∀x ∈ [y0 − δ, y0 + δ].(2.1)

Set A = [y0 − δ
2 , y0 +

δ
2 ] and take y ∈ A. It follows from (2.1) that∣∣∣∣ sup
x∈A,x≤y

T (x)− sup
x∈A,x≤y0

T (x)

∣∣∣∣ < ε.(2.2)

Note that

f(y) = sup
x≤y

T (x) = max

{
sup

x<y0− δ
2

T (x), sup
y0− δ

2≤x≤y

T (x)

}
and

f(y0) = sup
x≤y0

T (x) = max

{
sup

x<y0− δ
2

T (x), sup
y0− δ

2≤x≤y0

T (x)

}
.
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For simplicity, we set

a = sup
x<y0− δ

2

T (x), b = sup
y0− δ

2≤x≤y

T (x) and c = sup
y0− δ

2≤x≤y0

T (x).

Therefore f(y) = max{a, b} and f(y0) = max{a, c}. Using (2.2) we infer that
|b− c| < ε, i.e.

−ε+ c < b < ε+ c

which implies

max{a, c− ε} < max{a, b} < max{a, c+ ε}.(2.3)

On the other hand,

−ε+max{a, c} = max{a− ε, c− ε} ≤ max{a, c− ε}(2.4)

and

max{a, c+ ε} ≤ max{a+ ε, c+ ε} = max{a, c}+ ε.(2.5)

Combining (2.3), (2.4) and (2.5) we obtain

−ε+max{a, c} < max{a, b} < max{a, c}+ ε,

so |f(y) − f(y0)| < ε. This means that f is continuous. In a similar way one
can get supx≥y{T (y)− T (x)} is continuous. □

At this stage the next question naturally arises: Can we extend the above
result to more general spaces? For instance, given a pre-monotone operator T
with norm×weak∗ closed graph, is σT upper semicontinuous?

3. σ-convexity and σ-monotonicity

In this section, we investigate the notion of σ-convexity which generalizes
the concepts of ε-convexity [9] and convexity. First we recall from [9] that a
function f : X → R ∪ {+∞} is ε-convex if it satisfies the following inequality
for every a, b ∈ X, and λ ∈ (0, 1):

f(λa+ (1− λ)b) ≤ λf(a) + (1− λ)f(b) + λ(1− λ)ε∥a− b∥.

Definition 3.1. Given σ : dom f → R+, we say that the function f : X →
R ∪ {+∞} is σ-convex if

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y) + λ(1− λ)min{σ(x), σ(y)}∥x− y∥
(3.1)

for all x, y ∈ dom f and λ ∈ (0, 1).

We need to recall the following definition.

Definition 3.2. Given a proper function f : X → R ∪ {+∞} and x, z ∈ X,
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(i) the Clarke-Rockafellar generalized directional derivative of f at x in the
direction of z is defined by

f↑(x, z) = sup
δ>0

lim sup

(y,α)
f−→x

λ↘0

inf
u∈B(z,δ)

f(y + λu)− α

λ
,

where (y, α)
f−→ x means that y → x, α→ f(x) and α ≥ f(y).

(ii) the Clarke-Rockafellar subdifferential of f at x ∈ dom f is defined by

∂CRf(x) := {x∗ ∈ X∗ : ⟨x∗, z⟩ ≤ f↑(x, z) ∀z ∈ X}.

(iii) the Clarke directional derivative of f at x in the direction of z ∈ X is
defined by

fo(x, z) = lim sup

y
f−→x

λ↘0

f(y + λz)− f(y)

λ
.

(iv) the Clarke’s subdifferential of f at x ∈ dom f is defined by

∂Cf(x) = {x∗ ∈ X∗ : ⟨x∗, z⟩ ≤ fo(x, z) ∀z ∈ X}.

Remark 3.3. If f is lower semicontinuous at x, then the Clarke-Rockafellar
generalized directional derivative at x in the direction of z ∈ X reduces to

f↑(x, z) = sup
δ>0

lim sup

y
f−→x

λ↘0

inf
u∈B(z,δ)

f(y + λu)− f(y)

λ
.

Here, y
f−→ x means that y → x and f(y) → f(x). Further, if f is locally

Lipschitz, then f↑(x, z) = fo(x, z).

Lemma 3.4. Suppose that f : X → R ∪ {+∞} is lower semicontinuous and
σ-convex, where σ is upper semicontinuous, then

∂CRf(x) ⊆
{
x∗ ∈ X∗ : ⟨x∗, z⟩ ≤ f(x+ z)− f(x) + min{σ(x), σ(z + x)}∥z∥, ∀z ∈ X

}
.

Proof. By the σ-convexity of f , we get

f(y + λu) ≤ λf(y + u) + (1− λ)f(y) + λ(1− λ)min{σ(y), σ(u+ y)}∥u∥,
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for each y, u ∈ X and λ ∈ (0, 1). Fix z and x in X. For an arbitrary δ > 0 and
each y ∈ B(x, δ), we obtain

lim sup

y
f−→x

λ↘0

inf
u∈B(z,δ)

f(y + λu)− f(y)

λ
≤ lim sup

y
f−→x

λ↘0

f(y + λ(z + x− y))− f(y)

λ

≤ lim sup

y
f−→x

λ↘0

[f(x+ z)− f(y) + (1− λ)min{σ(x+ z), σ(y)}∥x+ z − y∥]

≤ f(x+ z)− f(x) + min{σ(x), σ(z + x)}∥z∥.

Therefore,

f↑(x, z) ≤ f(x+ z)− f(x) + min{σ(x), σ(z + x)}∥z∥.

By the definition of the Clarke-Rockafellar’s subdifferential, the proof is com-
plete. □

Proposition 3.5. Let f : X → R ∪ {+∞} be lower semicontinuous and σ-
convex and let σ be upper semicontinuous. Then ∂CRf is 2σ-monotone.

Proof. Select x, y ∈ X, x∗ ∈ ∂CRf(x) and y∗ ∈ ∂CRf(y). Applying Lemma
3.4 we obtain

⟨x∗, y − x⟩ ≤ f(y)− f(x) + min{σ(x), σ(y)}∥y − x∥,

and

⟨y∗, x− y⟩ ≤ f(x)− f(y) + min{σ(x), σ(y)}∥y − x∥.

These inequalities imply that ∂CRf is 2σ-monotone. □

Proposition 3.6. Let f be locally Lipschitz on X and σ : dom f → R be lower
semicontinuous. If ∂Cf is σ-monotone, then f is σ-convex.

Proof. Assume that ∂Cf is σ-monotone, λ ∈ (0, 1) and x, y ∈ X with x ̸= y.
Set xλ = λx + (1− λ) y. It follows from Lebourg’s Mean Value Theorem (see
in [14, Theorem 4.5]) that there exist z1 ∈ [x, xλ) and z

∗
1 ∈ ∂Cf (z1) such that

⟨z∗1 , xλ − x⟩ = f (xλ)− f (x) .(3.2)

Similarly, there exist z2 ∈ (xλ, y] and z
∗
2 ∈ ∂Cf (z2) such that

⟨z∗2 , xλ − y⟩ = f (xλ)− f (y) .(3.3)

Since xλ − x = (1− λ) (y − x) and xλ − y = λ(x − y), multiplying (3.2) and
(3.3) by λ and 1− λ, respectively and adding the resulting equalities we get

λf (x) + (1− λ) f (y)− f (xλ) = λ (1− λ) ⟨z∗1 − z∗2 , x− y⟩.

Now from the σ-monotonicity of ∂Cf we obtain (3.1). Thus f is σ-convex. □
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Example 3.7. Let φ, σ : R → R be defined by

φ(x) :=

{
x sin2 x x ≥ 0,
0 x < 0,

and σ(x) := max{φ(x),max
z≤x

φ(z)− φ(x)}.

It follows from Example 1.2 that φ is σ-monotone and it is not ε-monotone for
any ε > 0. Let ψ : R → R be defined by

ψ(x) =

{ ∫ x

0
t sin2 tdt x ≥ 0,

0 x < 0.

It follows from Proposition 3.6 that ψ is σ-convex, also [10, Theorem 4.4] implies
that ψ is not ε-convex for any ε > 0.

4. Sum of σ-monotone operators

In this section we extend some results of [13] for σ-monotone operators.
Roughly speaking, when we say that two operators are σ-monotone we tac-

itly assume that σ is defined on the union of their domains.
The idea of the proof of the following theorem for monotone operators was

first used by A. Verona and M.E. Verona [13] and then by J.M. Borwein [6].
First we recall a useful fact.

Fact 4.1 ([12, Corollary 4]). Let X be a Banach space, g1, g2 : X → R∪{∞} be
convex, lower semicontinuous functions such that dom g1−dom g2 be absorbing.
Then there exists an n ≥ 1 such that

{x ∈ X : g1(x) ≤ n, ∥x∥ ≤ n} − {x ∈ X : g2(x) ≤ n, ∥x∥ ≤ n}

is a neighborhood of 0.

Theorem 4.2. Let X be a Banach space and let S and T : X ⊸ X∗ be
σ-monotone operators. Suppose that

(CQ) 0 ∈ core[coD(T )− coD(S)].

Then there exist r, c > 0 such that, for any x ∈ D(T ) ∩D(S), t∗ ∈ T (x) and
s∗ ∈ S(x),

max(∥t∗∥, ∥s∗∥) ≤ c(r + ∥x∥)(2r + ∥t∗ + s∗∥).

Proof. Consider the function

ρT (x) = sup
{ ⟨z∗, x− z⟩

1 + ∥z∥
: (z, z∗) ∈ gr(T )

}
.
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ρ
T

is convex and lower semicontinuous as supremum of affine functions. If
x ∈ D(T ), x∗ ∈ T (x) , then for all z ∈ D(T ) and z∗ ∈ T (z) we have

⟨z∗, x− z⟩
1 + ∥z∥

=
⟨z∗ − x∗, x− z⟩

1 + ∥z∥
+

⟨x∗, x− z⟩
1 + ∥z∥

≤ min {σ (x) , σ (z)}
1 + ∥z∥

∥x− z∥+ ∥x∗∥∥x− z∥
1 + ∥z∥

≤ (∥x∗∥+min {σ (x) , σ (z)})
( ∥x∥
1 + ∥z∥

+
∥z∥

1 + ∥z∥

)
< (∥x∗∥+ σ (x)) (∥x∥+ 1) ,

which shows that ρT (x) < +∞, that is D(T ) ⊆ dom ρT . Since ρT is convex we
conclude that coD(T ) ⊆ dom ρ

T
. Likewise, we get coD(S) ⊆ dom ρ

S
. Thus

(4.1) coD(T )− coD(S) ⊆ dom ρ
T
− dom ρ

S
.

The assumption and (4.1) imply that 0 ∈ core (dom ρT − dom ρs). Therefore

X =

∞∪
n=1

n (dom ρT − dom ρS)

=
∞∪

n=1

∞∪
i=1

n({x : ρ
T
(x) ≤ i, ∥x∥ ≤ i} − {x : ρS(x) ≤ i, ∥x∥ ≤ i}).

On the other hand, {x : ρ
T
(x) ≤ i, ∥x∥ ≤ i} and {x : ρs(x) ≤ i, ∥x∥ ≤ i} are

closed and convex. By Fact 4.1 there exist ε > 0 and r > 0 such that

(4.2) B (0, ε) ⊆ ({x : ρT (x) ≤ r, ∥x∥ ≤ r} − {x : ρS(x) ≤ r, ∥x∥ ≤ r}).

Let now z ∈ B (0, ε) , x ∈ D(T ) ∩ D(S), t∗ ∈ T (x) and s∗ ∈ S(x), then
z = a− b, where ρ

T
(a) ≤ r, ∥a∥ ≤ r, ρS(b) ≤ r, ∥b∥ ≤ r. We have

⟨t∗, z⟩ = ⟨t∗, a− x⟩+ ⟨s∗, b− x⟩+ ⟨t∗ + s∗, x− b⟩
≤ ρT (a) (1 + ∥x∥) + ρS(b) (1 + ∥x∥) + ∥t∗ + s∗∥(∥x∥+ r)

≤ (r + ∥x∥) (2r + ∥t∗ + s∗∥) ,

from which we get

(4.3) ∥t∗∥ ≤ (r + ∥x∥) (2r + ∥t∗ + s∗∥)
ε

.

Likewise

(4.4) ∥s∗∥ ≤ (r + ∥x∥) (2r + ∥t∗ + s∗∥)
ε

.

Set c = 1
ε , now (4.3) and (4.4) imply the desired assertion. □

We recall that a set A ⊆ X∗ is bounded weak∗closed if every bounded weak∗

convergent net in A has its limit in A.
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Corollary 4.3 ([11, Theorem 2.7.11]). A convex set in X∗ is weak∗ closed if
and only if it is bounded weak∗ closed.

The following result extends a theorem of Verona and Verona to σ-monotone
operators. Our proof is very close to the proof of A. Verona and M.E. Verona
in [13].

Proposition 4.4. Let X be any Banach space and let S, T : X ⊸ X∗be
maximal σ-monotone operators. Suppose that

0 ∈ core[coD(T )− coD(S)].

Then T (x) + S(x) is a weak∗ closed subset of X∗, for every x ∈ D(T ) ∩D(S).

Proof. Since T and S : X ⊸ X∗ are maximal σ-monotone, by Proposition 2.1
we infer that T (x) and S (x) are convex. Therefore T (x)+S (x) is also convex.
By Corollary 4.3 it suffices to prove that T (x)+S (x) is bounded weak∗ closed,
that is, every bounded weak∗ convergent net in T (x) + S (x) has a limit in
T (x) + S (x) .

Let {t∗i } ⊆ T (x) and {s∗i } ⊆ S (x) be nets such that {t∗i + s∗i } is bounded
and weak∗ convergent to x∗. By Theorem 4.2,

max(∥t∗i ∥, ∥s∗i ∥) ≤ c(r + ∥x∥)(2r + ∥t∗i + s∗i ∥).
Thus the nets {t∗i } and {s∗i } are bounded. So they are relatively weak∗ compact.

Replacing them by some subnets, if necessary, we may assume that t∗i
w∗

→ t∗

and s∗i
w∗

→ s∗. Since T and S are maximal σ-monotone, by Proposition 2.1,
T (x) and S (x) are weak∗ closed. Therefore t∗ ∈ T (x) and s∗ ∈ S (x) . Then
x∗ = t∗ + s∗ ∈ T (x) + S (x) . □

5. Difference of two σ-monotone operators

In this section, some results of [1] are extended for σ-monotone operators.
Since the difference of two σ-monotone operators is not necessarily σ-monotone,
investigating their maximality is very difficult. We study conditions under
which the difference of two σ-monotone operators is maximal σ-monotone.

Theorem 5.1. Let S : X ⊸ X∗ be a maximal σ-monotone operator and let
T : X ⊸ X∗ be monotone. If D(T ) = X and S−T is σ-monotone, then S−T
is also maximal σ-monotone.

Proof. Let (y, y∗) ∈ X ×X∗ be σ-monotonically related to gr(S − T ). For any
(x, x∗) ∈ gr(S) and (x, z∗) ∈ gr(T ), we have (x, x∗ − z∗) ∈ gr(S − T ). Then

⟨x∗ − z∗ − y∗, x− y⟩ ≥ −min{σ(x), σ(y)}∥x− y∥.
By the monotonicity of T and that D(T ) = X, there exists t∗ ∈ T (y) such that

⟨x∗ − t∗ − y∗, x− y⟩ = ⟨x∗ − z∗ − y∗, x− y⟩+ ⟨z∗ − t∗, x− y⟩
≥ −min{σ(x), σ(y)}∥x− y∥.
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It follows that (y, y∗+ t∗) is σ-monotonically related to gr(S). Maximality of S
and Proposition 1.5 imply that (y, y∗ + t∗) ∈ gr(S). Hence (y, y∗) ∈ gr(S − T ),
and so S − T is maximal σ-monotone. □

Example 5.2. Define T, S : R → R by

T (x) =

{
0 x = 0,
∅ otherwise,

and S(x) =

 {0} x < 0,
[0,∞) x = 0,
∅ x > 0,

and let σ ≡ 0. Then S is maximal σ-monotone (indeed monotone), T is mono-
tone and S − T is σ-monotone (indeed monotone) but not maximal, since
gr(S−T ) = {0}×R. Therefore, the condition that D(T ) = X in the preceding
theorem is essential.

Corollary 5.3. Let S : X ⊸ X∗ be a maximal σ-monotone operator and let
T : X ⊸ X∗ be a positive linear relation. Suppose that D(T ) = X and S − T
is σ-monotone. Then S − T is maximal σ-monotone.

Proof. Since any positive linear operator is monotone, all conditions of Theo-
rem 5.1 are satisfied and hence the proof is complete. □

Example 5.4. Let S : R → R and σ : R → R+ be such that S(x) := 2x for
all x ∈ R and σ ≡ 0. Suppose that the mapping T : R → R is defined by
T (x) := x

2 + 1 for all positive real number, T (x) := x+ 1 otherwise. It is easy
to see that S is maximal σ-monotone, T is monotone but it is not positive and
linear while S − T is maximal σ-monotone.

The linear relation T : X ⊸ X∗ is said to be a skew linear relation if
⟨x∗, x⟩ = 0 for any (x, x∗) ∈ gr(T ), [1].

Corollary 5.5. Let S : X ⊸ X∗ be maximal σ-monotone, T : X ⊸ X∗ be
skew linear and D(T ) = X. Then S ± T is maximal σ-monotone.

Proof. Since T is a skew linear relation, −T is skew linear too. Then ±T and
also S − (±T ) are σ-monotone. Therefore S ± T is maximal σ-monotone by
Theorem 5.1. □

In accordance with the above corollary, the following result is clear.

Corollary 5.6. Let S : X ⊸ X∗ be maximal σ-monotone and T : X → X∗ be
skew linear. Then S ± T is maximal σ-monotone.
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