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Abstract. Let p(z) be a polynomial of degree n and for a complex num-
ber α, let Dαp(z) = np(z) + (α − z)p′(z) denote the polar derivative of
the polynomial p(z) with respect to α. Dewan et al proved that if p(z)
has all its zeros in |z| ≤ k, (k ≤ 1), with s-fold zeros at the origin then

for every α ∈ C with |α| ≥ k,

max
|z|=1

|Dαp(z)| ≥
(n+ sk)(|α| − k)

1 + k
max
|z|=1

|p(z)|.

In this paper, we obtain a refinement of the above inequality. Also as an
application of our result, we extend some inequalities for polar derivative

of a polynomial of degree n which does not vanish in |z| < k, where k ≥ 1,
except s-fold zeros at the origin.
Keywords: Polynomial, inequality, maximum modulus, polar derivative,
restricted zeros.

MSC(2010): Primary: 30A10; Secondary: 30C10, 30D15.

1. Introduction and statement of results

According to a well known result as Bernstein’s inequality on the derivative
of a polynomial p(z) of degree n, we have

max
|z|=1

|p′(z)| ≤ nmax
|z|=1

|p(z)|.(1.1)

The result is best possible and equality holds for a polynomial having all its
zeros at the origin (see [4, 16]).
The inequality (1.1) can be sharpened, by considering the class of polynomials
having no zeros in |z| < 1.
In fact, P. Erdös conjectured and later Lax [12] proved that if p(z) ̸= 0 in
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|z| < 1, then (1.1) can be replaced by

max
|z|=1

|p′(z)| ≤ n

2
max
|z|=1

|p(z)|.(1.2)

If p(z) has all its zeros in | z |≤ 1, then it was shown by Turan [17] that

max
|z|=1

|p′(z)| ≥ n

2
max
|z|=1

|p(z)|.(1.3)

As an extension of inequality (1.3) Malik [14], proved that if p(z) has all its
zeros in |z| ≤ k, k ≤ 1, then

max
|z|=1

|p′(z)| ≥ n

1 + k
max
|z|=1

|p(z)|.(1.4)

Aziz and Shah [3, Theorem 3] generalized (1.4) and proved that if p(z) has all
its zeros in |z| ≤ k ≤ 1 with s-fold zeros at the origin, then

max
|z|=1

|p′(z)| ≥ n+ sk

1 + k
max
|z|=1

|p(z)|.(1.5)

Govil [9] improved inequality (1.4) and proved that if p(z) is a polynomial of
degree n having all its zeros in |z| ≤ k, k ≤ 1, then

max
|z|=1

|p′(z)| ≥ n

1 + k
{max
|z|=1

|p(z)|+ 1

kn−1
min
|z|=k

|p(z)|}.(1.6)

As an improvement of inequality (1.2) Dewan and Hans [6] proved that if p(z)
is a polynomial of degree n having no zeros in |z| < 1, then for any complex
number β with |β| ≤ 1 and |z| = 1,

|zp′(z) + nβ

2
p(z)| ≤ n

2
{(|1 + β

2
|+ |β

2
|) max

|z|=1
|p(z)|−

(|1 + β

2
| − |β

2
|) min

|z|=1
|p(z)|}.(1.7)

Let α be a complex number. For a polynomial p(z) of degree n, Dαp(z), the
polar derivative of p(z) is defined as

Dαp(z) = np(z) + (α− z)p′(z).

It is easy to see that Dαp(z) is a polynomial of degree at most n− 1 (for more
information, see [1, 5, 8]) and that Dαp(z) generalizes the ordinary derivative
in the sense that

lim
α→∞

[
Dαp(z)

α
] = p′(z).(1.8)

For the polar derivative Dαp(z), Aziz and Rather [2] generalized the inequality
(1.4) to the polar derivative of a polynomial. In fact, they proved that if all



2155 Khojastehnezhad and Bidkham

zeros of p(z) lie in |z| ≤ k, k ≤ 1, then for every real or complex number α
with |α| ≥ k, we get

max
|z|=1

|Dαp(z)| ≥
n

1 + k
(|α| − k) max

|z|=1
|p(z)|.(1.9)

As a refinement to inequality (1.9), Govil [10] proved that if p(z) is a polynomial
of degree n having all zeros in |z| ≤ k, where k ≤ 1, then for every real or
complex number α with |α| ≥ k, we have

max
|z|=1

|Dαp(z)| ≥
n

1 + k
{(|α| − k) max

|z|=1
|p(z)|+ (|α|+ 1)

kn−1
min
|z|=k

|p(z)|}.(1.10)

As an improvement and generalization of (1.9), Dewan et al [7, Theorem
2] proved that if p(z) has all its zeros in |z| ≤ k ≤ 1 with s-fold zeros at the
origin, then

max
|z|=1

|Dαp(z)| ≥
(n+ sk)(|α| − k)

1 + k
max
|z|=1

|p(z)|.(1.11)

As an improvement and generalization to the inequalities (1.7) and (1.4),
Liman et al [13] proved that if p(z) is a polynomial of degree n having no zeros
in |z| < 1, then for all real or complex numbers α, β with |α| ≥ 1, |β| ≤ 1 and
|z| = 1,

|zDαp(z) + nβ
|α| − 1

2
p(z)| ≤ n

2
{(|α+ β

|α| − 1

2
|+ |z + β

|α| − 1

2
|) max

|z|=1
|p(z)|

−(|α+ β
|α| − 1

2
| − |z + β

|α| − 1

2
|) min

|z|=1
|p(z)|}.(1.12)

Our first result, Theorem 1.1, is a generalization and refinement of inequalities
(1.10) and (1.11) respectively.

Theorem 1.1. Let p(z) be a polynomial of degree n, having all its zeros in
|z| ≤ k, where k ≤ 1, with s-fold zeros at the origin, then

|zDαp(z) + β
(n+ sk)(|α| − k)

1 + k
p(z)| ≥

k−n|nα+ β
(n+ sk)(|α| − k)

1 + k
||z|n min

|z|=k
|p(z)|,(1.13)

for every real or complex numbers β, α with |β| ≤ 1, |α| ≥ k and |z| ≥ 1.

According to Lemma 2.2, if p(z) is a polynomial of degree n, having all its
zeros in |z| ≤ k, k ≤ 1, with s-fold zeros at the origin, then for |z| = 1,

|Dαp(z)| ≥
(n+ sk)(|α| − k)

1 + k
|p(z)|,
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also for every complex number β with |β| ≤ 1, by choosing suitable argument
of β we have

|zDαp(z) + β
(n+ sk)(|α| − k)

1 + k
p(z)| =|zDαp(z)|−

|β| (n+ sk)(|α| − k)

1 + k
|p(z)|.(1.14)

Combining (1.13) and (1.14), we have

|zDαp(z)| − |β| (n+ sk)(|α| − k)

1 + k
|p(z)| ≥

k−n|nα+ β
(n+ sk)(|α| − k)

1 + k
| min
|z|=k

|p(z)|,

or

|Dαp(z)| − |β| (n+ sk)(|α| − k)

1 + k
|p(z)| ≥

k−n

(
n|α| − |β| (n+ sk)(|α| − k)

1 + k
|
)

min
|z|=k

|p(z)|.

Letting |β| → 1, we have the following result which is a refinement and
extension of inequalities (1.10) and (1.11).

Corollary 1.2. If p(z) is a polynomial of degree n having all its zeros in
|z| ≤ k, k ≤ 1, with s-fold zeros at the origin, then we have

max
|z|=1

|Dαp(z)| ≥
(n+ sk)(|α| − k)

1 + k
max
|z|=1

|p(z)|+

(n− s)|α|+ (n+ sk)

(1 + k)kn−1
min
|z|=k

|p(z)|.(1.15)

Dividing two sides of inequality (1.15) by |α| and letting |α| → ∞, we have
the following refinement and generalization of the inequalities (1.5) and (1.6),
respectively.

Corollary 1.3. If p(z) is a polynomial of degree n having all its zeros in
|z| ≤ k, k ≤ 1, with s-fold zeros at the origin, then we have

max
|z|=1

|p′(z)| ≥ n+ sk

1 + k
max
|z|=1

|p(z)|+ n− s

(1 + k)kn−1
min
|z|=k

|p(z)|.(1.16)

Next, as an application of Theorem 1.1, we prove the following generaliza-
tion of inequality (1.12).

Theorem 1.4. Let p(z) be a polynomial of degree n that does not vanish in
|z| < k k ≥ 1, except at s-fold zeros at the origin, then for all α, β ∈ C with
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|α| ≥ k, |β| ≤ 1 and |z| = 1, we have

|zDαp(z) + β
(n+ sk)(|α| − k)

1 + k
p(z)| ≤ 1

2
[

{k−n|nα+ β
(n+ sk)(|α| − k)

1 + k
|+

k−s|(n− s)z + sα+ β
(n+ sk)(|α| − k)

1 + k
|}max

|z|=k
|p(z)|

− {k−n|nα+ β
(n+ sk)(|α| − k)

1 + k
|−

k−s|(n− s)z + sα+ β
(n+ sk)(|α| − k)

1 + k
|} min

|z|=k
|p(z)|].(1.17)

If we take s = 0, k = 1 in Theorem 1.4, then the inequality (1.17) reduces
to the inequality (1.12)

Dividing two sides of inequality (1.17) by |α| and letting |α| → ∞, we have
the following generalization of the inequality (1.7).

Corollary 1.5. Let p(z) be a polynomial of degree n that does not vanish in
|z| < k, k ≥ 1, except at s-fold zeros at the origin, then for all β ∈ C with
|β| ≤ 1 and |z| = 1, we have

|zp′(z) + β
n+ sk

1 + k
p(z)| ≤ 1

2
[

{k−n|n+ β
n+ sk

1 + k
|+ k−s|s+ β

n+ sk

1 + k
|}max

|z|=k
|p(z)|

− {k−n|n+ β
n+ sk

1 + k
| − k−s|s+ β

n+ sk

1 + k
|} min

|z|=k
|p(z)|].(1.18)

Theorem 1.4 simplifies to the following result by taking β = 0.

Corollary 1.6. Let p(z) be a polynomial of degree n that does not vanish in
|z| < k, k ≥ 1, except at s-fold zeros at the origin, then for any α ∈ C with
|α| ≥ k and |z| = 1, we have

|Dαp(z)| ≤
1

2
{nk−n|α|+ k−s|(n− s)z + sα|) max

|z|=k
|p(z)|−

(nk−n|α| − k−s|(n− s)z + sα|) min
|z|=k

|p(z)|}.(1.19)

2. Lemmas

For the proofs of these theorems, we need the following lemmas. The first
lemma is due to Laguerre [11, 15].
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Lemma 2.1. If all the zeros of an nth degree polynomial p(z) lie in a circular
region C and w is any zero of Dαp(z), then at most one of the points w and α
may lie outside C.

Lemma 2.2. If p(z) is a polynomial of degree n, having all its zeros in the
closed disk |z| ≤ k ≤ 1, with s-fold zeros at the origin, then for each real or
complex number α with |α| ≥ k and |z| = 1, we have

|Dαp(z)| ≥
(n+ sk)(|α| − k)

1 + k
|p(z)|.(2.1)

The above lemma is due to K.K. Dewan and A. Mir [7].

Lemma 2.3. If p(z) is a polynomial of degree n with s-fold zeros at the origin,
then for all α, β ∈ C with |β| ≤ 1, |α| ≥ k and |z| = 1, we have

|zDαp(z)+β
(n+ sk)(|α| − k)

1 + k
p(z)| ≤

|nα+ β
(n+ sk)(|α| − k)

1 + k
|k−n max

|z|=k
|p(z)|.(2.2)

Proof. Let M = max
|z|=k

|p(z)|, if |λ| < 1, then |λp(z)| < |M( zk )
n| for |z| =

k. Therefore it follows from Rouche’s theorem that the polynomial G(z) =
M( zk )

n − λp(z) has all its zeros in |z| < k with s-fold zeros at the origin. By
applying Lemma 2.2, to the polynomial G(z), we have for every real or complex
number α with |α| ≥ k and for |z| = 1,

|zDαG(z)| ≥ (n+ sk)(|α| − k)

1 + k
|G(z)|,

or

|nαMk−nzn − λzDαp(z)| ≥
(n+ sk)(|α| − k)

1 + k
|Mk−nzn − λp(z)|.

On the other hand by Lemma 2.1, all the zeros of DαG(z) = nαMk−nzn−1 −
λDαp(z) lie in |z| < k, where |α| ≥ k. Therefore for any β with |β| ≤ 1,
Rouche’s theorem implies that all the zeros of

nαMk−nzn − λzDαp(z) + β
(n+ sk)(|α| − k)

1 + k
(Mk−nzn − λp(z)),

lie in |z| < 1. This implies that the polynomial

T (z) = (nα+ β
(n+ sk)(|α| − k)

1 + k
)Mk−nzn

− λ(zDαp(z) + β
(n+ sk)(|α| − k)

1 + k
p(z)),(2.3)
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will have no zeros in |z| ≥ 1. This implies that for every real or complex number
β with |β| < 1 and |z| = 1,

|zDαp(z) +
β(n+ sk)(|α| − k)

1 + k
p(z)| ≤ |nα+

β(n+ sk)(|α| − k)

1 + k
|k−nM.

(2.4)

If the inequality (2.4) is not true, then there is a point z = z0 with |z0| ≥ 1,
such that

|nα+ β
(n+ sk)(|α| − k)

1 + k
|k−nM < |z0Dαp(z0) + β

(n+ sk)(|α| − k)

1 + k
p(z0)|.

Take

λ =
(nα+ β (n+sk)(|α|−k)

1+k )k−nM

z0Dαp(z0) + β (n+sk)(|α|−k)
1+k p(z0)

,

then |λ| < 1 and with this choice of λ, we have T (z0) = 0 for |z0| ≥ 1. But this
contradicts the fact that T (z) ̸= 0 for |z| ≥ 1. For β with |β| = 1, the inequality
(2.4) follows by continuity. This completes the proof of Lemma 2.3. □

Lemma 2.4. If p(z) is a polynomial of degree n with s-fold zeros at the origin,
then for all α, β ∈ C with |β| ≤ 1, |α| ≥ k and |z| = 1, we have

kn+s|zDαp(z)+β
(n+ sk)(|α| − k)

1 + k
p(z)|+

|zDαQ(z) + β
(n+ sk)(|α| − k)

1 + k
Q(z)| ≤

{ks|nα+ β
(n+ sk)(|α| − k)

1 + k
|+

kn|(n− s)z + sα+ β
(n+ sk)(|α| − k)

1 + k
|}max

|z|=k
|p(z)|,(2.5)

where Q(z) = zn+sp(k
2

z ).

Proof. Let M = max
|z|=k

|p(z)|. For λ with |λ| > 1, it follows from Rouche’s

theorem that the polynomial G(z) = p(z)− λMk−szs has no zeros in |z| < k,
except at s-fold zeros at the origin. Consequently the polynomial

H(z) = zn+sG(
k2

z
),

has all its zeros in |z| ≤ k with s-fold zeros at the origin, also kn+s|G(z)| =
|H(z)| for |z| = k. Since all the zeros of H(z) lie in |z| ≤ k, therefore, for δ with
|δ| > 1, by Rouche’s theorem all the zeros of kn+sG(z) + δH(z) lie in |z| ≤ k.
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Hence by Lemma 2.2 for every real or complex number α with |α| ≥ k, and
|z| = 1, we have

(n+ sk)(|α| − k)

1 + k
|kn+sG(z) + δH(z)| ≤ |zDα(k

n+sG(z) + δH(z))|.

Now using a similar argument as that used in the proof of Lemma 2.3, we get
for every real or complex number β with |β| ≤ 1 and |z| ≥ 1,

kn+s|zDαG(z) + β
(n+ sk)(|α| − k)

1 + k
G(z)| ≤

|zDαH(z) + β
(n+ sk)(|α| − k)

1 + k
H(z)|.(2.6)

Therefore by using the equality

H(z) =zn+sG(
k2

z
) = zn+sp(

k2

z
)− λMkszn

=Q(z)− λMkszn,

and G(z) in (2.6), we get

kn+s|(zDαp(z) + β
(n+ sk)(|α| − k)

1 + k
p(z))−

λ((n− s)z + sα+ β
(n+ sk)(|α| − k)

1 + k
)Mk−szs| ≤

|zDαQ(z) +
β(n+ s)(|α| − 1)

2
Q(z)− λ(nα+

β(n+ s)(|α| − 1)

2
)ksMzn|.

This implies

kn+s|zDαp(z) + β
(n+ sk)(|α| − k)

1 + k
p(z)|−

|λ((n− s)z + sα+ β
(n+ sk)(|α| − k)

1 + k
)Mk−szs| ≤

|(zDαQ(z) + β
(n+ sk)(|α| − k)

1 + k
Q(z))−

λ(nα+ β
(n+ sk)(|α| − k)

1 + k
)Mkszn|.(2.7)
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As |Q(z)| = kn+s|p(z)| for |z| = k, i.e., max
|z|=k

|Q(z)| = kn+s max
|z|=k

|p(z)| =

kn+sM , by applying Lemma 2.3 to Q(z), we obtain for |z| = 1,

|zDαQ(z)+β
(n+ sk)(|α| − k)

1 + k
Q(z)| <

|λ||nα+ β
(n+ sk)(|α| − k)

1 + k
|k−n max

|z|=k
|Q(z)|

= |λ||nα+ β
(n+ sk)(|α| − k)

1 + k
|ksM.

Thus taking suitable choice of argument of λ, we get

|zDαQ(z)+
β(n+ sk)(|α| − k)

1 + k
Q(z)−

λ(nα+
β(n+ sk)(|α| − k)

1 + k
)Mkszn|

= |λ||nα+
β(n+ sk)(|α| − k)

1 + k
|ksM−

|zDαQ(z) +
β(n+ sk)(|α| − k)

1 + k
Q(z)|.(2.8)

By combining right hand side of (2.7) and (2.8), we get for |z| = 1 and |β| ≤ 1,

kn+s|zDαp(z) + β
(n+ sk)(|α| − k)

1 + k
p(z)|−

|λ((n− s)z + sα+ β
(n+ s)(|α| − 1)

2
)Mknzs| ≤ |λ|×

|nα+ β
(n+ sk)(|α| − k)

1 + k
|ksM − |zDαQ(z) + β

(n+ sk)(|α| − k)

1 + k
Q(z)|,

i.e.,

kn+s|zDαp(z)+β
(n+ sk)(|α| − k)

1 + k
p(z)|+

|zDαQ(z) + β
(n+ sk)(|α| − k)

1 + k
Q(z)| ≤

|λ|{ks|nα+
β(n+ sk)(|α| − k)

1 + k
|+

kn|(n− s)z + sα+
β(n+ sk)(|α| − k)

1 + k
|}M.
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Letting |λ| → 1, we have

kn+s|zDαp(z)+β
(n+ sk)(|α| − k)

1 + k
p(z)|+

|zDαQ(z) + β
(n+ sk)(|α| − k)

1 + k
Q(z)| ≤

{ks|nα+ β
(n+ sk)(|α| − k)

1 + k
|+

kn|(n− s)z + sα+ β
(n+ sk)(|α| − k)

1 + k
|}M.(2.9)

This gives the result. □

The following lemma is due to Zireh [18].

Lemma 2.5. If p(z) =
∑n

ν=0 aνz
ν is a polynomial of degree n, having all its

zeros in |z| < k, (k > 0), then m < kn|an|, where m = min
|z|=k

|p(z)|.

3. Proof of the theorems

Proof of Theorem 1.1. If p(z) has a zero on |z| = k, then the inequality (1.11)
is trivial. Therefore we assume that p(z) has all its zeros in |z| < k. Let m =
min
|z|=k

|p(z)|, then m > 0 and |p(z)| ≥ m where |z| = k. Therefore, for |λ| < 1,

it follows from Rouche’s theorem and Lemma 2.5 that the polynomial G(z) =
p(z)− λmk−nzn is of degree n and has all its zeros in |z| < k with s-fold zeros
at the origin. By using Lemma 2.1, DαG(z) = Dαp(z) − αλmnk−nzn−1, has
all its zeros in |z| < k, where |α| ≥ k. Applying Lemma 2.2 to the polynomial
G(z), yields

|zDαG(z)| ≥ (n+ sk)(|α| − k)

1 + k
|G(z)|, |z| = 1.(3.1)

Since zDαG(z) has all its zeros in |z| < k ≤ 1, by using Rouche’s theorem, it
can be easily verified from (3.1), that the polynomial

zDαG(z) + β
(n+ sk)(|α| − k)

1 + k
G(z),

has all its zeros in |z| < 1, where |β| < 1. Substituting for G(z), we conclude
that the polynomial

T (z) = (zDαp(z)+β
(n+ sk)(|α| − k)

1 + k
p(z))−

λmk−nzn(nα+ β
(n+ sk)(|α| − k)

1 + k
),(3.2)
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will have no zeros in |z| ≥ 1. This implies for every real or complex number β
with |β| < 1 and |z| ≥ 1,

|zDαp(z) +
β(n+ sk)(|α| − k)

1 + k
p(z)| ≥ mk−n|zn||nα+

β(n+ sk)(|α| − k)

1 + k
|.

(3.3)

If the inequality (3.3) is not true, then there is a point z = z0 with |z0| ≥ 1
such that

|z0Dαp(z0) +
β(n+ sk)(|α| − k)

1 + k
p(z0)| < mk−n|zn0 ||nα+

β(n+ sk)(|α| − k)

1 + k
|.

Take

λ =
z0Dαp(z0) + β (n+sk)(|α|−k)

1+k p(z0)

mk−nzn0 (nα+ β (n+sk)(|α|−k)
1+k )

,

then |λ| < 1 and with this choice of λ, we have T (z0) = 0 for |z0| ≥ 1. But
this contradicts the fact that T (z) ̸= 0 for |z| ≥ 1. For β with |β| = 1, the
inequality (3.3) follows by continuity.
This completes the proof of Theorem 1.1. □

Proof of Theorem 1.4. Under the assumption of Theorem 1.4, we can write
p(z) = zsh(z), where the polynomial h(z) ̸= 0 in |z| < k, and thus if m =
min
|z|=k

|p(z)|, then k−sm ≤ |h(z)| for |z| ≤ k. Now for λ with |λ| < 1, we have

|λk−sm| < k−sm ≤ |h(z)|,

where |z| = k.
It follows from Rouche’s theorem that the polynomial h(z)− λk−sm has no

zero in |z| < k. Hence the polynomial G(z) = zs(h(z) − λk−sm) = p(z) −
λk−smzs, has no zero in |z| < k except s-fold zeros at the origin. Therefore
the polynomial

H(z) = zn+sG(k2/z) = Q(z)− λksmzn,

will have all its zeros in |z| ≤ k with s-fold zeros at the origin, where Q(z) =

zn+sp(1/z). Also |H(z)| = kn+s|G(z)| for |z| = k.
Now, using a similar argument as that used in the proof of Lemma 2.4

(inequality (2.6)), for the polynomials H(z) and G(z), we have

kn+s|zDαG(z)+β
(n+ sk)(|α| − k)

1 + k
G(z)| ≤

|zDαH(z) + β
(n+ sk)(|α| − k)

1 + k
H(z)|,

where |α| ≥ k, |β| ≤ 1 and |z| = 1. Substituting for G(z) and H(z) in the
above inequality, we conclude that for every real or complex numbers α, β,
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with |α| ≥ k, |β| ≤ 1 and |z| = 1,

kn+s|zDαp(z)− λ((n− s)z + sα)k−smzs+

β
(n+ sk)(|α| − k)

1 + k
(p(z)− λk−smzs)| ≤

|zDαQ(z)− λαnksmzn + β
(n+ sk)(|α| − k)

1 + k
(Q(z)− λksmzn)|,

i.e.,

kn+s|zDαp(z)+β
(n+ sk)(|α| − k)

1 + k
p(z)−

λ((n− s)z + sα+ β
(n+ s)(|α| − 1)

2
)k−smzs| ≤

|zDαQ(z) + β
(n+ sk)(|α| − k)

1 + k
Q(z)−

λ(nα+ β
(n+ s)(|α| − 1)

2
)ksmzn|.(3.4)

Since all the zeros of Q(z) lie in |z| ≤ 1 with s-fold zeros at the origin, and
|Q(z)| = kn+s|p(z)| for |z| = k, therefore by applying Theorem 1.1 to Q(z), we
have

|zDαQ(z) + β
(n+ sk)(|α| − k)

1 + k
Q(z)| ≥

k−n|nα+ β
(n+ sk)(|α| − k)

1 + k
| min
|z|=k

|Q(z)| =

|nα+ β
(n+ sk)(|α| − k)

1 + k
|ksm.

Hence for an appropriate choice of the argument of λ, we have

|zDαQ(z)+
β(n+ sk)(|α| − k)

1 + k
Q(z)− λ(nα+

β(n+ sk)(|α| − k)

1 + k
)ksmzn|

= |zDαQ(z) +
β(n+ sk)(|α| − k)

1 + k
Q(z)|−

|λ||nα+
β(n+ sk)(|α| − k)

1 + k
|ksm,(3.5)

where |z| = 1. Combining the right hand sides of (3.4) and (3.5), we can rewrite
(3.4) as
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kn+s|zDαp(z)+β
(n+ sk)(|α| − k)

1 + k
p(z)|−

|λ||(n− s)z + sα+ β
(n+ sk)(|α| − k)

1 + k
|knm ≤

|zDαQ(z) + β
(n+ sk)(|α| − k)

1 + k
Q(z)|−

|λ||nα+ β
(n+ sk)(|α| − k)

1 + k
|ksm.(3.6)

where |z| = 1. Equivalently

kn+s|zDαp(z)+β
(n+ sk)(|α| − k)

1 + k
p(z)| ≤

|zDαQ(z) + β
(n+ sk)(|α| − k)

1 + k
Q(z)|−

|λ|{ks|nα+ β
(n+ sk)(|α| − k)

1 + k
|−

kn|(n− s)z + sα+ β
(n+ sk)(|α| − k)

1 + k
|}m.

As |λ| → 1 we have

kn+s|zDαp(z)+β
(n+ sk)(|α| − k)

1 + k
p(z)| ≤

|zDαQ(z) + β
(n+ sk)(|α| − k)

1 + k
Q(z)|−

{ks|nα+ β
(n+ sk)(|α| − k)

1 + k
|−

kn|(n− s)z + sα+ β
(n+ sk)(|α| − k)

1 + k
|}m.

It implies for every real or complex number β with |β| ≤ 1 and |z| = 1,

2|zDαp(z) + β
(n+ s)(|α| − 1)

2
p(z)| ≤

|zDαp(z) +
β(n+ s)(|α| − 1)

2
p(z)|+ |zDαQ(z) +

β(n+ s)(|α| − 1)

2
Q(z)|

− {|nα+ β
(n+ s)(|α| − 1)

2
| − |(n− s)z + sα+ β

(n+ s)(|α| − 1)

2
|}m.



Inequalities for the polar derivative of a polynomial 2166

This in conjunction with Lemma 2.4 gives for |β| ≤ 1 and |z| = 1,

2kn+s|zDαp(z) + β
(n+ sk)(|α| − k)

1 + k
p(z)| ≤

{ks|nα+
β(n+ sk)(|α| − k)

1 + k
|+

kn|(n− s)z + sα+
β(n+ sk)(|α| − k)

1 + k
|}M−

{ks|nα+
β(n+ sk)(|α| − k)

1 + k
|−

kn|(n− s)z + sα+
β(n+ sk)(|α| − k)

1 + k
|}m.

This completes the proof of Theorem 1.4. □
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