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ABSTRACT. Let p(z) be a polynomial of degree n and for a complex num-
ber a, let Dap(2) = np(z) + (o — 2)p’(2) denote the polar derivative of
the polynomial p(z) with respect to a. Dewan et al proved that if p(z)
has all its zeros in |z| < k, (k < 1), with s-fold zeros at the origin then
for every o € C with |a| > k,

(n + sk)(le| — k)
max [Dap(z)] > Ttk max Ip(2)]-
In this paper, we obtain a refinement of the above inequality. Also as an
application of our result, we extend some inequalities for polar derivative
of a polynomial of degree n which does not vanish in |z| < k, where k > 1,
except s-fold zeros at the origin.
Keywords: Polynomial, inequality, maximum modulus, polar derivative,
restricted zeros.
MSC(2010): Primary: 30A10; Secondary: 30C10, 30D15.

1. Introduction and statement of results

According to a well known result as Bernstein’s inequality on the derivative
of a polynomial p(z) of degree n, we have
(1.1) max [p’(z)| < nmax [p(2)].

|z|=1 |z|=1

The result is best possible and equality holds for a polynomial having all its
zeros at the origin (see [1, 16]).
The inequality (1.1) can be sharpened, by considering the class of polynomials
having no zeros in |z| < 1.
In fact, P. Erdés conjectured and later Lax [12] proved that if p(z) # 0 in
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Inequalities for the polar derivative of a polynomial 2154

|z| <1, then (1.1) can be replaced by

(1.2) max [p/ ()| < & max [p(z)]
|2|=1 2 Iz|
If p(z) has all its zeros in | z |< 1, then it was shown by Turan [17] that
n
1.3 max |p’(z)] > = max |p(2)].
(13) max [/ (2)] = 5 mae [p(2)
As an extension of inequality (1.3) Malik [14], proved that if p(z) has all its
zeros in |z| <k, k < 1, then
n
14 > — .
(1.4) max [p'(2)] = 1~ max|p(2)]

Aziz and Shah [3, Theorem 3] generalized (1.4) and proved that if p(z) has all
its zeros in |z| < k < 1 with s-fold zeros at the origin, then

n + sk
1.5 '(z)| > :
(1.5) max [p(2)] 2 77~ max [p()]

Govil [9] improved inequality (1.4) and proved that if p(z) is a polynomial of
degree n having all its zeros in |z| < k, k < 1, then

1
(1.6) glglp()\_“rk{H x|+ oy min

p(2)]}-

As an improvement of inequality (1.2) Dewan and Hans [6] proved that if p(z)
is a polynomial of degree n having no zeros in |z| < 1, then for any complex
number 4 with |8] <1 and |z| =1,

/() + Tp() < JAL+ 51+ 15D max p()]-
(17) (114 51= 151) min ()

Let « be a complex number. For a polynomial p(z) of degree n, D,p(z), the
polar derivative of p(z) is defined as

Dap(z) = np(2) + (o — 2)p/ ().

It is easy to see that D,p(2) is a polynomial of degree at most n — 1 (for more
information, see [1,5,8]) and that D,p(z) generalizes the ordinary derivative
in the sense that

(1.8) lim |

a— 00 @]

For the polar derivative D,p(z), Aziz and Rather [2] generalized the inequality
(1.4) to the polar derivative of a polynomial. In fact, they proved that if all
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zeros of p(z) lie in |z| < k, k < 1, then for every real or complex number «
with |a| > k, we get
(1.9) max |Dop(2)

As a refinement to inequality (1.9), Govil [10] proved that if p(z) is a polynomial
of degree n having all zeros in |z| < k, where k& < 1, then for every real or
complex number a with |a] > k, we have

n
> — —k .
|2 (el — k) max (<)

Qo+ 1) sy o)y,

(110)  max | Dap(=)| > 7 Al = b max lp(e) |+ == min

|z|=1 1+k ||

As an improvement and generalization of (1.9), Dewan et al [7, Theorem

2] proved that if p(z) has all its zeros in |z| < k < 1 with s-fold zeros at the
origin, then

(n+ sk)(|a] — k)
. N >
(1.11) max | Dap(2)] 2 1+k B

As an improvement and generalization to the inequalities (1.7) and (1.4),
Liman et al [13] proved that if p(z) is a polynomial of degree n having no zeros
in |z| < 1, then for all real or complex numbers «, 8 with |a| > 1, |8 <1 and
|Z| =1,

2Dap(2) + 08290 < S+ 512+ 0 o)
—1 —1
(112) ~(a-+ AL o 822 i e

Our first result, Theorem 1.1, is a generalization and refinement of inequalities
(1.10) and (1.11) respectively.

Theorem 1.1. Let p(z) be a polynomial of degree n, having all its zeros in
|z| <k, where k < 1, with s-fold zeros at the origin, then

(n+ sk)(|a| — k)

2Dap(z) + g, )
(113) e+ DU o i e

for every real or complex numbers B, « with |8] <1, |o| >k and |z| > 1.

According to Lemma 2.2, if p(z) is a polynomial of degree n, having all its
zeros in |z| <k, k <1, with s-fold zeros at the origin, then for |z| = 1,

(n+sk)(Ja] = F)
1+k

|Dap(z)| = p(2)];
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also for every complex number 8 with |3| < 1, by choosing suitable argument
of B we have

(n+ sk)(|a] — k)

[2Dap(2) + B p(2)| =[2Dap(2)| =

1+ k
(1.14) \BI(nJrSfL(lZl =LIWET]
Combining (1.13) and (1.14), we have

2Dup(a)] — | A
s gt s al K)o
k™" noc+ B T+ % | min [p(2)],
1Dap()] - 81 BB
. (n+ kYo~ )\
e (nla - 1 "0 iy e

Letting |f| — 1, we have the following result which is a refinement and
extension of inequalities (1.10) and (1.11).

Corollary 1.2. If p(z) is a polynomial of degree n having all its zeros in
|z| <k, k <1, with s-fold zeros at the origin, then we have

(n+ sk)(la] — k)
D >
max | Dap(2)] > Ttk max |p(z)|+

(n—s)la|+ (n+sk) .
ST Ol

(1.15)

Dividing two sides of inequality (1.15) by |«| and letting |a] — oo, we have
the following refinement and generalization of the inequalities (1.5) and (1.6),
respectively.

Corollary 1.3. If p(z) is a polynomial of degree n having all its zeros in
|z| <k, k <1, with s-fold zeros at the origin, then we have

n+ sk n—s .
Tk o Ip(2)| + [ e Ip(2)I-

(1.16) max p'(2)] =

Next, as an application of Theorem 1.1, we prove the following generaliza-
tion of inequality (1.12).

Theorem 1.4. Let p(z) be a polynomial of degree n that does not vanish in
|z| < k k> 1, except at s-fold zeros at the origin, then for all o, § € C with
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la] >k, |B] <1 and |z| =1, we have

2Dap(z) + gD )
PR TR
k00— 9z + s+ 5D e )
(ka4 0T sfl(',j' =LA
(117) 2l = )z +-sa -+ g U R 1y,

If we take s = 0, kK = 1 in Theorem 1.4, then the inequality (1.17) reduces
to the inequality (1.12)

Dividing two sides of inequality (1.17) by || and letting |a] — oo, we have
the following generalization of the inequality (1.7).

Corollary 1.5. Let p(z) be a polynomial of degree n that does not vanish in
|z| < k, k > 1, except at s-fold zeros at the origin, then for all B € C with
8] <1 and |z| = 1, we have

, n + sk 1
< —
|29/ (2) + B2l < 5
. n + sk s n + sk
(" BEEE ks + BT ) max ()
n n + sk s n + sk .
(1.18) — AR B = R s B[ min [p(2)1),

Theorem 1.4 simplifies to the following result by taking g = 0.

Corollary 1.6. Let p(z) be a polynomial of degree n that does not vanish in
|z| < k, k> 1, except at s-fold zeros at the origin, then for any o € C with
|a] >k and |z| = 1, we have

1
[Dap(z)] < 5{nk™"|a] + £7%|(n = 5)2 + saf) max |p(z)| -

(1.19) (ko] = K~*[(n = 5)z + sal) min |p(:)]}

2. Lemmas

For the proofs of these theorems, we need the following lemmas. The first
lemma is due to Laguerre [11,15].
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Lemma 2.1. If all the zeros of an n'" degree polynomial p(z) lie in a circular
region C' and w is any zero of D,p(2), then at most one of the points w and a
may lie outside C.

Lemma 2.2. If p(z) is a polynomial of degree n, having all its zeros in the
closed disk |z| < k < 1, with s-fold zeros at the origin, then for each real or
complex number a with |a| > k and |z| = 1, we have

(n+ sk)(Ja] — k)
L= B
The above lemma is due to K.K. Dewan and A. Mir [7].

(2.1) |Dap(z)| =

Lemma 2.3. Ifp(2) is a polynomial of degree n with s-fold zeros at the origin,
then for all o, B € C with |B] <1, |a| > k and |z| =1, we have

(n+ sk)(Ja] — k)

<
2Dap(z) s, )
(n+sk)(jol = k) ) —n
(2.2) -+ UM R)  o)
Proof. Let M = max [p(z)|, if [\| < 1, then [Ap(z)| < [M(F)"] for [z] =

|z|=k
k. Therefore it follows from Rouche’s theorem that the polynomial G(z) =
M(%)™ — Ap(z) has all its zeros in |z| < k with s-fold zeros at the origin. By
applying Lemma 2.2, to the polynomial G(z), we have for every real or complex
number « with |a| > k and for |z| = 1,

(n+ sk)(|a] — k)

>
2DaG(2)] > T

1G(2)];

or
_ (n+ sk)(|a] — k)
ME™"2" — \zD,, >
|na z zDap(2)| > Ttk
On the other hand by Lemma 2.1, all the zeros of D,G(2) = naMk="z""1 —
AD.p(z) lie in |z| < k, where |a| > k. Therefore for any S with |5] < 1,
Rouche’s theorem implies that all the zeros of
(n+ sk)(|a| — k)
1+k
lie in |z| < 1. This implies that the polynomial
(n+ sk)(Ja] — k)
1+k

|[ME™"2" — Ap(2)].

naMk™"z" — XzD.p(z) + 8

(ME™"2" — Ap(2)),

T(z) = (na+p YME™" 2"
(n+ sk)(Ja] — k)
1+k

(2.3) — MzDap(z) + B p(2)),
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will have no zeros in |z| > 1. This implies that for every real or complex number
B with |8] < 1 and |2| =1,
(2.4)
B(n + sk)(|a| — k) B(n+ sk)(Ja| — k
p(2)| < [nac+
1+k 1+k

If the inequality (2.4) is not true, then there is a point z = 2y with |z9| > 1,
such that

|2Dap(2) + ) k=" M.

(n+ sk)(|a] — k
1+ k&

(n+ sk)(laf — F)
1+k

[na+ 8 ) |[k™" M < |z0Dap(20) + B

Take
(na + BM)k—nM

z0Dap(20) + 5%?(2’0) 7

then |A] < 1 and with this choice of A, we have T'(z9) = 0 for |z| > 1. But this
contradicts the fact that T'(z) # 0 for |z] > 1. For 8 with |3] = 1, the inequality
(2.4) follows by continuity. This completes the proof of Lemma 2.3. O

Lemma 2.4. If p(z) is a polynomial of degree n with s-fold zeros at the origin,
then for all o, B € C with || < 1, |a] > k and |z| = 1, we have

(n+ sk)(la] — k)

p42)zDap(y b UL Ry
2DaQ() + g =D g ) <
{k8|na+5("+sf)+(|z|_k)|+
(25) K71 = )z + s 4R )

where Q(z) = 2" **p(L).

Proof. Let M = ‘m‘ax Ip(z)]. For A with |A] > 1, it follows from Rouche’s

theorem that the polynomial G(z) = p(z) — AMk~°2° has no zeros in |z| < k,
except at s-fold zeros at the origin. Consequently the polynomial

L2
H(z) = 2"TG(—),
z
has all its zeros in |z| < k with s-fold zeros at the origin, also k" 15|G(z)| =
|H (z)| for |z| = k. Since all the zeros of H(z) lie in |z| < k, therefore, for § with

|6] > 1, by Rouche’s theorem all the zeros of k"T*G(z) + dH(z) lie in |z] < k.
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Hence by Lemma 2.2 for every real or complex number « with |a| > k, and
|z| = 1, we have

(n+ sk)(|a] — k)
1+ k&

K" G(2) + 6H(2)| < |2Da (K" G(2) + 6 H(2)).

Now using a similar argument as that used in the proof of Lemma 2.3, we get
for every real or complex number 5 with |5] <1 and |z| > 1,

(1 + sk)(la] ~ )
D6 <

(2.6) |2Do H(z) + B

k"5 2DoG(2) + B

(n+ sk)(|a] — k)
1+k

H(z)|.

Therefore by using the equality
k2 k2. -
H(z2) =2"TG(=) = 2""*p(—) — AME*2"
Z Z
=Q(2) — AMKE*2",
and G(z) in (2.6), we get
(n+ sk)(|a] — k)

U= )
(n+ sk)(|a] — k)
1+k

ﬂ(n+s)2(|a\ _ 1)@(2) —X(’HO{-I-

k"2|(2Dap(2) + B

AM(n—s8)z+sa+p

YME™%2°| <

Bn+s)(jaf = 1)

2DaQ(z) + ;

VM 2"

This implies

2 o= ) -
M((n— 5)z + s+ pL AL 2 )

(:DaQ(z) + gl )

(n+ sk)(|a] — k)
1+ k&

k"2 2Dap(2) + B

)ME—z| <

Q)

(2.7) Ana + B YME®2"].
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As |Q()] = K lp()] for [e] = k. fe., max Q)] = K™ max|p(=)| =

k"M, by applying Lemma 2.3 to Q(z), we obtain for |z| = 1,

(n+ sk)(jal ~ &)
D200 <

k —k
lina + gD o )
(n+ sk)(|a] — k)
1+k

[2DaQ(2)+p

= [Alna+ 5

|k M.

Thus taking suitable choice of argument of A, we get

B(n+ sk)(laf = k)

2D, Q(e) N = o)
Ao A0SO o
= na + 2SN oy
29) 2DaQ(e) + A= o,

By combining right hand side of (2.7) and (2.8), we get for |z| =1 and |8] < 1,

(n+ sk)(Ja| — k)

k"% |2Dop(2) + B — p(z)|—
[A((n — s)z + sa + ﬂ%ﬂwknzﬂ < A%
Ina+ glnt Sfl('Z' — k) M — |2DaQ(z) + gne sf)+(|z| —~ k)Q(Z)L
ie.,
k=D +5 I =
|2DaQ(z) + ﬂ(n ha Sf)ﬁZ' - k)Q(z)| <
Pl{klna + 2N 2B,

Bn + sk)(la] = k)
1+k

E™(n—s)z+ sa+ [} M.
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Letting |A| — 1, we have
(n+sk)(Jo| — k)

k" |zDap(2)+8 i PRI
2DaQ(z) + 4= g <
(ka4 NG Z0,
(2.9) k"|(n—s)z+sa+ﬁ(n+sf)4£‘gl —Fpar
This gives the result. 0

The following lemma is due to Zireh [18].

Lemma 2.5. If p(z) = Y, _,a,2" is a polynomial of degree n, having all its

zeros in |z| <k, (k> 0), then m < k™|ay|, where m = |H|1ink Ip(2)].
z|l=

3. Proof of the theorems

Proof of Theorem 1.1. If p(z) has a zero on |z| = k, then the inequality (1.11)
is trivial. Therefore we assume that p(z) has all its zeros in |z| < k. Let m =

‘Hlllrlk |p(2)|, then m > 0 and |p(z)| > m where |z| = k. Therefore, for |A| < 1,

it follows from Rouche’s theorem and Lemma 2.5 that the polynomial G(z) =
p(z) — Amk~™z" is of degree n and has all its zeros in |z| < k with s-fold zeros
at the origin. By using Lemma 2.1, D,G(z) = Dap(2) — admnk™"2""1 has
all its zeros in |z| < k, where |a] > k. Applying Lemma 2.2 to the polynomial
G(z), yields

(n+ sk)(|a] — k)
1+k

Since zD,G(z) has all its zeros in |z| < k < 1, by using Rouche’s theorem, it

can be easily verified from (3.1), that the polynomial

(n+ sk)(Ja| — k)
1+k

has all its zeros in |z| < 1, where |3| < 1. Substituting for G(z), we conclude
that the polynomial

(3.1) |2DaG(2)| = G(2)], 2] = 1.

2DaG(2) + B G(2),

(n+ sk)(|a] — k)
1+k

T(z) = (2Dap(2)+8 p(2))—
n+ sk)(|la| — k)

1+k

(3.2) Amk™"z" (na + 5< ),
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will have no zeros in |z| > 1. This implies for every real or complex number
with |8] < 1 and |z] > 1,

(3.3)
2Dop(z) + 200 F i’“ﬂ“' — k) B(n + ikJ)r(Lm =l

If the inequality (3.3) is not true, then there is a point z = zy with |zo| > 1
such that

p(2)| > mk™"|2"||na +

B+ sk)(|of = k)
1+k

B+ sk)(|of = k)
1+k

[20Dap(z0) + p(20)] < mk™"|z5|[na +

Take

\_ 20Dap(z0) + B ()

mk="z0 (na + 57(n+8ﬁ1£|;?‘7k))
then |A] < 1 and with this choice of A, we have T'(z9) = 0 for |zo| > 1. But
this contradicts the fact that T'(z) # 0 for |z| > 1. For 8 with |5| = 1, the
inequality (3.3) follows by continuity.
This completes the proof of Theorem 1.1. O

b

Proof of Theorem 1.4. Under the assumption of Theorem 1.4, we can write

p(z) = 2°h(z), where the polynomial h(z) # 0 in |z| < k, and thus if m =

‘H‘ILI}C |p(2)], then k~*m < |h(z)]| for |z| < k. Now for A with |A\| < 1, we have
AT m| < k7°m < |h(2)|,

where |z| = k.

It follows from Rouche’s theorem that the polynomial h(z) — Ak~ *m has no
zero in |z| < k. Hence the polynomial G(z) = z°(h(z) — Ak™*m) = p(z) —
Ak7*mz® has no zero in |z| < k except s-fold zeros at the origin. Therefore
the polynomial

H(z) = 2"T*G(k2/Z) = Q(2) — M\k*mz",
will have all its zeros in |z| < k with s-fold zeros at the origin, where Q(z) =
2"5p(1/z). Also |H(z)| = k" T5|G(2)| for |z| = k.
Now, using a similar argument as that used in the proof of Lemma 2.4
(inequality (2.6)), for the polynomials H(z) and G(z), we have

=D, + P =D ) <
2D, H(z) + gD )

where |a| > k, || < 1 and |z| = 1. Substituting for G(z) and H(z) in the
above inequality, we conclude that for every real or complex numbers «, (3,
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with |o| > k, |8] <1 and |z| =1,

k"5 |2Dap(2) — M(n — 8)z + sa)k™*mz*+
ﬂ(n + sk)(|a| — k)
14k

|2DaQ(2) — dank®mz" + 3

(p(z) = Ak™°mz")| <
(n+ sk)(Ja] — k)

(Q(2) = Ak"mz")],

1+ &
e e Dap(e) o DAL )
AM(n—8)z+ sa+ ﬁ%ﬁ_l))kﬂmzﬂ <
2D,Q(z) + g R g
(3.4) Xna+ g0 =Dy o).

2

Since all the zeros of Q(z) lie in |z] < 1 with s-fold zeros at the origin, and

|Q(2)| = k" T4|p(2)] for |z| = k, therefore by applying Theorem 1.1 to Q(z), we

have

(n+ sk)(|a| — k)
1+k

E™"na+ 8

12DaQ(2) + 8 Q(z) =

(n+sk)(la] = k), . _
Ttk \lgflzr;c\Q(Z)I =

(n+ sk)(|a|] — k)

1+ k&

|na+ 8

[km.

Hence for an appropriate choice of the argument of A, we have

20,Q() IR ) S BOTINAZD
= 1:D,Q(z) + N =B o)
(3.5) \|[na + ﬁ(“ikl(f' =) lom,

where |z| = 1. Combining the right hand sides of (3.4) and (3.5), we can rewrite
(3.4) as
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(n + sk)(la] — k)

n+s D
k" *|2Dap(2)+0 -

p(2)|-

(n+ sk)(|a] — k)
1+ k&

(n+ sk)(|a| — k)
D=8 o)1

(n+ sk)(|a] — k)
1+ k

[Al[(n = $)z+ sa+ 5 |k"m <

12DaQ(2) + 8

(3.6) [A[|noc+ B

|k*m.

where |z| = 1. Equivalently

n+ sk)(|la| — k)
14+ k&

‘ZDaQ(Z) +0

k‘"+s|zDap(z)+ﬁ(

p(z)| <

(n+ sk)(|a] — k)
o= o)1

(n+ sk)(|af —k)|7
1+ k

(n+ sk)(|a] — k)
1+ k&

[A{F [nac+ 5

E"(n—s8)z+sa+ [}m.

As |A] — 1 we have

(n+ sk)(Ja| — k)
1+k

k"7 2Dap(2)+8 p(2)| <

(n+ sk)(|o| — k)
1+k

(n+sk)(Ja| =) _
1+k&

(n + sk)(|a| — k)
1+k&

12D Q(2) + B

Q(2)|-

{k*|na + 8

E"|(n—s)z+sa+ B [}m.

It implies for every real or complex number 8 with |5| <1 and |z| = 1,

(n+s)(jal = 1)

2/:Dp(2) + 5D )
2Dap(e) + 2D oy 4 ap, e + 20N Do
_ {|na+ﬂ%2|a|fl)‘ —|(n— )z + s« +B%|}m.
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This in conjunction with Lemma 2.4 gives for || <1 and |z]| =1,

(n+ sk)(Ja| — k)

2k™+*|2Dop(2) + 8 p(z)| <

1+k

(i + 2 0o =)

k —k
k|(n — 8)z + sa + P : l(]'f” -

k —k

(b + LTSN =B)

k —k
kz”|(n—s)z—|—sa+ﬂ(n+i}r(l€a| )\}m

This completes the proof of Theorem 1.4. 0
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