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ABSTRACT. Let 7 be a subgroup functor and H a p-subgroup of a finite
group G. Let G = G/Hg and H = H/Hg. We say that H is ®-7-
quasinormal in G if for some S-quasinormal subgroup T of G and some
T-subgroup S of G contained in H, HT is S-quasinormal in G and HNT <
S®(H). In this paper, we study the structure of a group G under the
condition that some primary subgroups of G are ®-7-quasinormal in G.
Some new characterizations about p-nilpotency and solubility of finite
groups are obtained.
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1. Introduction

Throughout this paper, all groups considered are finite and G always denotes
a group, m denotes a set of primes and p denotes a prime. Let Hyg be the sub-
group of H generated by all those subgroups of H which are S-quasinormal
in G and H*“ the intersection of all such S-quasinormal subgroups of G con-
taining H. All unexplained notation and terminology are standard, as in [0]
and [8].

For a class of groups §, a chief factor L/K of G is said to be §-central in G
it L/KxG/Cq(L/K) € §. A normal subgroup N of G is called §-hypercentral
in G if either N = 1 or every chief factor of G below N is F-central in G. Let
Z5(@G) denote the F-hypercentre of G, that is, the product of all F-hypercentral
normal subgroups of G. We use & and 4 to denote the formations of all soluble
groups and supersoluble groups, respectively. It is well known that { and &
are all S-closed saturated formations.

A function 7 which assigns to each group G a set of subgroups 7(G) of G is
called a subgroup functor (see [11]) if 1 € 7(G) and §(7(G)) = 7(0(@)) for any
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isomorphism 6 : G — G*. If H € 7(G), then we say that H is a 7-subgroup of
G.

In recent years, many scholars study the structure of the finite group by
discussing the generalized normality of subgroups. Recall that a subgroup H
of G is S-quasinormal in G if H permutes with every Sylow subgroup of G. A
subgroup H of G is said to be s-semipermutable in G [3] if HG), = G,H for
any Sylow p-subgroup G, of G with (p, |H|) = 1. A subgroup H of G is said to
s-embedded in G [10] if G has two S-quasinormal subgroups T" and S such that
HT = H*¢ and HNT < S (see [5, Example 4.1]), where S < H. A subgroup
H of G is said to be nearly s-embedded in G [1] if G has an S-quasinormal
subgroup T and an s-semipermutable subgroup S contained in H such that
HT = H*Y and HNT < S (see [5, Example 4.6]). A subgroup H of G is
said to be nearly SS-embedded in G [12] if G has an S-quasinormal subgroup
T such that HT is S-quasinormal in G and H NT < S (see [5, Example
4.15]), where S is the subgroup of H generated by all those subgroups of H
which are S-quasinormal embedded in G. A subgroup H of a group G is called
S®-supplemented [15] in G if there exists a subnormal subgroup 7' of G such
that G = HT and HNT < ®(H). Naturally, it is necessary to unify the
above-mentioned generalized normal subgroups and discuss the influence on
the structure of a finite group by connecting these subgroups with Frattini
subgroup. Hence we give the following notion.

Definition 1.1. Let 7 be a subgroup functor and H a p-subgroup of a finite
group G. Let G = G/Hg and H = H/Hg. We say that H is ®-7-quasinormal
in G if for some S-quasinormal subgroup T of G and some T-subgroup S of G
contained in H, HT is S-quasinormal in G and HNT < S®(H).

It is easy to see that the above mentioned subgroups are ®-7-quasinormal in
G. But the following examples show that the converse does not hold in general.

Example 1.2. Let G = Ay be the alternating group of degree 5 and 7(G) be
the set of all subgroups of G. We take H = ((123)). Then H is a T-subgroup
of G. Since Hsg = Hg = ®(H) = 1 and H is not s-semipermutable in G,
H is not the above mentioned subgroups, but clearly, H is ®-1-quasinormal in

G. O

Now we introduce some properties of subgroup functors (see [11, Definition
1.3]) which will be used in our results. If 7 is a subgroup functor, then we say
that 7 is:

(1) inductive if for any group G, whenever H € 7(G) is a p-group and N <G,
then HN/N € 7(G/N).

(2) hereditary if for any group G, whenever H € 7(G) is a p-group and
H < E <@, then H € 7(E).

(3) regular (respectively, quasiregular) if for any group G, whenever H €
7(G) is a p-group and N is a minimal normal subgroup (respectively,
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an abelian minimal normal subgroup) of G, then |G : Ng(H N N)| is a
power of p.

(4) ®-regular (respectively, ®-quasiregular) if any primitive group G, when-
ever H € 7(QG) is a p-group and N is a minimal normal subgroup (respec-
tively, an abelian minimal normal subgroup) of G, then |G : Ng(H N N)|
is a power of p.

2. Preliminaries

Lemma 2.1 ([9, Chapter I. Lemma 5.34]). Let H,K < G and N <G.

(1) If H 1is S-quasinormal in G, then HN/N is S-quasinormal in G/N.

(2) If H/N is S-quasinormal in G/N, then H is S-quasinormal in G.

(3) If H and K are S-quasinormal in G, then H N K is S-quasinormal in
G.

(4) If H is S-quasinormal in G, then H N K is S-quasinormal in K.

(5) If H is a p-group, then H is S-quasinormal in G if and only if OP(G) <
N¢(H).

(6) If H is S-quasinormal in G, then H/H¢ is nilpotent.

(7) If H is an S-quasinormal nilpotent subgroup of G, then every Sylow
subgroup of H is also S-quasinormal in G.

Lemma 2.2. Let H be a p-subgroup of G and T an inductive subgroup functor.
Suppose that H is ®-T-quasinormal in G.

(1) If N QG and either N < H or (|H|,|N|) = 1, then HN/N is ®-7-
quasinormal in G/N.
(2) If 7 is hereditary and H < K < G, then H is ®-T-quasinormal in K.

Proof. Let G = G/Hg and H = H/Hg. Since H is ®-7-quasinormal in G,
G has an S-quasinormal subgroup T and a 7- subgroup S contained in H such
that HT is S-quasinormal in G and H N T < S®(H), where S = S/Hg and
T = TVHC

~

(1) Let G = G/(HN)g, HN = HN/(HN)g, T = T(HN)q/(HN)g

nd S = S(HN)g/(HN)g. Clearly, Hy < (HN)g. Since 7 is injective,
S e T(é) By Lemma 2.1(1), T and HNT is S-quasinormal in G. Since
(IN1,|H|) L (NHAT : TAON[INHNT : TNH|) =1 Hence
NHNT = (N NT)(H NT). It follows that HN N T = HN/(HN)g N
T(HN)e/(HN)e = (H N T)(HN)¢/(HN)e < (S(HN)c/(HN)c)

®(HN/(HN)g)) = S®(HN). Therefore, HN/N is ®-r-quasinormal in G/N.
(2) Tt is easy to see that Hg < Hy. Let K = K/Hyx, H = H/Hg, T =
THK/HK N K/Hgk and S = SHK/HK Since 7 is hereditary and inductive,
S € 7(K). By Lemma 2.1(2)(5), T and HT = (H/H)(THy/Hx NK/Hg) =
H(TNK)/Hx = (HT N K)/Hg is S-quasinormal in K. It is easy to see that
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HNT = H/Hx NTHy/Hix = (HNT)Hyx/Hi < (SHi/Hi)®(H/Hx) =
S®(H). Hence H is ®-7-quasinormal in K. O

The next lemma is clear.

Lemma 2.3. Let p be a prime divisor of |G| with (|G|,p—1) = 1.
(1) If G has a cyclic Sylow p-subgroup, then G is p-nilpotent.
(2) If N is a normal subgroup of G such that |N|, < p and G/N is p-
nilpotent, then G is p-nilpotent.

Lemma 2.4 ([18, Lemma 2.8]). Let M be a mazimal subgroup of G and P a
normal p-subgroup of G such that G = M P, where p is a prime divisor of |G]|.
Then PN M <@G.

Lemma 2.5 ([4, Theorem 2.12]). Let P be a normal p-subgroup of G and D
a Thompson critical subgroup of P (see [7, p. 186)). If D < Zy(G), then
P < Zy(G).

Lemma 2.6 ([17, Theorem B]). Let § be any formation and E a normal sub-
group of G. If F*(E) < Zz(Q), then E < Z3(G).

The following well-known facts about the generalized Fitting subgroup are
needful in our proof (see [10, Lemma 2.14] or [14, Chapter X])

Lemma 2.7. Let N be a subgroup of G.

(1) If N <G, then F*(N) = F*(G) N N.

(2) F(GQ) < F*(G). If F*(G) is soluble, then F(G) = F*(QG).

(3) If N is a p-group contained in Z(G), then F*(G/N) = F*(G)/N.

(4) If N is soluble in G, then F*(G)/®(N) = F*(G/®(N)).

(5) F*(G) = F(G)E(G), F(G) N E(G) = Z(E(G)), [F(G), E(G)] = 1 and

E(G)/Z(E(Q)) is the direct product of simple non-abelian groups, where E(Q)
is the layer of G.

3. Main results

Theorem 3.1. Let E be a normal subgroup of G and P a Sylow p-subgroup of
E such that (|E|,p — 1) = 1. Suppose that T is a ®-regular inductive subgroup
functor and every T-subgroup of G contained in P is subnormally embedded
in G. If every maximal subgroup of P is ®-T-quasinormal in G, then E is
p-nilpotent.

Proof. Suppose that the theorem is false and let (G, E) is a counterexample
with |G| + |E| minimal. Then: (1) Oy (E) = 1.

Suppose that O, (E) # 1. Let M/O,(E) be a maximal subgroup of
PO,/ (E)/Op(E). Then M = P10y (FE) for some maximal subgroup P; of P.
By the Lemma 2.2(1) and the hypothesis, PO, (E)/O, (E) is ®-T-quasinormal
in E/O, (E). This shows that (G/O, (E), E/O (E )) satisfies the hypothesis
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of the theorem. The choice of (G, E) implies that E/O,,(E) is p-nilpotent, and
so E is p-nilpotent, a contradiction. Hence O, (E) = 1.

(2) G has a unique minimal normal subgroup N contained in E, E/N is
p-nilpotent and G = NM, where M is a maximal subgroup of G.

Let N be a minimal normal subgroup of G contained in E and H/N be
a maximal subgroup of PN/N. Then there exists a maximal subgroup P
of P such that H = PPN and P,NN = PN N. Set G = G/(P;)¢ and
P, = P/(P))g. By the hypothesis, G has an S-quasinormal subgroup 7" and
a 7-subgroup S contained in P; such that P,T is S-quasinormal in G and
PNT < S®(P,), where S = §/(Py)g and T = T/(P1)g. Let G = G/(PiN)g,
P1N = PlN/(PlN)G, T = T(PlN)G/(PlN)G and S = S(PlN)G/(PlN)G
Since (|[PLNNT : PLNT|,|PANNT: NNT|)=1, LANNT = (P NT)(NNT).
By using a similar discussion as in the proof of Lemma 2.2(1), we have that
H/N is ®-t-quasinormal in G/N. The choice of (G, E) implies that E/N is
p-nilpotent. Since the class of all p-nilpotent groups is a saturated formation,
N is the unique minimal normal subgroup of G contained in E and N £ ®(G).
Then there exists a maximal subgroup M of G such that G = NM.

(3) Op(E) =1.

Suppose that O,(E) # 1. Then by (2), N < O,(F) and G = N x M. Since
0,(G) < Cg(N), O,(G) N M is normal G and so O,(E) N M is normal G. If
O,(E)NM # 1, then N < O,(E)NM, a contradiction. Thus O,(E)NM =1. It
follows that O,(E) = O,(E)NNM = N and it is easy to see that Cg(N) = N.
Let K = MNE. Then E = N x K. Let K, be a Sylow p-subgroup of K
such that P = NK, and M, a Sylow p-subgroup of M containing K,. Then
G, = NM, is a Sylow p-subgroup of G. Let N; be a maximal subgroup of N
such that /Ny is normal in G,. Then G; = N;M, is a maximal subgroup of
Gp, P1 = N1K,, is a maximal subgroup of P and P = NP;. If (P;)g # 1, then
by (2), N < P; and so P = P, a contradiction. Hence (P1)¢ = 1. By the
hypothesis, G has an S-quasinormal subgroup 7" and a T-subgroup S contained
in P; such that P;T is S-quasinormal in G and P,NT < S®(P;). Since 7 is a ®-
regular inductive subgroup functor, |G/Mc¢ : Ng /v (SMa/Ma N NMa/Mc)|
is a power of p. If SMg N NMg # Mg, then (SMg /Mg N NMg/Mg)¢/Me =
(SMg /Mg N NMg/Mg)¢rMe/Me < Gy Mg/Mg and so N < G1Mg. Hence
N =NNG1Mg = NNNiM,M¢g = Ni, a contradiction. Thus SMcNNMg =
Meg. Obviously, SN N Mg = 1 because E N Mg = 1. Hence SMg N NMg =
(SNN)Mg = Mg andso SNN < MgNN =1.

We claim that § = 1. Assume that S # 1. Since S is subnormally embedded
in G, there exists a subnormal subgroup V of G such that S is a Sylow p-
subgroup of V. Without loss of generality, we may assume that V' < F. Let
L be a minimal subnormal subgroup of G contained in V. Then L N N is
subnormal in G. If LN N =1, then by (2), L 2 LN/N < E/N is p-nilpotent,
and so by (1), L is a p-group. Then L < O,(E) = N, a contradiction. Hence
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LNN #1. Then L < N and so LE = N. It implies that LN S = 1. By (1),
L < Op(E) =1, which is impossible. Hence S = 1.

Clearly, Ny = PPN N. If T =1, then P; is S-quasinormal in G and so N;
is S-quasinormal in G. Since N; is normal in G,, IV; is normal in G, and so
[N| = p. By Lemma 2.3(2), E is p-nilpotent, a contradiction. Hence T' # 1.
Assume that N £ T. Then (T'N E)g = 1. By Lemma 2.1(4) and (6), TN E
is a nilpotent group. By (1), Oy (T NE) =1. Hence TNE =T NP is a
p-group. It deduces that LT NE = P;(TNE) is an S-quasinormal p-subgroup
of G. f TN E =1, then P; is S-quasinormal in GG, which is impossible. Thus
TNE #1. Then P, < P(TNE) <Oy(E) =N, and so P = N. It follows
that T'N P is S-quasinormal in ¥ and P, NT = 1. Thus T'N P is normal in
E and |[PNT| = p. Since (|[E|l,p—1) =1, E/Cg(PNT) = 1, and thereby
PNT < Z(FE). By Lemma [13, Chapter VI, Theorem 14.3], PNT = 1, which
is a contradiction. Therefore we assume that N < T. Then N N P; < &(Fy).
This deduces that Py = P, N NK, = K,(P, N N) = K,, which contradicts
NNK,=1. Hence O,(E) =1.

(4) NN P < P.

Assume that NN P = P, then P < N. If N < E, the choice of the (G, E)
shows N is p-nilpotent. Then by (1), N is a p-group, which contradicts (3).
Hence E = N. Let P; be a maximal subgroup of P. Obviously, (P1)g = 1.
Hence by the hypothesis, G has an S-quasinormal subgroup 7" and a 7-subgroup
S contained in P; such that P|T is S-quasinormal in G and Py NT < S®(Py).
Assume that S # 1. Since 7 is ®-regular and inductive, |G : Ng(SMg)| is a
power of p. It follows that N < S¢Mg = S Mg < GpMg, where G, is a
Sylow p-subgroup of G containing P. Then N = NNG,Mg = N NG, because
NNMg = 1. It follows that N is a p-group. This contradicts (3). Hence S = 1.
It is easy to see that N « T. If NNT = 1, then P, = P,TNN is S-quasinormal
in G, and so P; < O,(E) =1 by (3). Then |P| = p. By Lemma 2.3(1), N is
p-nilpotent, a contradiction. Hence N NT # 1. Assume that (N NT)g # 1,
then N < T, a contradiction. Hence (N NT)g = 1. By Lemma 2.1(4) and
(6), TN N is a nilpotent group. By (1) and (3), TN N < F(FE) = 1. Then
P, = P,TNN is S-quasinormal in G. This contradiction shows that (4) holds.

(5) Final contradiction.

By (4), P has a maximal subgroup P; such that N N P < P;. Clearly,
(P1)¢ = 1. By hypothesis, G has an S-quasinormal subgroup T and a 7-
subgroup S contained in P; such that P;T is S-quasinormal in G and P,NT <
S®(P). By (2), SNN Mg =1. Thus SMg N NMg = (SN N)Mg. Since 7
is @-regular and inductive, |G : Ng(SMg N NMg)| is a power of p. It follows
that N < (SN N)¢Mg = (SN N)% Mg < G,Mg, where G, is a Sylow p-
subgroup of G contained P. Then N = N NG Mg = N N G,, which means
that N is a p-group. This contradics (3). Thus SN N = 1. By using a similar
dicussion as in (3), we have S = 1. If T' = 1, then P; is S-quasinormal in G,
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and so P; < O,(E) =1, a contradiction. Hence T # 1. By applying a similar
argument as in (3), we derive that (TN E)g # 1. Then N < (TNE)g <T.
Hence NN P; < ®(P) and so NN P < &(P). Then by [13, Chapter IV, Satz
4.7], N is p-nilpotent, a contradiction too. The proof of the theorem ends. [

Theorem 3.2. Let 7 be a ®-reqular inductive subgroup functor and E be a
normal subgroup of G such that G/E is supersoluble. Suppose that every 7-
subgroup of G contained in E is subnormally embedded in G. If every maximal
subgroup of every noncyclic Sylow subgroup of E is ®-T-quasinormal in G, then
G is supersoluble.

Proof. Suppose that it is false and let (G, E) be a counterexample for which
|G| 4+ |E| is minimal. (1) If p is the largest prime dividing |E| and P is a
Sylow p-subgroup of E, then P < G.

Let g be the smallest prime dividing |E| and @ a Sylow g-subgroup of E.
If Q is cyclic, then F is g-nilpotent by Lemma 2.3(1). Now assume that @ is
non-cyclic. It is easy to see that (G, F) satisfies the hypothesis of Theorem 3.1,
hence FE is ¢g-nilpotent too. By Lemma 2.2(1), we can deduce that F is a Sylow
tower group of supersoluble type by analogy. Hence P < F and so P < G.

(2) G has a unique minimal normal subgroup N contained in P such that
G/N is supersoluble.

Let N be a minimal normal subgroup of G' contained in P and 77/N be a
maximal subgroup of a noncyclic Sylow g-subgroup T/N of E/N, where ¢ is a
prime divisor of |E/N|. Obviously, (G/N)/(E/N) = G/E is supersoluble. If
p = ¢, then T} is a maximal subgroup of 7. Assume that p # ¢, then there
exists a Sylow g-subgroup @ of E such that T'= QN. Clearly, @1 = Q N1}
is a maximal subgroup of @Q and T3 = @1 N. By Lemma 2.2(1), T /N is ®-7-
quasinormal in G/N. Hence (G/N, E/N) satisfies the hypothesis. The choice
of (G, E) implies that G/N is supersoluble.

(3) P = N and p is the largest prime dividing |G/|.

Since the class of all supersoluble groups is a saturated formation, IV is the
unique minimal normal subgroup of G contained in P and N £ ®(G) by (2).
Then there exists a maximal subgroup M of G such that G = NxM = PM. It
follows from Lemma 2.4 that PNM = 1. Hence P = PNNM = N(PNM) = N.
Assume that p is not the largest prime dividing |G|. Let ¢ be the largest prime
dividing |G| and @ be a Sylow g-subgroup of G. By (2), G/P is supersoluble.
Then QP/P < G/P and so QP < G. Clearly, P is not cyclic. Hence by
Theorem 3.1, PQ is p-nilpotent, and so @ < PQ. Then @ < G. By Lemma
2.2(1), every maximal subgroup of every noncyclic Sylow subgroup of EQ/Q is
O-7-quasinormal G/@Q. This shows that (G/Q, EQ/Q) satisfies the hypothesis.
The choice of (G, E) implies that G/Q is supersoluble. Since p is the largest
prime dividing |E|, we have that ENQ = 1. It implies that G 2 G/ENQ <
G/E x G/Q is supersoluble. This contradiction shows that p is the largest
prime dividing |G/|.
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(4) Final contradiction.

Let Gy, be a Sylow p-subgroup of G, where p is the largest prime dividing
|G|. Then P < Gy,. Since G/P is supersoluble, G, <G. It is easy to see that P
is not cyclic. Because that PNZ(G,) # 1, we have that P < Z(G,) by (2) and
(3). Let Py be a maximal subgroup of P. If (Py)g # 1, then by (3), P < P,
a contradiction. Thus (P;)g = 1. Clearly, ®(P;) = 1. By hypothesis, G has
an S-quasinormal 7" and a 7-subgroup S contained in P; such that P, T is S-
quasinormal in G and P,NT < S. If T'= 1, then P; is S-quasinormal in G. By
(3) and Lemma 2.1(5), P < (P,)% = (P;)% < P;. This contradiction shows
that T > 1. If PNT =1, then P, = P,T N P is S-quasinormal in G, which is
impossible. Hence PNT # 1. By (3), P< (PNT)Y = PNT. Thus P< T
and so P, = S. Since 7 is ®-regular and inductive, |G : Ng(SM¢)| is a power
of p. It follows that (SMg)® = (SM¢)%» = SMg. Therefore S = PN SMg is
normal in G. The final contradiction completes the proof of the theorem. [

Corollary 3.3. Let 7 be a ®-reqular inductive subgroup functor and every
T-subgroup of G is subnormally embedded in G. If every mazimal subgroup
of every noncyclic Sylow subgroup of G is ®-T-quasinormal in G, then G is
supersoluble.

Theorem 3.4. Let 7 be a quasireqular heredity inductive subgroup functor and
E be a normal subgroup of G. Suppose that every T-subgroup of G contained in
E is subnormally embedded in G. If every maximal subgroup of every noncyclic
Sylow subgroup of F*(E) is ®-T-quasinormal in G, then E is soluble.

Proof. Suppose that it is false and let (G, E) be a counterexample for which
|G| + |E| is minimal. Let p be any prime divisor of |F*(G)| and P the Sylow
p-subgroup of F*(G). We prove theorem via the following steps. (1) E=G
and F*(G) = F(G).

By Lemma 2.2(2), (E, E) satisfies the hypothesis of the theorem. If E # G,
the choice of (G, E) implies that E is soluble, a contradiction. Hence E = G.
By Lemma 2.2(2), F*(G) satisfies the hypothesis of Corollary 3.3, so F*(G) is
soluble. Then by Lemma 2.7(2), F*(G) = F(G).

(2) Every proper normal subgroup of G containing F(G) is soluble and
G = F(G)O?(G).

Let M be a proper normal subgroup of G containing F(G). By Lemma
2.7(1), F*(G) = F(G) < F(M) < F*(M) < F*(G). Thus F*(G) = F*(M). It
follows that (M, M) satisfies the hypothesis. The choice of (G, E') implies that
M is soluble. Assume that G # F(G)OP(G). Then F(G)OP(G) is soluble, and
hence G is soluble, a contradiction. Thus G = F(G)OP(G).

(3) ®(P) = 1 and G has no normal subgroup of prime order contained in
F(G).

Assume that ®(P) # 1. By Lemma 2.7(4), F*(G)/®(P) = F*(G/®(P)).
Therefore, by Lemma 2.2(1), (G/®(P),G/®(P)) satisfies the hypothesis of
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the theorem. The choice of (G, F) implies that G/®(P) is soluble and so G is
soluble, a contradiction. Hence ®(P) = 1. This implies that F'(G) is elementary
abelian.

Let L be a normal subgroup of G contained in F(G) and |L| = p. Then
F*(G) = F(G) < Cg(L). If Cg(L) < G, then Cg(L) is soluble by (2). Since
G/Cq(L) is cyclic, G is soluble. This contradiction implies that Cg(L) = G
and so L < Z(G). By Lemma 2.7(3), F*(G)/L = F*(G/L). Therefore, by
Lemma 2.2(1), (G/L,G/L) satisfies the hypothesis of the theorem. The choice
of (G, E) implies that G/L is soluble, and thereby G is soluble, a contradiction.

(4) PNP(G) # 1.

Assume that PN ®(G) = 1. Then P = Ry X Ry X -+ X Ry, where R;
(¢=1,2,...,m) is a minimal normal subgroup of G (see [, Theorem 1.8.17]).
We claim that |R;| = p for all ¢ € {1,...,m}. Assume that |R;| > p for some
i. Without loss of generality, let |R1| > p. Let R} be a maximal subgroup
of Ry such that R} is normal in G,, where G}, is a Sylow p-subgroup of G.
Then R} # 1 is not normal in G and P; = R} x Ry X --- X R, is a maximal
subgroup of P. Put T'= Ry X - - X Ry, Clearly, (P1)g =T and ®(P,/T) = 1.
Therefore by the hypothesis, there exists an S-quasinormal subgroup K/T in
G/T and some 7-subgroup S/T of G/T contained in P; /T such that P, K/T
is S-quasinormal in G/T and (P;/T) N (K/T) < S/T. By Lemma 2.1(2)(3),
R;NK and R; N P K is S-quasinormal in G. Hence by (2), (3) and Lemma
2.1(5), Ry N K and Ry N P, K is normal in G. Clearly, LK = R{K. If
RiNK =1, then Rf = Rj(RiNK) =R NR{K = R; N P,K is normal in
G, and so |R;| = p, which contradicts (3). Therefore Ry N K # 1, and thereby
Ry < K. Then Rf = Ri NP, = Ry NS. Since 7 is regular, |G : Ng(R7)| is a
power of p. It follows that R} is normal in G, a contradiction. Thus (4) holds.

(5) F(G) = P and P contains a unique minimal normal subgroup N of G.

Suppose that 1 # @Q is a Sylow g-subgroup of F'(G) for some p # ¢. Clearly,
Q<G. Let N be a minimal normal subgroup of G contained in PN®(G) by (4).
By Lemma 2.7(5), F*(G/N) = F(G/N)E(G/N) and [F(G/N),E(G/N)] =1,
where E(G/N) is the layer of G/N. Let E(G/N) = E/N. Then [Q, E] <
NN@Q = 1. Hence by (3), FF(G) < Ce(Q). If C5(Q) # G. Then by
(2), Ce(Q) is soluble. It follows that F*(G/N) is soluble and so F*(G/N) =
F(G/N) = F(G)/N. By Lemma 2.2(1), (G/N,G/N) satisfies the hypothesis.
The choice of (G, E) implies that G/N is soluble and thereby G is soluble. This
contradiction shows Cg(Q) = G. Hence Q < Z(G). With a similar proof as
above (3), we have that G is soluble. The contradiction shows F(G) = P.

Let L be a minimal normal subgroup of G contained in P with N # L.
Let E/N = E(G/N) be the layer of G/N again. As above, [F(G),E] < N.
It follows that [L,E] < LN N = 1. Hence F(G)E < Cg(L), and so one can
obtain that L < Z(G). Applying a same discussion as in (3), we can derive a
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contradiction. Thus N is the unique minimal normal subgroup of G contained
in P.

(6) Final contradiction.

Let N7 be a maximal subgroup of N such that Nj is normal in some Sylow
p-subgroup of G. Then by (3), P, = N1S is a maximal subgroup of P, where
S is a complement of N in P. Obviously, P = PN and (P1)¢ = 1 by (5).
Therefore, G has an S-quasinormal subgroup 7" and a T-subgroup S contained
in P; such that P;T is S-quasinormal in G and P; NT < S. By (2), we derive
that PNT is normal in G. If PNT =1, then P, = PN P;T is S-quasinormal
in G. Hence N1y = N N P; is S-quasinormal in GG, and so N; is normal in G. It
implies that |N| = p, which contradicts (3). Thus PNT # 1. Then N < PNT
by (5). It follows that Ny = NN P, = NNS. By using a similar discussion as
in (4), we have that Ny is normal in G. The final contradiction completes the
proof. O

Remark 3.5. The Corollary 3.3 shows that if every maximal subgroup of every
noncyclic Sylow subgroup of G is ®-7-quasinormal in G, then G is supersoluble.
But, the following example shows that if every maximal subgroup of every
noncyclic Sylow subgroup of F*(G) is ®-7-quasinormal in G, G may be not
supersoluble.

Example 3.6. Let A = S3 be a symmetric group of degree 3 and B = Cj
be a cyclic group of order 3. Let G = A B be the regular wreath product
of A by B. Let K = A; x Ay x A3 be the base group of G, where A; =
(i, Bi | a3 = B2 = 1,041-& = a?) @ S5, i = 1,2,3. It is easy to see that
F*(G) = F(G) = (a1,a2,a3). Since {a;) is S-quasinormal in G by Lemma
2.1(5), i = 1,2,3, every maximal subgroup of F*(G) has an S-quasinormal
complement («;) in F*(G) for some i. Hence every maximal subgroup of F'*(G)
is ®-7-quasinormal in G. But, clearly, G is not supersoluble. 0

Theorem 3.7. Let E be a normal subgroup of G and P a Sylow p-subgroup of
E such that (|E|,p—1) = 1. Suppose that T is a O-regular hereditary inductive
subgroup functor of G contained in P. If every cyclic subgroup of P of prime
order or order 4 (when P is a non-abelian 2-group) is ®-1-quasinormal in G,
then E is p-nilpotent.

Proof. Suppose that it is false and let (G, E) be a counterexample for which
|G| + | E| is minimal. We prove theorem via the following steps.

First, we show that £ = G and G is a minimal non-nilpotent group. Assume
that £ < G. Then by Lemma 2.2(2), (E, E) satisfies the hypothesis. The choice
of the (G, F) implies that E is p-nilpotent, a contradiciton. Thus E = G. Let
M be any maximal subgroup of G. Similarly, M is p-nilpotent and so G is a
minimal non-p-nilpotent group. In view of [13, Chapter IV, Satz 5.4] and [6,
Chapter VII, Theorem 6.18], G is a minimal non-nilpotent group; G = P x @,
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where @ is a Sylow g-subgroup of G with ¢ # p; P/®(P) is a chief factor of G;
the exponent of P is p or 4 (when P is a non-abelian 2-group).

Let z € P\®(P), H = (z). Then |H| = p or 4 (when P is a non-abelian
2-group) and H < P. Since P/®(P) is a chief factor of G, Hg < ®(P) and
H # Hg. By the hypothesis, there exists an S-quasinormal subgroup 7/ Hg
in G/H¢ and some 7-subgroup S/Hg of G/H¢ contained in H/H¢ such that
HT/Hg is S-quasinormal in G/Hg and H/HeNT/Hg < (S/Hg)®(H/Hg).
By Lemma 2.1(3)(5), (PNT)®(P)/®(P) and (PNHT)®(P)/®(P) is normal in
G/®(P). It implies that P < T'and so H = S. Clearly, P/®(P) £ ®(G/®(P)).
Therefore there exists a maximal M/®(P) subgroup of G/®(P) such that
G/®(P) = P/®(P)xM/®(P). It is easy to see that PN Mg = ®(P). It follows
that PM¢ /Mg is a minimal normal subgroup of G/Mg. Since 7 is a ®-regular
inductive subgroup functor, |G : Ng(HM¢)| is a power of p, and thereby
|G/®(P) : Ngjop)(HMg/®(P))| is a power of p. It implies that H M¢/®(P)
is normal in G/®(P). Hence HM¢ is normal in G and so H®(P) = PN HMc¢
is normal in G, which is impossible. The proof of the theorem is completes. [

Theorem 3.8. Let E be a normal subgroup of G and T be a ®-reqular hered-
itary inductive subgroup functor of G contained in E. Suppose that for every
prime p dividing |E| and every non-cyclic Sylow p-subgroup P of E, every
cyclic subgroup of P of order p or 4 (when P is a non-abelian 2-group) is
b-1-quasinormal in G, then E is supersoluble.

Proof. Suppose that it is false and let (G, E) be a counterexample for which
|G| + | E| is minimal. Applying a same discussion as in the proof of Theorem
3.7, we have that E = GG and @ is a minimal non-supersoluble group. In view
of [2, Theorem 12] and [6, Chapter VII, Theorem 6.18], G is a soluble group
that has a unique normal Sylow p-subgroup, say G,; G, = G*; G,/®(G,) is
a chief factor of G; the exponent of G, is p or 4 (when G, is a non-abelian
2-group). Let z € G,\®(G,) and H = (z). Then |H| = p or 4 (when G, is
a non-abelian 2-group) and H < G,. Since (G/®(G,))/(Gp/2(Gy)) = G/G,
is supersoluble, G, /®(G)) £ ®(G/®(G,)). By using a similar argument as in
the proof of Theorem 3.7, we can get a contradiction. O

Theorem 3.9. Let E be a normal subgroup of G and T be a quasiregular
hereditary inductive subgroup functor of G contained in E. Suppose that for
every prime p dividing |F*(E)| and every non-cyclic Sylow p-subgroup P of
F*(E), every cyclic subgroup of P of order p or 4 (when P is a non-abelian
2-group) is ®-T-quasinormal in G, then E is soluble.

Proof. Suppose that it is false and let (G, E) be a counterexample for which
|G| + |E| is minimal. (1) E = G and F*(G) = F(G).

With a similar argument as in steps (1) of the proof of Theorem 3.4, we
have that F = G. By Theorem 3.8, F*(G) is soluble. Then by Lemma 2.7(2),
F*(G) = F(G).
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(2) G = 0%(@G), where q is any prime divisor of |G|, the every S-quasinormal
subgroup of G is normal in G and Zy(G) = Z(G).

By Lemma 2.7(1), F*(G') < F*(G). Therefore, by Lemma 2.2(2), (G,G")
satisfies the hypothesis of the theorem. If G’ # G, the choice of (G, G) implies
that G’ is soluble, and so G is soluble, a contradiction. Thus G = G’. It
implies that G = O9(G), where ¢ is any prime divisor of |G|. Let T be an
S-quasinormal subgroup of G' and T}, be a Sylow p-subgroup of T', where p
is any prime divisor of |T'|. Without loss of generality, we may assume that
T = 1. Then by Lemma 2.1(6)(7), T is nilpotent and T}, is S-quasinormal in
G. Hence by Lemma 2.1(5), T, is normal in G, and so T is normal in G.

Since G = @', we have that G/Cq(Zy(G)) = (G/Cq(Zy(G))) and
thereby G/Cq(Zy(G)) is not soluble. But by [6, Chapter IV, Theorem
6.10], G/Cc(Zy(G)) is supersoluble. It follows that G = Cg(Zy(G)) and
so Zy(G) < Z(@G). Therefore Zy(G) = Z(G).

(3)p>2.

Assume that p = 2. Let @ be an arbitrary Sylow g-subgroup of G, where
q # 2 is a prime divisor of G. By Theorem 3.7, PQ is 2-nilpotent and so
Q < Cg(P). Tt follows that O%(G) < Cg(P), and thereby P < Z(G) by
(2). By Lemma 2.7(3), F*(G/P) = F*(G)/P. Therefore by Lemma 2.2(1),
(G/P,G/P) satisfies the hypothesis of the theorem, and thus G/P is soluble,
a contradiction. Hence (3) holds.

(4) D contained a minimal normal subgroup N of prime order of G, where
D is a Thompson critical subgroup of P of exponent p.

By (3) and [7, Chapter 5, Theorem 3.13], P contains a Thompson critical
subgroup D of exponent p. Let N be a minimal normal subgroup of G contained
in D. And let H < N with |H| = p and H be normal in some Sylow p-subgroup
of G. By hypothesis and (2), G/H¢ has a normal subgroup T7/H¢g and a 7-
subgroup S/H¢ contained in H/H¢ such that HT/H¢ is normal in G/Hg and
H/HcNT/Hg < S/Hg. First assume that Hg = 1. If S =1, then HNT =1
and so N NT = 1. It follows that H = N N HT is normal in G. Now assume
that S # 1. Since 7 is a quasiregular subgroup functor, |G : Ng(H)| is a power
of p and so H is normal in G. If Hg # 1, then clearly, H = Hg. Hence for
every case, we always have that H is normal in G, and thereby H = N.

(5) Final contradiction

We claim that every prime order subgroup of D/N is ®-7-quasinormal in
G/N. Suppose that it is false and let H/N be a subgroup of D/N such that
|H/N| = p but H/N is not ®-7-quasinormal in G/N. If H/N is normal in
G/N, then obviously, H/N is ®-r-quasinormal in G/N, a contradiction. Thus
(H/N)g/n = 1. By (4), there exists an element 2 € H\N such that H = (z) N,
[(x)] = p and (z)¢ = 1. By hypothesis and (2), G has a normal subgroup
T and a 7-subgroup S contained in (z) such that (x)T is normal in G and
(x)yNT < S. If S =(zx)or (x) NJNNTN/N =1, it is easy to see that H/N is
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®-7-quasinormal in G/N, a contradiction too. Now assume that (x)NT =5 =1
and (x) N/N < TN/N. Obviously, [(x),G] is normal in G. It is easy to see
from (2) that (x)T/T < Z(G/T). Hence [(z),G] < T. Since [(x)[(z),G],G] <
[(x),G], (x)[{z),G]/[(z),G] < Z(G/[{x),G]). Therefore (x)[(z),G] is normal
in G and (x) N [{z),G] < () NT = 1. Hence we may let T = [(z),G]. Since
()N/N < TN/N, there exists an element ¢t € T\N such that ()N = (t)N
and |(t)| = p. By using a similar discussion as above, G has a normal subgroup
T) = [(t),G] and a 7T-subgroup S; = 1 contained in (¢) such that (¢)7} is
normal in G and (¢) N Ty < S;. By (2) and (4), we see that N < Z(G).
Hence Ty = [{t),G] = [{(t)N,G] = [{(z)N,G] = [(z),G] = T, which contradicts
(t)yNTy = 1. Therefore every prime order subgroup of D/N is ®-r-quasinormal
in G/N.

By using a same argument as in (4), we can derive that D/N contained a
minimal normal subgroup N;/N of prime order of G/N. Then by analogy, we
can find a chief series of G below D such that every G-chief factor of the series
is cyclic. It implies that D < Zy(G). By Lemma 2.5, P < Zy(G), and thereby
F*(G) < Zy(G). It follows from Lemma 2.6 that G < Zy(G) which contradicts
the assumption. This completes the proof. O

Remark 3.10. Similar to Theorem 3.4, if G satisfies the hypothesis of Theorem
3.9, G may be not supersoluble.

Example 3.11. Let G be the same group as in Example 3.6. It is easy to see
that every minimal subgroup of F*(G) has an S-quasinormal complement in
F(G). Hence every minimal subgroup of F*(G) is ®-7-quasinormal in G. But,
clearly, G is not supersoluble.

4. Further applications

Many known results are corollaries of our Theorems. For example, in view
of [11, Example 1.5], Theorem 3.4 and Theorem 3.9 covers [10, Theorem C],
Theorem 3.1 covers [19, Lemma 3.1], Theorem 3.4 covers [19, Lemma 3.6];
in view of [11, Example 1.7], Theorem 3.8 covers [16, Corollary 3.3]; in view
of [5, Example 4.6], Theorem 3.1 covers [1, Corollary 4.4], Theorem 3.9 covers [1,
Theorem 3.7 and Theorem 1.7].
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