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Abstract. Let τ be a subgroup functor and H a p-subgroup of a finite
group G. Let Ḡ = G/HG and H̄ = H/HG. We say that H is Φ-τ -
quasinormal in G if for some S-quasinormal subgroup T̄ of Ḡ and some

τ -subgroup S̄ of Ḡ contained in H̄, H̄T̄ is S-quasinormal in Ḡ and H̄∩T̄ ≤
S̄Φ(H̄). In this paper, we study the structure of a group G under the
condition that some primary subgroups of G are Φ-τ -quasinormal in G.
Some new characterizations about p-nilpotency and solubility of finite

groups are obtained.
Keywords: S-quasinormal subgroups; p-nilpotent subgroups, subgroup
functor, soluble group.
MSC(2010): Primary: 20D20; Secondary: 20D10.

1. Introduction

Throughout this paper, all groups considered are finite and G always denotes
a group, π denotes a set of primes and p denotes a prime. Let HsG be the sub-
group of H generated by all those subgroups of H which are S-quasinormal
in G and HsG the intersection of all such S-quasinormal subgroups of G con-
taining H. All unexplained notation and terminology are standard, as in [6]
and [8].

For a class of groups F, a chief factor L/K of G is said to be F-central in G
if L/K⋊G/CG(L/K) ∈ F. A normal subgroup N of G is called F-hypercentral
in G if either N = 1 or every chief factor of G below N is F-central in G. Let
ZF(G) denote the F-hypercentre of G, that is, the product of all F-hypercentral
normal subgroups of G. We use S and U to denote the formations of all soluble
groups and supersoluble groups, respectively. It is well known that U and S
are all S-closed saturated formations.

A function τ which assigns to each group G a set of subgroups τ(G) of G is
called a subgroup functor (see [11]) if 1 ∈ τ(G) and θ(τ(G)) = τ(θ(G)) for any
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isomorphism θ : G → G∗. If H ∈ τ(G), then we say that H is a τ -subgroup of
G.

In recent years, many scholars study the structure of the finite group by
discussing the generalized normality of subgroups. Recall that a subgroup H
of G is S-quasinormal in G if H permutes with every Sylow subgroup of G. A
subgroup H of G is said to be s-semipermutable in G [3] if HGp = GpH for
any Sylow p-subgroup Gp of G with (p, |H|) = 1. A subgroup H of G is said to
s-embedded in G [10] if G has two S-quasinormal subgroups T and S such that
HT = HsG and H ∩ T ≤ S (see [5, Example 4.1]), where S ≤ H. A subgroup
H of G is said to be nearly s-embedded in G [1] if G has an S-quasinormal
subgroup T and an s-semipermutable subgroup S contained in H such that
HT = HsG and H ∩ T ≤ S (see [5, Example 4.6]). A subgroup H of G is
said to be nearly SS-embedded in G [12] if G has an S-quasinormal subgroup
T such that HT is S-quasinormal in G and H ∩ T ≤ S (see [5, Example
4.15]), where S is the subgroup of H generated by all those subgroups of H
which are S-quasinormal embedded in G. A subgroup H of a group G is called
SΦ-supplemented [15] in G if there exists a subnormal subgroup T of G such
that G = HT and H ∩ T ≤ Φ(H). Naturally, it is necessary to unify the
above-mentioned generalized normal subgroups and discuss the influence on
the structure of a finite group by connecting these subgroups with Frattini
subgroup. Hence we give the following notion.

Definition 1.1. Let τ be a subgroup functor and H a p-subgroup of a finite
group G. Let Ḡ = G/HG and H̄ = H/HG. We say that H is Φ-τ -quasinormal
in G if for some S-quasinormal subgroup T̄ of Ḡ and some τ -subgroup S̄ of Ḡ
contained in H̄, H̄T̄ is S-quasinormal in Ḡ and H̄ ∩ T̄ ≤ S̄Φ(H̄).

It is easy to see that the above mentioned subgroups are Φ-τ -quasinormal in
G. But the following examples show that the converse does not hold in general.

Example 1.2. Let G = A5 be the alternating group of degree 5 and τ(G) be
the set of all subgroups of G. We take H = ⟨(123)⟩. Then H is a τ -subgroup
of G. Since HsG = HG = Φ(H) = 1 and H is not s-semipermutable in G,
H is not the above mentioned subgroups, but clearly, H is Φ-τ -quasinormal in
G. □

Now we introduce some properties of subgroup functors (see [11, Definition
1.3]) which will be used in our results. If τ is a subgroup functor, then we say
that τ is:

(1) inductive if for any group G, whenever H ∈ τ(G) is a p-group and N⊴G,
then HN/N ∈ τ(G/N).

(2) hereditary if for any group G, whenever H ∈ τ(G) is a p-group and
H ≤ E ≤ G, then H ∈ τ(E).

(3) regular (respectively, quasiregular) if for any group G, whenever H ∈
τ(G) is a p-group and N is a minimal normal subgroup (respectively,
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an abelian minimal normal subgroup) of G, then |G : NG(H ∩ N)| is a
power of p.

(4) Φ-regular (respectively, Φ-quasiregular) if any primitive group G, when-
ever H ∈ τ(G) is a p-group and N is a minimal normal subgroup (respec-
tively, an abelian minimal normal subgroup) of G, then |G : NG(H ∩N)|
is a power of p.

2. Preliminaries

Lemma 2.1 ([9, Chapter I. Lemma 5.34]). Let H,K ≤ G and N ⊴G.

(1) If H is S-quasinormal in G, then HN/N is S-quasinormal in G/N .
(2) If H/N is S-quasinormal in G/N , then H is S-quasinormal in G.
(3) If H and K are S-quasinormal in G, then H ∩ K is S-quasinormal in

G.
(4) If H is S-quasinormal in G, then H ∩K is S-quasinormal in K.
(5) If H is a p-group, then H is S-quasinormal in G if and only if Op(G) ≤

NG(H).
(6) If H is S-quasinormal in G, then H/HG is nilpotent.
(7) If H is an S-quasinormal nilpotent subgroup of G, then every Sylow

subgroup of H is also S-quasinormal in G.

Lemma 2.2. Let H be a p-subgroup of G and τ an inductive subgroup functor.
Suppose that H is Φ-τ -quasinormal in G.

(1) If N ⊴ G and either N ≤ H or (|H|, |N |) = 1, then HN/N is Φ-τ -
quasinormal in G/N .

(2) If τ is hereditary and H ≤ K ≤ G, then H is Φ-τ -quasinormal in K.

Proof. Let Ḡ = G/HG and H̄ = H/HG. Since H is Φ-τ -quasinormal in G,
Ḡ has an S-quasinormal subgroup T̄ and a τ -subgroup S̄ contained in H̄ such
that H̄T̄ is S-quasinormal in Ḡ and H̄ ∩ T̄ ≤ S̄Φ(H̄), where S̄ = S/HG and
T̄ = T/HG.

(1) Let Ĝ = G/(HN)G, ĤN = HN/(HN)G, T̂ = T (HN)G/(HN)G
and Ŝ = S(HN)G/(HN)G. Clearly, HG ≤ (HN)G. Since τ is injective,

Ŝ ∈ τ(Ĝ). By Lemma 2.1(1), T̂ and ĤNT̂ is S-quasinormal in Ĝ. Since
(|N |, |H|) = 1, (|NH ∩ T : T ∩ N |, |NH ∩ T : T ∩ H|) = 1. Hence

NH ∩ T = (N ∩ T )(H ∩ T ). It follows that ĤN ∩ T̂ = HN/(HN)G ∩
T (HN)G/(HN)G = (H ∩ T )(HN)G/(HN)G ≤ (S(HN)G/(HN)G)

Φ(HN/(HN)G)) = ŜΦ(ĤN). Therefore, HN/N is Φ-τ -quasinormal in G/N .

(2) It is easy to see that HG ≤ HK . Let K̃ = K/HK , H̃ = H/HK , T̃ =

THK/HK ∩ K/HK and S̃ = SHK/HK . Since τ is hereditary and inductive,

S̃ ∈ τ(K̃). By Lemma 2.1(2)(5), T̃ and H̃T̃ = (H/HK)(THK/HK ∩K/HK) =

H(T ∩K)/HK = (HT ∩K)/HK is S-quasinormal in K̃. It is easy to see that
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H̃ ∩ T̃ = H/HK ∩ THK/HK = (H ∩ T )HK/HK ≤ (SHK/HK)Φ(H/HK) =

S̃Φ(H̃). Hence H is Φ-τ -quasinormal in K. □

The next lemma is clear.

Lemma 2.3. Let p be a prime divisor of |G| with (|G|, p− 1) = 1.

(1) If G has a cyclic Sylow p-subgroup, then G is p-nilpotent.
(2) If N is a normal subgroup of G such that |N |p ≤ p and G/N is p-

nilpotent, then G is p-nilpotent.

Lemma 2.4 ([18, Lemma 2.8]). Let M be a maximal subgroup of G and P a
normal p-subgroup of G such that G = MP , where p is a prime divisor of |G|.
Then P ∩M ⊴G.

Lemma 2.5 ([4, Theorem 2.12]). Let P be a normal p-subgroup of G and D
a Thompson critical subgroup of P (see [7, p. 186]). If D ≤ ZU(G), then
P ≤ ZU(G).

Lemma 2.6 ([17, Theorem B]). Let F be any formation and E a normal sub-
group of G. If F ∗(E) ≤ ZF(G), then E ≤ ZF(G).

The following well-known facts about the generalized Fitting subgroup are
needful in our proof (see [10, Lemma 2.14] or [14, Chapter X])

Lemma 2.7. Let N be a subgroup of G.
(1) If N ⊴G, then F ∗(N) = F ∗(G) ∩N .
(2) F (G) ≤ F ∗(G). If F ∗(G) is soluble, then F (G) = F ∗(G).
(3) If N is a p-group contained in Z(G), then F ∗(G/N) = F ∗(G)/N .
(4) If N is soluble in G, then F ∗(G)/Φ(N) = F ∗(G/Φ(N)).
(5) F ∗(G) = F (G)E(G), F (G) ∩ E(G) = Z(E(G)), [F (G), E(G)] = 1 and

E(G)/Z(E(G)) is the direct product of simple non-abelian groups, where E(G)
is the layer of G.

3. Main results

Theorem 3.1. Let E be a normal subgroup of G and P a Sylow p-subgroup of
E such that (|E|, p− 1) = 1. Suppose that τ is a Φ-regular inductive subgroup
functor and every τ -subgroup of G contained in P is subnormally embedded
in G. If every maximal subgroup of P is Φ-τ -quasinormal in G, then E is
p-nilpotent.

Proof. Suppose that the theorem is false and let (G,E) is a counterexample
with |G|+ |E| minimal. Then: (1) Op′(E) = 1.

Suppose that Op′(E) ̸= 1. Let M/Op′(E) be a maximal subgroup of
POp′(E)/Op′(E). Then M = P1Op′(E) for some maximal subgroup P1 of P .
By the Lemma 2.2(1) and the hypothesis, P1Op′(E)/Op′(E) is Φ-τ -quasinormal
in E/Op′(E). This shows that (G/Op′(E), E/Op′(E)) satisfies the hypothesis
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of the theorem. The choice of (G,E) implies that E/Op′(E) is p-nilpotent, and
so E is p-nilpotent, a contradiction. Hence Op′(E) = 1.

(2) G has a unique minimal normal subgroup N contained in E, E/N is
p-nilpotent and G = NM , where M is a maximal subgroup of G.

Let N be a minimal normal subgroup of G contained in E and H/N be
a maximal subgroup of PN/N . Then there exists a maximal subgroup P1

of P such that H = P1N and P1 ∩ N = P ∩ N . Set Ḡ = G/(P1)G and
P̄1 = P1/(P1)G. By the hypothesis, Ḡ has an S-quasinormal subgroup T̄ and
a τ -subgroup S̄ contained in P̄1 such that P̄1T̄ is S-quasinormal in Ḡ and

P̄1 ∩ T̄ ≤ S̄Φ(P̄1), where S̄ = S/(P1)G and T̄ = T/(P1)G. Let Ĝ = G/(P1N)G,

P̂1N = P1N/(P1N)G, T̂ = T (P1N)G/(P1N)G and Ŝ = S(P1N)G/(P1N)G.
Since (|P1N ∩T : P1 ∩T |, |P1N ∩T : N ∩T |) = 1, P1N ∩T = (P1 ∩T )(N ∩T ).
By using a similar discussion as in the proof of Lemma 2.2(1), we have that
H/N is Φ-τ -quasinormal in G/N . The choice of (G,E) implies that E/N is
p-nilpotent. Since the class of all p-nilpotent groups is a saturated formation,
N is the unique minimal normal subgroup of G contained in E and N ≰ Φ(G).
Then there exists a maximal subgroup M of G such that G = NM .

(3) Op(E) = 1.
Suppose that Op(E) ̸= 1. Then by (2), N ≤ Op(E) and G = N ⋊M . Since

Op(G) ≤ CG(N), Op(G) ∩M is normal G and so Op(E) ∩M is normal G. If
Op(E)∩M ̸= 1, then N ≤ Op(E)∩M , a contradiction. Thus Op(E)∩M = 1. It
follows that Op(E) = Op(E)∩NM = N and it is easy to see that CE(N) = N .
Let K = M ∩ E. Then E = N ⋊ K. Let Kp be a Sylow p-subgroup of K
such that P = NKp and Mp a Sylow p-subgroup of M containing Kp. Then
Gp = NMp is a Sylow p-subgroup of G. Let N1 be a maximal subgroup of N
such that N1 is normal in Gp. Then G1 = N1Mp is a maximal subgroup of
Gp, P1 = N1Kp is a maximal subgroup of P and P = NP1. If (P1)G ̸= 1, then
by (2), N ≤ P1 and so P = P1, a contradiction. Hence (P1)G = 1. By the
hypothesis, G has an S-quasinormal subgroup T and a τ -subgroup S contained
in P1 such that P1T is S-quasinormal in G and P1∩T ≤ SΦ(P1). Since τ is a Φ-
regular inductive subgroup functor, |G/MG : NG/MG

(SMG/MG ∩NMG/MG)|
is a power of p. If SMG ∩NMG ̸= MG, then (SMG/MG ∩NMG/MG)

G/MG =
(SMG/MG ∩ NMG/MG)

GpMG/MG ≤ G1MG/MG and so N ≤ G1MG. Hence
N = N ∩G1MG = N ∩N1MpMG = N1, a contradiction. Thus SMG∩NMG =
MG. Obviously, SN ∩MG = 1 because E ∩MG = 1. Hence SMG ∩NMG =
(S ∩N)MG = MG and so S ∩N ≤ MG ∩N = 1.

We claim that S = 1. Assume that S ̸= 1. Since S is subnormally embedded
in G, there exists a subnormal subgroup V of G such that S is a Sylow p-
subgroup of V . Without loss of generality, we may assume that V ≤ E. Let
L be a minimal subnormal subgroup of G contained in V . Then L ∩ N is
subnormal in G. If L ∩N = 1, then by (2), L ∼= LN/N ≤ E/N is p-nilpotent,
and so by (1), L is a p-group. Then L ≤ Op(E) = N , a contradiction. Hence
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L ∩N ̸= 1. Then L ≤ N and so LG = N . It implies that L ∩ S = 1. By (1),
L ≤ Op′(E) = 1, which is impossible. Hence S = 1.

Clearly, N1 = P1 ∩N . If T = 1, then P1 is S-quasinormal in G and so N1

is S-quasinormal in G. Since N1 is normal in Gp, N1 is normal in G, and so
|N | = p. By Lemma 2.3(2), E is p-nilpotent, a contradiction. Hence T ̸= 1.
Assume that N ≰ T . Then (T ∩ E)G = 1. By Lemma 2.1(4) and (6), T ∩ E
is a nilpotent group. By (1), Op′(T ∩ E) = 1. Hence T ∩ E = T ∩ P is a
p-group. It deduces that P1T ∩E = P1(T ∩E) is an S-quasinormal p-subgroup
of G. If T ∩ E = 1, then P1 is S-quasinormal in G, which is impossible. Thus
T ∩ E ̸= 1. Then P1 ≤ P1(T ∩ E) ≤ Op(E) = N , and so P = N . It follows
that T ∩ P is S-quasinormal in E and P1 ∩ T = 1. Thus T ∩ P is normal in
E and |P ∩ T | = p. Since (|E|, p − 1) = 1, E/CE(P ∩ T ) = 1, and thereby
P ∩ T ≤ Z(E). By Lemma [13, Chapter VI, Theorem 14.3], P ∩ T = 1, which
is a contradiction. Therefore we assume that N ≤ T . Then N ∩ P1 ≤ Φ(P1).
This deduces that P1 = P1 ∩ NKp = Kp(P1 ∩ N) = Kp, which contradicts
N ∩Kp = 1. Hence Op(E) = 1.

(4) N ∩ P < P .
Assume that N ∩ P = P , then P ≤ N . If N < E, the choice of the (G,E)

shows N is p-nilpotent. Then by (1), N is a p-group, which contradicts (3).
Hence E = N . Let P1 be a maximal subgroup of P . Obviously, (P1)G = 1.
Hence by the hypothesis, G has an S-quasinormal subgroup T and a τ -subgroup
S contained in P1 such that P1T is S-quasinormal in G and P1 ∩ T ≤ SΦ(P1).
Assume that S ̸= 1. Since τ is Φ-regular and inductive, |G : NG(SMG)| is a
power of p. It follows that N ≤ SGMG = SGpMG ≤ GpMG, where Gp is a
Sylow p-subgroup of G containing P . Then N = N ∩GpMG = N ∩Gp because
N∩MG = 1. It follows that N is a p-group. This contradicts (3). Hence S = 1.
It is easy to see that N ≰ T . If N ∩T = 1, then P1 = P1T ∩N is S-quasinormal
in G, and so P1 ≤ Op(E) = 1 by (3). Then |P | = p. By Lemma 2.3(1), N is
p-nilpotent, a contradiction. Hence N ∩ T ̸= 1. Assume that (N ∩ T )G ̸= 1,
then N ≤ T , a contradiction. Hence (N ∩ T )G = 1. By Lemma 2.1(4) and
(6), T ∩ N is a nilpotent group. By (1) and (3), T ∩ N ≤ F (E) = 1. Then
P1 = P1T ∩N is S-quasinormal in G. This contradiction shows that (4) holds.

(5) Final contradiction.
By (4), P has a maximal subgroup P1 such that N ∩ P ≤ P1. Clearly,

(P1)G = 1. By hypothesis, G has an S-quasinormal subgroup T and a τ -
subgroup S contained in P1 such that P1T is S-quasinormal in G and P1∩T ≤
SΦ(P1). By (2), SN ∩MG = 1. Thus SMG ∩ NMG = (S ∩ N)MG. Since τ
is Φ-regular and inductive, |G : NG(SMG ∩NMG)| is a power of p. It follows
that N ≤ (S ∩ N)GMG = (S ∩ N)GpMG ≤ GpMG, where Gp is a Sylow p-
subgroup of G contained P . Then N = N ∩ GpMG = N ∩ Gp, which means
that N is a p-group. This contradics (3). Thus S ∩N = 1. By using a similar
dicussion as in (3), we have S = 1. If T = 1, then P1 is S-quasinormal in G,
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and so P1 ≤ Op(E) = 1, a contradiction. Hence T ̸= 1. By applying a similar
argument as in (3), we derive that (T ∩ E)G ̸= 1. Then N ≤ (T ∩ E)G ≤ T .
Hence N ∩ P1 ≤ Φ(P ) and so N ∩ P ≤ Φ(P ). Then by [13, Chapter IV, Satz
4.7], N is p-nilpotent, a contradiction too. The proof of the theorem ends. □
Theorem 3.2. Let τ be a Φ-regular inductive subgroup functor and E be a
normal subgroup of G such that G/E is supersoluble. Suppose that every τ -
subgroup of G contained in E is subnormally embedded in G. If every maximal
subgroup of every noncyclic Sylow subgroup of E is Φ-τ -quasinormal in G, then
G is supersoluble.

Proof. Suppose that it is false and let (G,E) be a counterexample for which
|G| + |E| is minimal. (1) If p is the largest prime dividing |E| and P is a
Sylow p-subgroup of E, then P ⊴G.

Let q be the smallest prime dividing |E| and Q a Sylow q-subgroup of E.
If Q is cyclic, then E is q-nilpotent by Lemma 2.3(1). Now assume that Q is
non-cyclic. It is easy to see that (G,E) satisfies the hypothesis of Theorem 3.1,
hence E is q-nilpotent too. By Lemma 2.2(1), we can deduce that E is a Sylow
tower group of supersoluble type by analogy. Hence P ⊴ E and so P ⊴G.

(2) G has a unique minimal normal subgroup N contained in P such that
G/N is supersoluble.

Let N be a minimal normal subgroup of G contained in P and T1/N be a
maximal subgroup of a noncyclic Sylow q-subgroup T/N of E/N , where q is a
prime divisor of |E/N |. Obviously, (G/N)/(E/N) ∼= G/E is supersoluble. If
p = q, then T1 is a maximal subgroup of T . Assume that p ̸= q, then there
exists a Sylow q-subgroup Q of E such that T = QN . Clearly, Q1 = Q ∩ T1

is a maximal subgroup of Q and T1 = Q1N . By Lemma 2.2(1), T1/N is Φ-τ -
quasinormal in G/N . Hence (G/N,E/N) satisfies the hypothesis. The choice
of (G,E) implies that G/N is supersoluble.

(3) P = N and p is the largest prime dividing |G|.
Since the class of all supersoluble groups is a saturated formation, N is the

unique minimal normal subgroup of G contained in P and N ≰ Φ(G) by (2).
Then there exists a maximal subgroup M of G such that G = N⋊M = PM . It
follows from Lemma 2.4 that P∩M = 1. Hence P = P∩NM = N(P∩M) = N .
Assume that p is not the largest prime dividing |G|. Let q be the largest prime
dividing |G| and Q be a Sylow q-subgroup of G. By (2), G/P is supersoluble.
Then QP/P ⊴ G/P and so QP ⊴ G. Clearly, P is not cyclic. Hence by
Theorem 3.1, PQ is p-nilpotent, and so Q ⊴ PQ. Then Q ⊴ G. By Lemma
2.2(1), every maximal subgroup of every noncyclic Sylow subgroup of EQ/Q is
Φ-τ -quasinormal G/Q. This shows that (G/Q,EQ/Q) satisfies the hypothesis.
The choice of (G,E) implies that G/Q is supersoluble. Since p is the largest
prime dividing |E|, we have that E ∩Q = 1. It implies that G ∼= G/E ∩Q ≲
G/E × G/Q is supersoluble. This contradiction shows that p is the largest
prime dividing |G|.
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(4) Final contradiction.
Let Gp be a Sylow p-subgroup of G, where p is the largest prime dividing

|G|. Then P ≤ Gp. Since G/P is supersoluble, Gp⊴G. It is easy to see that P
is not cyclic. Because that P ∩Z(Gp) ̸= 1, we have that P ≤ Z(Gp) by (2) and
(3). Let P1 be a maximal subgroup of P . If (P1)G ̸= 1, then by (3), P ≤ P1,
a contradiction. Thus (P1)G = 1. Clearly, Φ(P1) = 1. By hypothesis, G has
an S-quasinormal T and a τ -subgroup S contained in P1 such that P1T is S-
quasinormal in G and P1∩T ≤ S. If T = 1, then P1 is S-quasinormal in G. By
(3) and Lemma 2.1(5), P ≤ (P1)

G = (P1)
Gp ≤ P1. This contradiction shows

that T > 1. If P ∩ T = 1, then P1 = P1T ∩ P is S-quasinormal in G, which is
impossible. Hence P ∩ T ̸= 1. By (3), P ≤ (P ∩ T )G = P ∩ T . Thus P ≤ T
and so P1 = S. Since τ is Φ-regular and inductive, |G : NG(SMG)| is a power
of p. It follows that (SMG)

G = (SMG)
Gp = SMG. Therefore S = P ∩ SMG is

normal in G. The final contradiction completes the proof of the theorem. □

Corollary 3.3. Let τ be a Φ-regular inductive subgroup functor and every
τ -subgroup of G is subnormally embedded in G. If every maximal subgroup
of every noncyclic Sylow subgroup of G is Φ-τ -quasinormal in G, then G is
supersoluble.

Theorem 3.4. Let τ be a quasiregular heredity inductive subgroup functor and
E be a normal subgroup of G. Suppose that every τ -subgroup of G contained in
E is subnormally embedded in G. If every maximal subgroup of every noncyclic
Sylow subgroup of F ∗(E) is Φ-τ -quasinormal in G, then E is soluble.

Proof. Suppose that it is false and let (G,E) be a counterexample for which
|G| + |E| is minimal. Let p be any prime divisor of |F ∗(G)| and P the Sylow
p-subgroup of F ∗(G). We prove theorem via the following steps. (1) E = G
and F ∗(G) = F (G).

By Lemma 2.2(2), (E,E) satisfies the hypothesis of the theorem. If E ̸= G,
the choice of (G,E) implies that E is soluble, a contradiction. Hence E = G.
By Lemma 2.2(2), F ∗(G) satisfies the hypothesis of Corollary 3.3, so F ∗(G) is
soluble. Then by Lemma 2.7(2), F ∗(G) = F (G).

(2) Every proper normal subgroup of G containing F (G) is soluble and
G = F (G)Op(G).

Let M be a proper normal subgroup of G containing F (G). By Lemma
2.7(1), F ∗(G) = F (G) ≤ F (M) ≤ F ∗(M) ≤ F ∗(G). Thus F ∗(G) = F ∗(M). It
follows that (M,M) satisfies the hypothesis. The choice of (G,E) implies that
M is soluble. Assume that G ̸= F (G)Op(G). Then F (G)Op(G) is soluble, and
hence G is soluble, a contradiction. Thus G = F (G)Op(G).

(3) Φ(P ) = 1 and G has no normal subgroup of prime order contained in
F (G).

Assume that Φ(P ) ̸= 1. By Lemma 2.7(4), F ∗(G)/Φ(P ) = F ∗(G/Φ(P )).
Therefore, by Lemma 2.2(1), (G/Φ(P ), G/Φ(P )) satisfies the hypothesis of
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the theorem. The choice of (G,E) implies that G/Φ(P ) is soluble and so G is
soluble, a contradiction. Hence Φ(P ) = 1. This implies that F (G) is elementary
abelian.

Let L be a normal subgroup of G contained in F (G) and |L| = p. Then
F ∗(G) = F (G) ≤ CG(L). If CG(L) < G, then CG(L) is soluble by (2). Since
G/CG(L) is cyclic, G is soluble. This contradiction implies that CG(L) = G
and so L ≤ Z(G). By Lemma 2.7(3), F ∗(G)/L = F ∗(G/L). Therefore, by
Lemma 2.2(1), (G/L,G/L) satisfies the hypothesis of the theorem. The choice
of (G,E) implies that G/L is soluble, and thereby G is soluble, a contradiction.

(4) P ∩ Φ(G) ̸= 1.
Assume that P ∩ Φ(G) = 1. Then P = R1 × R2 × · · · × Rm, where Ri

(i = 1, 2, . . . ,m) is a minimal normal subgroup of G (see [8, Theorem 1.8.17]).
We claim that |Ri| = p for all i ∈ {1, . . . ,m}. Assume that |Ri| > p for some
i. Without loss of generality, let |R1| > p. Let R∗

1 be a maximal subgroup
of R1 such that R∗

1 is normal in Gp, where Gp is a Sylow p-subgroup of G.
Then R∗

1 ̸= 1 is not normal in G and P1 = R∗
1 × R2 × · · · × Rm is a maximal

subgroup of P . Put T = R2 × · · · ×Rm. Clearly, (P1)G = T and Φ(P1/T ) = 1.
Therefore by the hypothesis, there exists an S-quasinormal subgroup K/T in
G/T and some τ -subgroup S/T of G/T contained in P1/T such that P1K/T
is S-quasinormal in G/T and (P1/T ) ∩ (K/T ) ≤ S/T . By Lemma 2.1(2)(3),
R1 ∩K and R1 ∩ P1K is S-quasinormal in G. Hence by (2), (3) and Lemma
2.1(5), R1 ∩ K and R1 ∩ P1K is normal in G. Clearly, P1K = R∗

1K. If
R1 ∩ K = 1, then R∗

1 = R∗
1(R1 ∩ K) = R1 ∩ R∗

1K = R1 ∩ P1K is normal in
G, and so |R1| = p, which contradicts (3). Therefore R1 ∩K ̸= 1, and thereby
R1 ≤ K. Then R∗

1 = R1 ∩ P1 = R1 ∩ S. Since τ is regular, |G : NG(R
∗
1)| is a

power of p. It follows that R∗
1 is normal in G, a contradiction. Thus (4) holds.

(5) F (G) = P and P contains a unique minimal normal subgroup N of G.
Suppose that 1 ̸= Q is a Sylow q-subgroup of F (G) for some p ̸= q. Clearly,

Q⊴G. Let N be a minimal normal subgroup of G contained in P ∩Φ(G) by (4).
By Lemma 2.7(5), F ∗(G/N) = F (G/N)E(G/N) and [F (G/N), E(G/N)] = 1,
where E(G/N) is the layer of G/N . Let E(G/N) = E/N . Then [Q,E] ≤
N ∩ Q = 1. Hence by (3), EF (G) ≤ CG(Q). If CG(Q) ̸= G. Then by
(2), CG(Q) is soluble. It follows that F ∗(G/N) is soluble and so F ∗(G/N) =
F (G/N) = F (G)/N . By Lemma 2.2(1), (G/N,G/N) satisfies the hypothesis.
The choice of (G,E) implies that G/N is soluble and thereby G is soluble. This
contradiction shows CG(Q) = G. Hence Q ≤ Z(G). With a similar proof as
above (3), we have that G is soluble. The contradiction shows F (G) = P .

Let L be a minimal normal subgroup of G contained in P with N ̸= L.
Let E/N = E(G/N) be the layer of G/N again. As above, [F (G), E] ≤ N .
It follows that [L,E] ≤ L ∩ N = 1. Hence F (G)E ≤ CG(L), and so one can
obtain that L ≤ Z(G). Applying a same discussion as in (3), we can derive a
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contradiction. Thus N is the unique minimal normal subgroup of G contained
in P .

(6) Final contradiction.
Let N1 be a maximal subgroup of N such that N1 is normal in some Sylow

p-subgroup of G. Then by (3), P1 = N1S is a maximal subgroup of P , where
S is a complement of N in P . Obviously, P = P1N and (P1)G = 1 by (5).
Therefore, G has an S-quasinormal subgroup T and a τ -subgroup S contained
in P1 such that P1T is S-quasinormal in G and P1 ∩ T ≤ S. By (2), we derive
that P ∩ T is normal in G. If P ∩ T = 1, then P1 = P ∩ P1T is S-quasinormal
in G. Hence N1 = N ∩P1 is S-quasinormal in G, and so N1 is normal in G. It
implies that |N | = p, which contradicts (3). Thus P ∩T ̸= 1. Then N ≤ P ∩T
by (5). It follows that N1 = N ∩ P1 = N ∩ S. By using a similar discussion as
in (4), we have that N1 is normal in G. The final contradiction completes the
proof. □

Remark 3.5. The Corollary 3.3 shows that if every maximal subgroup of every
noncyclic Sylow subgroup of G is Φ-τ -quasinormal in G, then G is supersoluble.
But, the following example shows that if every maximal subgroup of every
noncyclic Sylow subgroup of F ∗(G) is Φ-τ -quasinormal in G, G may be not
supersoluble.

Example 3.6. Let A = S3 be a symmetric group of degree 3 and B = C3

be a cyclic group of order 3. Let G = A ≀ B be the regular wreath product
of A by B. Let K = A1 × A2 × A3 be the base group of G, where Ai =

⟨αi, βi | α3
i = β2

i = 1, αβi

i = α2
i ⟩ ∼= S3, i = 1, 2, 3. It is easy to see that

F ∗(G) = F (G) = ⟨α1, α2, α3⟩. Since ⟨αi⟩ is S-quasinormal in G by Lemma
2.1(5), i = 1, 2, 3, every maximal subgroup of F ∗(G) has an S-quasinormal
complement ⟨αi⟩ in F ∗(G) for some i. Hence every maximal subgroup of F ∗(G)
is Φ-τ -quasinormal in G. But, clearly, G is not supersoluble. □

Theorem 3.7. Let E be a normal subgroup of G and P a Sylow p-subgroup of
E such that (|E|, p− 1) = 1. Suppose that τ is a Φ-regular hereditary inductive
subgroup functor of G contained in P . If every cyclic subgroup of P of prime
order or order 4 (when P is a non-abelian 2-group) is Φ-τ -quasinormal in G,
then E is p-nilpotent.

Proof. Suppose that it is false and let (G,E) be a counterexample for which
|G|+ |E| is minimal. We prove theorem via the following steps.

First, we show that E = G and G is a minimal non-nilpotent group. Assume
that E < G. Then by Lemma 2.2(2), (E,E) satisfies the hypothesis. The choice
of the (G,E) implies that E is p-nilpotent, a contradiciton. Thus E = G. Let
M be any maximal subgroup of G. Similarly, M is p-nilpotent and so G is a
minimal non-p-nilpotent group. In view of [13, Chapter IV, Satz 5.4] and [6,
Chapter VII, Theorem 6.18], G is a minimal non-nilpotent group; G = P ⋊Q,
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where Q is a Sylow q-subgroup of G with q ̸= p; P/Φ(P ) is a chief factor of G;
the exponent of P is p or 4 (when P is a non-abelian 2-group).

Let x ∈ P\Φ(P ), H = ⟨x⟩. Then |H| = p or 4 (when P is a non-abelian
2-group) and H < P . Since P/Φ(P ) is a chief factor of G, HG ≤ Φ(P ) and
H ̸= HG. By the hypothesis, there exists an S-quasinormal subgroup T/HG

in G/HG and some τ -subgroup S/HG of G/HG contained in H/HG such that
HT/HG is S-quasinormal in G/HG and H/HG ∩ T/HG ≤ (S/HG)Φ(H/HG).
By Lemma 2.1(3)(5), (P ∩T )Φ(P )/Φ(P ) and (P ∩HT )Φ(P )/Φ(P ) is normal in
G/Φ(P ). It implies that P ≤ T and so H = S. Clearly, P/Φ(P ) ≰ Φ(G/Φ(P )).
Therefore there exists a maximal M/Φ(P ) subgroup of G/Φ(P ) such that
G/Φ(P ) = P/Φ(P )⋊M/Φ(P ). It is easy to see that P ∩MG = Φ(P ). It follows
that PMG/MG is a minimal normal subgroup of G/MG. Since τ is a Φ-regular
inductive subgroup functor, |G : NG(HMG)| is a power of p, and thereby
|G/Φ(P ) : NG/Φ(P )(HMG/Φ(P ))| is a power of p. It implies that HMG/Φ(P )
is normal in G/Φ(P ). Hence HMG is normal in G and so HΦ(P ) = P ∩HMG

is normal in G, which is impossible. The proof of the theorem is completes. □
Theorem 3.8. Let E be a normal subgroup of G and τ be a Φ-regular hered-
itary inductive subgroup functor of G contained in E. Suppose that for every
prime p dividing |E| and every non-cyclic Sylow p-subgroup P of E, every
cyclic subgroup of P of order p or 4 (when P is a non-abelian 2-group) is
Φ-τ -quasinormal in G, then E is supersoluble.

Proof. Suppose that it is false and let (G,E) be a counterexample for which
|G| + |E| is minimal. Applying a same discussion as in the proof of Theorem
3.7, we have that E = G and G is a minimal non-supersoluble group. In view
of [2, Theorem 12] and [6, Chapter VII, Theorem 6.18], G is a soluble group
that has a unique normal Sylow p-subgroup, say Gp; Gp = GU; Gp/Φ(Gp) is
a chief factor of G; the exponent of Gp is p or 4 (when Gp is a non-abelian
2-group). Let x ∈ Gp\Φ(Gp) and H = ⟨x⟩. Then |H| = p or 4 (when Gp is
a non-abelian 2-group) and H < Gp. Since (G/Φ(Gp))/(Gp/Φ(Gp)) ∼= G/Gp

is supersoluble, Gp/Φ(Gp) ≰ Φ(G/Φ(Gp)). By using a similar argument as in
the proof of Theorem 3.7, we can get a contradiction. □
Theorem 3.9. Let E be a normal subgroup of G and τ be a quasiregular
hereditary inductive subgroup functor of G contained in E. Suppose that for
every prime p dividing |F ∗(E)| and every non-cyclic Sylow p-subgroup P of
F ∗(E), every cyclic subgroup of P of order p or 4 (when P is a non-abelian
2-group) is Φ-τ -quasinormal in G, then E is soluble.

Proof. Suppose that it is false and let (G,E) be a counterexample for which
|G|+ |E| is minimal. (1) E = G and F ∗(G) = F (G).

With a similar argument as in steps (1) of the proof of Theorem 3.4, we
have that E = G. By Theorem 3.8, F ∗(G) is soluble. Then by Lemma 2.7(2),
F ∗(G) = F (G).
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(2) G = Oq(G), where q is any prime divisor of |G|, the every S-quasinormal
subgroup of G is normal in G and ZU(G) = Z(G).

By Lemma 2.7(1), F ∗(G′) ≤ F ∗(G). Therefore, by Lemma 2.2(2), (G,G′)
satisfies the hypothesis of the theorem. If G′ ̸= G, the choice of (G,G) implies
that G′ is soluble, and so G is soluble, a contradiction. Thus G = G′. It
implies that G = Oq(G), where q is any prime divisor of |G|. Let T be an
S-quasinormal subgroup of G and Tp be a Sylow p-subgroup of T , where p
is any prime divisor of |T |. Without loss of generality, we may assume that
TG = 1. Then by Lemma 2.1(6)(7), T is nilpotent and Tp is S-quasinormal in
G. Hence by Lemma 2.1(5), Tp is normal in G, and so T is normal in G.

Since G = G′, we have that G/CG(ZU(G)) = (G/CG(ZU(G)))′ and
thereby G/CG(ZU(G)) is not soluble. But by [6, Chapter IV, Theorem
6.10], G/CG(ZU(G)) is supersoluble. It follows that G = CG(ZU(G)) and
so ZU(G) ≤ Z(G). Therefore ZU(G) = Z(G).

(3) p > 2.
Assume that p = 2. Let Q be an arbitrary Sylow q-subgroup of G, where

q ̸= 2 is a prime divisor of G. By Theorem 3.7, PQ is 2-nilpotent and so
Q ≤ CG(P ). It follows that O2(G) ≤ CG(P ), and thereby P ≤ Z(G) by
(2). By Lemma 2.7(3), F ∗(G/P ) = F ∗(G)/P . Therefore by Lemma 2.2(1),
(G/P,G/P ) satisfies the hypothesis of the theorem, and thus G/P is soluble,
a contradiction. Hence (3) holds.

(4) D contained a minimal normal subgroup N of prime order of G, where
D is a Thompson critical subgroup of P of exponent p.

By (3) and [7, Chapter 5, Theorem 3.13], P contains a Thompson critical
subgroupD of exponent p. LetN be a minimal normal subgroup ofG contained
in D. And let H ≤ N with |H| = p and H be normal in some Sylow p-subgroup
of G. By hypothesis and (2), G/HG has a normal subgroup T/HG and a τ -
subgroup S/HG contained in H/HG such that HT/HG is normal in G/HG and
H/HG ∩ T/HG ≤ S/HG. First assume that HG = 1. If S = 1, then H ∩ T = 1
and so N ∩ T = 1. It follows that H = N ∩HT is normal in G. Now assume
that S ̸= 1. Since τ is a quasiregular subgroup functor, |G : NG(H)| is a power
of p and so H is normal in G. If HG ̸= 1, then clearly, H = HG. Hence for
every case, we always have that H is normal in G, and thereby H = N .

(5) Final contradiction
We claim that every prime order subgroup of D/N is Φ-τ -quasinormal in

G/N . Suppose that it is false and let H/N be a subgroup of D/N such that
|H/N | = p but H/N is not Φ-τ -quasinormal in G/N . If H/N is normal in
G/N , then obviously, H/N is Φ-τ -quasinormal in G/N , a contradiction. Thus
(H/N)G/N = 1. By (4), there exists an element x ∈ H\N such that H = ⟨x⟩N ,
|⟨x⟩| = p and ⟨x⟩G = 1. By hypothesis and (2), G has a normal subgroup
T and a τ -subgroup S contained in ⟨x⟩ such that ⟨x⟩T is normal in G and
⟨x⟩ ∩ T ≤ S. If S = ⟨x⟩ or ⟨x⟩N/N ∩ TN/N = 1, it is easy to see that H/N is
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Φ-τ -quasinormal inG/N , a contradiction too. Now assume that ⟨x⟩∩T = S = 1
and ⟨x⟩N/N ≤ TN/N . Obviously, [⟨x⟩, G] is normal in G. It is easy to see
from (2) that ⟨x⟩T/T ≤ Z(G/T ). Hence [⟨x⟩, G] ≤ T . Since [⟨x⟩[⟨x⟩, G], G] ≤
[⟨x⟩, G], ⟨x⟩[⟨x⟩, G]/[⟨x⟩, G] ≤ Z(G/[⟨x⟩, G]). Therefore ⟨x⟩[⟨x⟩, G] is normal
in G and ⟨x⟩ ∩ [⟨x⟩, G] ≤ ⟨x⟩ ∩ T = 1. Hence we may let T = [⟨x⟩, G]. Since
⟨x⟩N/N ≤ TN/N , there exists an element t ∈ T\N such that ⟨x⟩N = ⟨t⟩N
and |⟨t⟩| = p. By using a similar discussion as above, G has a normal subgroup
T1 = [⟨t⟩, G] and a τ -subgroup S1 = 1 contained in ⟨t⟩ such that ⟨t⟩T1 is
normal in G and ⟨t⟩ ∩ T1 ≤ S1. By (2) and (4), we see that N ≤ Z(G).
Hence T1 = [⟨t⟩, G] = [⟨t⟩N,G] = [⟨x⟩N,G] = [⟨x⟩, G] = T , which contradicts
⟨t⟩∩T1 = 1. Therefore every prime order subgroup of D/N is Φ-τ -quasinormal
in G/N .

By using a same argument as in (4), we can derive that D/N contained a
minimal normal subgroup N1/N of prime order of G/N . Then by analogy, we
can find a chief series of G below D such that every G-chief factor of the series
is cyclic. It implies that D ≤ ZU(G). By Lemma 2.5, P ≤ ZU(G), and thereby
F ∗(G) ≤ ZU(G). It follows from Lemma 2.6 that G ≤ ZU(G) which contradicts
the assumption. This completes the proof. □

Remark 3.10. Similar to Theorem 3.4, if G satisfies the hypothesis of Theorem
3.9, G may be not supersoluble.

Example 3.11. Let G be the same group as in Example 3.6. It is easy to see
that every minimal subgroup of F ∗(G) has an S-quasinormal complement in
F (G). Hence every minimal subgroup of F ∗(G) is Φ-τ -quasinormal in G. But,
clearly, G is not supersoluble.

4. Further applications

Many known results are corollaries of our Theorems. For example, in view
of [11, Example 1.5], Theorem 3.4 and Theorem 3.9 covers [10, Theorem C],
Theorem 3.1 covers [19, Lemma 3.1], Theorem 3.4 covers [19, Lemma 3.6];
in view of [11, Example 1.7], Theorem 3.8 covers [16, Corollary 3.3]; in view
of [5, Example 4.6], Theorem 3.1 covers [1, Corollary 4.4], Theorem 3.9 covers [1,
Theorem 3.7 and Theorem 1.7].
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