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Abstract. In this paper, we define and study the notion of zero elements

in topoframes; a topoframe is a pair (L, τ), abbreviated Lτ , consisting of
a frame L and a subframe τ all of whose elements are complemented ele-
ments in L. We show that the f -ring R(Lτ ), the set of τ -real continuous

functions on L, is uniformly complete. Also, the set of all zero elements
in a topoframe is closed under the formation of countable meets and finite
joins. Also, we introduce the notion of z-filters and z-ideals in modified
pointfree topology and make ready some results about them.
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1. Introduction

In studying relations between topological properties of a space X and al-
gebraic properties of C(X), it is natural to look at the subsets of X of the
form

Z(f) := {x ∈ X | f(x) = 0}
called the zero-set of f . Many researchers are interested in the ring of real
continuous functions on a set. Hewitt’s paper [17] contains basic information
about zero-sets. This is the first paper in which zero-sets were exploited in a
systematic way in the study of C(X). Zero-sets play a key role in the study of
rings of real continuous functions (see, for instance, [1, 4, 12,16,18]).

The set-theoretic complement of a zero-set is known as a cozero-set and we
label this set by coz(f). B. Banaschewski presented a detailed study of the
cozero map from R(L), the ring of real continuous functions on a frame L, to
L which is the pointfree form of assigning to each continuous real function on a
space its familiar cozero set, using this in particular to obtain the Stone-Čech
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compactification of a completely regular frame L in the form of a homomor-
phism from the frame of closed ℓ-ideals of the bounded part of R∗(L) to L
(see [8]). The natural question in pointfree topology is how an explicit defi-
nition of zero elements is prepared as duals of cozero elements. An effort to
overcome the strangeness of cozero elements and zero ones was expended in [13]
to produce a zero set in pointfree topology (frames and their homomorphisms)
by defining the trace of an element α of R(L) on any point p of L, that is a
real number which is denoted by α[p], and a zero set of α is defined by

(1.1) Z(α) := {p ∈ Pt(L) | α[p] = 0}.
However, the alternative approach comes into view in this paper; that is we
will present “zero elements in modified pointfree topology (topoframes and
their homomorphisms)” being actually complements of some cozero elements
in pointfree topology. That all cozero elements in pointfree topology have duals
(complements) in pointfree topology is yet an unanswered question (see Remark
3.2).

In [14] it has been shown that for a topoframe Lτ the ring of τ -real-
continuous functions R(Lτ ) is isomorphic to a sub-f -ring of the ring of real-
valued functions on τ introduced in [19]. It has been also shown that R(Lτ ) is
actually a generalization of C(X), the f -ring of all continuous functions from a
spaceX into the real line set R; in fact C(X) ∼= R(P(X)O(X)

) (see [14, Theorem

3.3]).
The aim of this paper is to show how various facts in zero set topology

connected with the real numbers have their counterparts, if not actually their
logical antecedents, in modified pointfree topology, that is, in the setting of
topoframes and their homomorphisms. The reader can estimate the knowledge
required by looking at Section 2.

In Section 3, we define concepts of a zero element and a cozero element in a
topoframe (Definition 3.1). We observe that the set

{z(f) | f is a bounded topoframe map in R(Lτ )}
is the same as z[Lτ ] := {z(f) | f ∈ R(Lτ )}, and that z[Lτ ] is closed under the
formation of finite joins. We show that for a frame map f in R(Lτ ), f

−1 exists
if and only if z(f) = ⊥ (Theorem 3.8).

It is well known that a commutative f -ring with unit A has a natural topol-
ogy, its uniform topology, with the basic neighborhoods being of the form

Vn(a) = {x ∈ A | |x− a| < 1

n
}, n = 1, 2, . . .

for each a ∈ A.
In Section 4, we show that the f -ring R(Lτ ) is uniformly complete (Theorem

4.1), and z[Lτ ] is closed under the formation of countable meets (Corollary 4.2).
The basic relations between ideals and z-filters in C(X) are given in [17].

z-ideals, and also the term “z-filter,” were introduced by Kohls in [20] (also
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see [21]). Recently this notion of z-ideals in rings has received a good deal of
attention from several authors, for example [2, 3, 5, 6, 11,22] and many others.

In Section 5, z-filters of Lτ are introduced by using the concept of zero
elements. Some natural relations between ideals of R(Lτ ) and z-filters are
explained. Also, we seek some relations among z-ultrafilters and maximal ideals
of R(Lτ ).

In the ring R(L), the two notions of z-ideal (the algebraic one and the one
defined in terms of the cozero map) agree [9, Corollary 3.8]. In [13], a particular
case of z-ideals which are called strongly z-ideals of R(L), were defined by
introducing zero sets in pointfree topology. The authors studied strongly z-
ideals, their relation with z-ideals and the role of spatiality in this relation. For
strongly z-ideals, they analyzed prime ideals using the concept of the zero set
in Equation (1.1).

Finally, in the last section, z-ideals of R(Lτ ) are introduced by using the
concept of zero elements. It is proved that for a z-ideal I, it is a prime ideal
if and only if I contains a prime ideal, if and only if for all g, h ∈ R(Lτ ), if
gh = 0, then g ∈ I or h ∈ I, if and only if for every f ∈ R(Lτ ), there is a
zero-element belonging to z[I] on which f does not change sign (Theorem 6.8).

2. Background

A lattice-ordered ring is a ring A with a lattice structure such that for all
a, b, c ∈ A,

(a ∧ b) + c = (a+ c) ∧ (b+ c)

or, equivalently,

(a ∨ b) + c = (a+ c) ∨ (b+ c)

and

0 ≤ ab whenever 0 ≤ a and 0 ≤ b .

Further, with the definitions

a+ = a ∨ 0, a− = (−a) ∨ 0, |a| = a ∨ (−a)

one has the rules

0 ≤ |a|, |a| = a+ + a−, a = a+ − a−, a+ ∧ a− = 0,

|a+ b| ≤ |a|+ |b|, |ab| ≤ |a||b|.
An ℓ-ideal in a lattice-ordered ring A is a ring ideal J of A with the added

property that |x| ≤ |a| and a ∈ J implies x ∈ J , for any x, a ∈ A.
Now, an f -ring is a lattice-ordered ring A which satisfies any of the following

equivalent conditions:

(1) (a ∧ b)c = (ac) ∧ (bc) for any a, b ∈ A and c ≥ 0 in A.
(2) |ab| = |a||b|.
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Recall that a frame is a complete lattice τ in which the distributive law

x ∧
∨

S =
∨

{x ∧ s | s ∈ S}

holds for all x ∈ τ and S ⊆ τ . We denote the top element and the bottom
element of τ by ⊤ and ⊥, respectively. A frame homomorphism is a map
between frames which preserves finite meets, including the top element, and
arbitrary joins, including the bottom element. The frame of open subsets of a
topological space X is denoted by O(X). The power set of R is also denoted
by P(R). Let τ be a frame. Recall (from [8]) that the frame of reals is the
frame L(R) generated by all ordered pairs (p, q), with p, q ∈ Q, subject to the
following relations:

(R1) (p, q) ∧ (r, s) = (p ∨ r, q ∧ s).
(R2) (p, q) ∨ (r, s) = (p, s), whenever p ≤ r < q ≤ s.
(R3) (p, q) =

∨
{(r, s) | p < r < s < q}.

(R4) ⊤ =
∨
{(p, q) | p, q ∈ Q}.

The f -ring of all frame maps from L(R) to τ is denoted by R(τ). Due to the
fact that the map j : L(R) −→ O(R), taking any ordered pair (p, q) of L(R) to
the open interval (p, q) of R, is an isomorphism, and for simplicity of notation,
we shall denote the set R(τ) as the collection of all frame homomorphisms
f : O(R) −→ τ , and so R(τ) with the operator ⋄ defined by

(f ⋄ g)(U) =
∨

{f(U1) ∧ g(U2) | U1 ⋄ U2 ⊆ U}, U ∈ O(R),

where

U1 ⋄ U2 = {a ⋄ b | a ∈ U1, b ∈ U2}, ⋄ ∈ {+, ·,∧,∨},

is an f -ring (for more details see [7]). We abbreviate oft-mentioned members
of O(R) as follows:

R+ = (0,+∞), R− = (−∞, 0) .

We use b(U, ε) to designate the ε-ball
∨

r∈U (r − ε, r + ε) about U ∈ R, and in
O(R) we also use the notation U ⊆ε V to mean that b(U, ε) ⊆ V .

Lemma 2.1 ([7]). If α, β ∈ R(τ) and ε > 0 satisfy |α − β| ≤ ε, then α(U) ≤
β(V ) for all U ⊆ε V in O(R).

Lemma 2.2 ([7]). Let f, g ∈ R(τ). The following statements are equivalent.

(1) f ≤ g.
(2) coz(g − f) = (g − f)(R+).
(3) (g − f)(R−) = ⊥.
(4) (g − f)(r,+∞) = ⊤ for all r ∈ R−.
(5) For every r ∈ R, f(r,+∞) ≤ g(r,+∞).
(6) For every r ∈ R, f(−∞, r) ≥ g(−∞, r).
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[23] A topoframe, denoted by Lτ , on a frame L is a subframe τ all of whose
elements are complementary elements in L. The member of τ are called the
open elements of L. The set {p′ | p ∈ τ} are called the closed elements of L
and will be denoted by τ ′.

Definition 2.3. If (L, τ) is a topoframe and p ∈ L, the closure of p in L is the
element

p :=
∧

{q ∈ τ ′ | p ≤ q} ,
and the interior of any p ∈ L is the element

p◦ :=
∨

{t ∈ τ | t ≤ p} .

We showed in [14] that the ring of “real-continuous functions” R(Lτ ), con-
sisting of all frame homomorphisms f : P (R) −→ L such that f(O(R)) ⊆ τ ,
with the operator ⋄ ∈ {+, .,∧,∨} defined by

(f ⋄ g)(X) =
∨

{f(Y ) ∧ g(Z) | Y ⋄ Z ⊆ X},

where

Y ⋄ Z = {y ⋄ z | y ∈ Y, z ∈ Z} ,
or, equivalently,

(2.1) (f ⋄ g)(X) =
∨

{f({x}) ∧ g({y}) | x ⋄ y ∈ X}

is a sub f-ring of R(τ).

Remark 2.4 ([14]). Let τ be a topoframe on a frame L. The frame map α ∈ Rτ
is called an L-extendable real continuous function if and only if for every r ∈ R,

L∨
r∈R

(α(−∞, r) ∨ α(r,−∞))′ = ⊤,

or, equivalently,
L∨

r∈R

L∧
k∈N

α(r − 1

k
, r +

1

k
) = ⊤.

If α is L- extendable, the mapping eα defined by

eα(S) =
L∨

x∈S

(α(−∞, x) ∨ α(x,−∞))′,

or, equivalently,

eα(S) =
L∨

x∈S

L∧
k∈N

α(x− 1

k
, x+

1

k
)

is a frame homomorphism from P(R) into L which eα |O(R)= α.



Zero elements and z-ideals in modified pointfree topology 2210

A real-valued function on a frame L is a frame homomorphism f from P(R)
to L. The set of all this functions is denoted by FP(L) and it is an f -ring with
the operation defined in Equation (2.1) (see [19]). It is proved that R(Lτ ) is a
sub f -ring of FP(L) (see [14]).

3. z-elements in modified pointfree topology

In this section we shall introduce the notion of zero-element for the first
time in topoframes and we shall discuss some of the basic relations that hold
for zero-elements.

Definition 3.1. For every f ∈ R(Lτ ), f({0}) is called a zero-element of f and
is denoted by z(f).

Any element in L that is a zero-element of some frame map in R(Lτ ) is
called a zero-element in Lτ . Thus, z is a mapping from the ring R(Lτ ) onto
the set of all zero-elements in L.

For A ⊆ R(Lτ ), we write z[A] to designate the family of zero-elements
{z(f) | f ∈ A}. This is consistent with our notational convention for the
image of a set under a mapping. On the other hand, the family z[R(Lτ )] of all
zero-elements in L will also be denoted, for simplicity, by z[Lτ ].

Also a cozero-element of Lτ is defined by

coz(f) := f(−∞, 0) ∨ f(0,+∞)

for some f ∈ R(Lτ ). Obviously, z(f) = (coz(f))′.

Remark 3.2. For any f ∈ R(Lτ ), f |O(R)∈ R(τ) because its range is included
in τ . Trivially, coz(f) = coz(f |O(R)), whence for every f ∈ R(Lτ ), we have

z(f) = (coz(α))′

for some α ∈ R(τ).

Remark 3.3. (1) Constant real functions in R(Lτ ): for each c ∈ R, let c
be defined by

c(X) =

{
⊤L if c ∈ X ,

⊥L if c /∈ X ,

where X ∈ P(R). It is clear that c ∈ R(Lτ ). Also, f + 0 = f and f1 = f
for every f ∈ R(Lτ ). Now it is always true that z(c) = ⊥, if c ∈ R \ {0} and
z(0) = ⊤.

(2) Product with a scalar: for r ∈ R and f ∈ R(Lτ ) define

r.f(X) =

{
0(X) if r = 0,

f( 1rX) if r ̸= 0,

for every X ∈ P(R), where 1
rX = {x

r | x ∈ X}. It is straightforward to check
that r.f = rf , for every r ∈ R and f ∈ R(Lτ ).
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It is also true that z(r.f) = z(f) = z(rf), for all r ∈ R \ {0}; furthermore
z(0.f) = ⊤ = z(0f).

The partial ordering on R(Lτ ) is to be interpreted as follows.

Proposition 3.4. For f, g ∈ R(Lτ ), the following statements are equivalent.

(1) f ≤ g.
(2) f |O(R)≤ g |O(R).
(3) For every r ∈ R, f [r,+∞) ≤ g[r,+∞).
(4) For every r ∈ R, f(−∞, r] ≥ g(−∞, r].
(5) For every r ∈ R, f(r,+∞) ≤ g(r,+∞).
(6) For every r ∈ R, f(−∞, r) ≥ g(−∞, r).
(7) coz(g − f) = (g − f)(R+).
(8) (g − f)(R−) = ⊥.
(9) (g − f)(r,+∞) = ⊤ for all r ∈ R−.

Proof. The conditions (1) and (2) are equivalent, because the assignment f ⇝
f |O(R) from R(Lτ ) to R(τ)-or R(L) is an f -ring monomorphism (see [14]).
The conditions (2), (5 − 9) are equivalent, by Lemma 2.2. The conditions (3)
and (6) and also (4) and (5) are equivalent, since f(A)′ = f(R \ A) for every
f ∈ R(Lτ ) and A ⊆ R. □

Corollary 3.5. For f ∈ R(Lτ ), the following statements are equivalent.

(1) f ≥ 0.
(2) f |O(R)≥ 0.

(3) coz(f) = f(R+).
(4) f(R−) = ⊥.
(5) f(r,+∞) = ⊤ for all r ∈ R−.

Lemma 3.6. Let f, g ∈ R(Lτ ) and r ∈ R. Then

(1) (f ∧ g)({r}) = (f({r}) ∧ g[r,+∞)) ∨ (f [r,+∞) ∧ g({r})) .
In particular,

(f ∧ g)[r,+∞) = f [r,+∞)∧ g[r,+∞), (f ∧ g)(r,+∞) = f(r,+∞)∧ g(r,+∞) ,

(f ∧ g)(−∞, r] = f(−∞, r]∨ g(−∞, r], (f ∧ g)(−∞, r) = f(−∞, r)∨ g(−∞, r) ,

and

(f ∧ 0)({r}) =


⊥ if r > 0,

f [0,+∞) if r = 0,

f{r} if r < 0 .

Also, if f, g ≥ 0, then (f ∧ g){0} = f{0} ∨ g{0} .
(2) (f ∨ g)({r}) = (f({r}) ∧ g(−∞, r]) ∨ (f(−∞, r] ∧ g({r})) .

In particular,

(f ∨ g)[r,+∞) = f [r,+∞)∨ g[r,+∞), (f ∨ g)(r,+∞) = f(r,+∞)∨ g(r,+∞) ,
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(f ∨ g)(−∞, r] = f(−∞, r]∧ g(−∞, r], (f ∨ g)(−∞, r) = f(−∞, r)∧ g(−∞, r),

and

(f ∨ 0)({r}) =


⊥ if r < 0,

f(−∞, 0] if r = 0,

f{r} if r > 0 .

(3) (fg)[0,+∞) = (f [0,+∞) ∧ g[0,+∞)) ∨ (f(−∞, 0] ∧ g(−∞, 0]) .

(4) For every c ∈ R, we have (f − c)[0,+∞) = f [c,+∞) .
In particular, ((f − c) ∧ 0)({0}) = f [c,+∞) .

(5) For every c ∈ R, we have (f − c)(−∞, 0] = f(−∞, c] .
In particluar, ((f − c) ∨ 0)({0}) = f(−∞, c] .

Proof. For f, g ∈ R(Lτ ) and r ∈ R,
(1) By the definition of meet in R(Lτ ), we have

(f ∧ g)({r}) =
∨
{f({x}) ∧ g({y}) | min{x, y} = r}

= (f({r}) ∧ g[r,+∞)) ∨ (f [r,+∞) ∧ g({r})).

In particluar,

(f ∧ g)[r,+∞) =
∨

{f({x}) ∧ g({y}) | min{x, y} ≥ r} = f [r,+∞) ∧ g[r,+∞) ,

(f ∧ g)(−∞, r] =
∨
{f({x}) ∧ g({y}) | min{x, y} ≤ r}

= (f(R) ∧ g(−∞, r]) ∨ (f(−∞, r] ∧ g(R))
= f(−∞, r] ∨ g(−∞, r]

and

(f ∧ 0)({r}) = f({r}) ∧ 0[r,+∞)) ∨ (f [r,+∞) ∧ 0({r}))

=


⊥ if r > 0,

f [0,+∞) if r = 0,

f{r} if r < 0.

Also, while f, g ≥ 0

(f ∧ g){0} =
∨
{f{x} ∧ g{y} | min{x, y} = 0}

= (f{0} ∧ g[0,+∞)) ∨ (f [0,+∞) ∧ g{0})
= (f{0} ∧ ⊤) ∨ (⊤ ∧ g{0})
= f{0} ∨ g{0}.

(2) By the definition of join in R(Lτ ), we have

(f ∨ g)({r}) =
∨
{f({x}) ∧ g({y}) | max{x, y} = r}

= (f({r}) ∧ g(−∞, r]) ∨ (f(−∞, r] ∧ g({r})).
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In particluar,

(f ∨ g)[r,+∞) =
∨
{f({x}) ∧ g({y}) | max{x, y} ≥ r}

= (f(R) ∧ g[r,+∞)) ∨ (f [r,+∞) ∧ g(R))
= f [r,+∞) ∨ g[r,+∞) ,

(f ∨ g)(−∞, r] =
∨
{f({x}) ∧ g({y}) | max{x, y} ≤ r}

= f(−∞, r] ∧ g(−∞, r]

and

(f ∨ 0)({r}) =


⊥ if r < 0,

f(−∞, 0] if r = 0,

f{r} if r > 0 .

(3) By the definition of product in R(Lτ ), we have

(fg)[0,+∞) =
∨
{f({x}) ∧ g({y}) | xy ≥ 0}

=
∨
{f({x}) ∧ g({y}) | x ≥ 0, y ≥ 0}

∨
∨
{f({x}) ∧ g({y}) | x ≤ 0, y ≤ 0}

= (f [0,+∞) ∧ g[0,+∞)) ∨ (f(−∞, 0] ∧ g(−∞, 0]).

(4) For any c ∈ R, By definition of sum in R(Lτ ) , we have

(f − c)[0,+∞) =
∨
{f({x}) ∧ −c({y}) | x+ y ∈ [0,+∞)}

=
∨
{f({x}) ∧ c({−y}) | x+ y ≥ 0}

=
∨
{f({x}) ∧ c({−y}) | x ≥ −y}

=
∨
{f({x}) ∧ ⊤ | x ≥ c}

= f [c,+∞) .

Particularly, by statement (1), we have

((f − c) ∧ 0)({0}) = (f − c)[0,+∞) = f [c,+∞) .

(5) For every c ∈ R,
(f − c)(−∞, 0] =

∨
{f({x}) ∧ −c({y}) | x+ y ∈ (−∞, 0]}

=
∨
{f({x}) ∧ c({−y}) | x+ y ≤ 0}

=
∨
{f({x}) ∧ c({−y}) | x ≤ −y}

=
∨
{f({x}) ∧ ⊤ | x ≤ c}

= f(−∞, c].

Particularly, by statement (2), we have

((f − c) ∨ 0)({0}) = (f − c)(−∞, 0] = f(−∞, c].

□
Proposition 3.7. For every f, g ∈ R(Lτ ), we have
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(1) z(f + g) = z(f) ∧ z(g), while f, g ≥ 0.
(2) z(f ∧ g) = z(f) ∨ z(g), while f, g ≥ 0.
(3) If 0 ≤ f ≤ g, then z(f) ≥ z(g).
(4) For every n ∈ N, z(f) = z(−f) = z(|f |) = z(fn).
(5) z(fg) = z(f) ∨ z(g).
(6) z(f + g) ≥ z(f) ∧ z(g).
(7) z(f) ∧ z(g) = z(|f |+ |g|) = z(f2 + g2).
(8) z(1) = ⊥ and moreover, z(f) = ⊤ if and only if f = 0.
(9) For every n ∈ N, z(f) = z(|f | ∧ 1

n ).
(10) For every c, c1, c2 ∈ R and f ∈ R(Lτ ), we have z(f − c) = f({c}).
(11) z((f − c)+) = f(−∞, c] and z((f − c)−) = z((c− f)+) = f [c,+∞).
(12) z(f+) = f(−∞, 0] and z(f−) = f [0,+∞).
(13) z((f − c1)

+ ∧ (c2 − f)+) = f((−∞, c1] ∪ [c2,+∞)).
(14) For every f, g ≥ 0,

z(f) =
L∧

n∈N
z((nf − g)+) .

Proof. Some straightforward computations involving Lemma 3.6 and Equation
(2.1) yield all relations in R(Lτ ); however, we prove the last assertion. First,
note that h ≤ k implies h+ ≤ k+. Thus, for any f, g ≥ 0

nf ≤ nf + g ⇒ nf − g ≤ nf

⇒ (nf − g)+ ≤ (nf)+ = nf

⇒ z(nf − g)+ ≥ z(nf)

⇒ coz(nf − g)+ ≤ coz(nf)

⇒ coz(nf − g)+ ≤ coz(f) since coz(nf) = coz(f).

Hence
∨

n∈N coz(nf − g)+ ≤ coz(f).
For the reverse relation, note that

coz(nf − g)+ = (nf − g)+(0,+∞) by Corollary 3.5

= (nf − g)(0,+∞) by 3.6(2)

= n(f + −1
n g)(0,+∞)

= (f + −1
n g)(0,+∞) using scalar product

≥
∨

r>0{f(r,+∞) ∧ −1
n g(−r,+∞)}

=
∨

r>0{f(r,+∞) ∧ g(−∞, nr)} using scalar product
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and since, for any r > 0 in R,
∨

n∈N g(−∞, nr) = g(R) = ⊤, we conclude that∨
n∈N coz(nf − g)+ ≥

∨
n∈N

∨
r>0{f(r,+∞) ∧ g(−∞, nr)}

=
∨

r>0

∨
n∈N{f(r,+∞) ∧ g(−∞, nr)}

=
∨

r>0{f(r,+∞) ∧ ⊤}
= f(0,+∞)

= coz(f) by Corollary 3.5 .

Consequently,

coz(f) =
∨
n∈N

coz(nf − g)+

and so
z(f) =

∧
n∈N

z((nf − g)+),

by complementation. □
Theorem 3.8. A frame map f is a unit of R(Lτ ) if and only if z(f) = ⊥.

Proof. Suppose that f is a unit of R(Lτ ), then there exists g ∈ R(Lτ ) such
that fg = 1. So by Proposition 3.7, ⊥ = z(1) = z(fg) = z(f)∨z(g), and hence
z(f) = ⊥.

Conversely, assume that f ∈ R(Lτ ) and z(f) = ⊥. Define

g(X) :=
∨

{f( 1
x
) | x ∈ X − {0}} .

We show that g belongs to R(Lτ ) which is the multiplicative inverse of f in
R(Lτ ). The proof consists of five steps to check:
step 1. The first step is verifying that g(R) = ⊤. Since f{0} = ⊥, we have

g(R) =
∨
{f( 1x ) | x ∈ R− {0}}

= ⊥ ∨
∨
{f( 1x ) | x ∈ R− {0}}

= f{0} ∨
∨
{f( 1x ) | x ∈ R− {0}}

= f(R)
= ⊤.

step 2. Let {Xi}i∈I ⊆ P(R). If for all i, Xi = ∅ or {0}, then obviously,

g(
∪
i∈I

Xi) = ⊥ =
∨
i∈I

g(Xi),

or else there is an i which Xi ̸= ∅, {0}, then
g(
∪

i∈I Xi) =
∨
{f({ 1

x}) | x ∈ (
∪

i∈I Xi)− {0}}
=

∨
{f({ 1

x}) | x ∈
∪

i∈I(Xi − {0})}
=

∨
i∈I

∨
{f({ 1

x}) | x ∈ Xi − {0}}
=

∨
i∈I g(Xi) .
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step 3. Let X,Y ∈ P (R). If X,Y ∈ {∅, {0}}, then obviously,

g(X ∩ Y ) = ⊥ = g(X) ∧ g(Y ),

or else we have

g(X ∩ Y ) =
∨
{f({ 1

x}) | x ∈ (X ∩ Y )− {0}}
=

∨
{f({ 1

x}) | x ∈ (X − {0}) ∩ (Y − {0})}
=

∨
{f({ 1

x}) ∧ f({ 1
y}) | x ∈ X − {0}, y ∈ Y − {0}}

=
∨
{f({ 1

x}) | x ∈ X − {0}} ∧
∨
{f({ 1

y}) | y ∈ Y − {0}}
= g(X) ∧ g(Y ) .

step 4. We must also prove that g is also continuous. Let (a, b) be an open
interval in R.

(1) if 0 /∈ (a, b) and a < b < 0 or 0 < a < b, then

g(a, b) =
∨
{f({ 1

x}) | x ∈ (a, b)− {0}}
=

∨
{f({ 1

x}) | x ∈ (a, b)}
=

∨
{f({ 1

x}) | a < x < b)}
=

∨
{f({ 1

x}) |
1
b < 1

x < 1
a )}

=
∨
{f({λ}) | 1

b < λ < 1
a )}

= f( 1b ,
1
a )

and hence g assigns any open set of R to an open element of L, since
f does.

(2) Now, if 0 ∈ (a, b), then

g(a, b) = g(a, 0) ∨ g({0}) ∨ g(0, b)

= f(−∞, 1
a ) ∨ ⊥ ∨ f( 1b ,+∞)

= f(−∞, 1
a ) ∨ f( 1b ,+∞) ,

so that g assigns an open set to an open element in L.

step 5. In the last step, we show that fg = 1.

(fg)({1}) =
∨
{f({x}) ∧ g({y}) | xy = 1}

=
∨
{f({x}) ∧ g({ 1

x}) | 0 ̸= x ∈ R}
=

∨
{f({x}) ∧ f({x}) | 0 ̸= x ∈ R}

=
∨
{f({x}) | 0 ̸= x ∈ R}

= f({0})
∨
{f({x}) | 0 ̸= x ∈ R}

= f(R)
= ⊤.
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and

(fg)({0}) =
∨
{f({x}) ∧ g({y}) | xy = 0}

=
∨
{f({x}) ∧ g({y}) | x = 0} ∨

∨
{f({x}) ∧ g({y}) | y = 0}

=
∨
{⊥ ∧ g({y})} ∨

∨
{f({x}) ∧ ⊥}

= ⊥.

Also, if r ̸= 0, 1, then

(fg)({r}) =
∨
{f({x}) ∧ g({y}) | xy = r}

=
∨
{f({x}) ∧ g({ r

x}) | 0 ̸= x ∈ R}
=

∨
{f({x}) ∧ f({x

r }) | x ̸= 0}
=

∨
{f(∅) | x ̸= 0}

= ⊥

and thus fg = 1. This completes the proof. □

Corollary 3.9. Any f ≥ 1 in R(Lτ ) has an inverse.

Proof. Since 0 ≤ 1 ≤ f , we conclude that ⊥ = z(1) ≥ z(f), by statement (3)
of Proposition 3.7, and hence f has an inverse in R(Lτ ), by Theorem 3.8. □

Remark 3.10. f ∈ R(Lτ ) is called bounded topoframe map, if there exists n ∈ N
such that |f | < n. Put

R∗(Lτ ) := {f ∈ R(Lτ ) | f is a bounded topoframe map}.

Then z[R∗(Lτ )] = z[R(Lτ )], by statement (9) of Proposition 3.7.

4. The uniform completeness of R(Lτ )

Recall that a sequence {an}n∈N in an f -ring A converges uniformly to a ∈ A,
written an → a, provided that for any k ∈ N, there is an m ∈ N such that

|an − a| < 1

k
,

for all n ∈ N with n ≥ m. Furthermore, in an f -ring A, a sequence {an}n∈N ⊆ A
is called Cauchy if for any k ∈ N there is an m ∈ N such that

|ai − aj | <
1

k

for all i, j ∈ N with i, j ≥ m. The f -ring A is said to be uniformly complete
if every Cauchy sequence in A converges uniformly to a limit in A. Because
R(L) is uniformly complete (see [7]), it may not be so much surprising that
R(Lτ ) is uniformly complete. This fact appears in the following theorem.

Theorem 4.1. The f -ring R(Lτ ) is uniformly complete.
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Proof. Suppose that {fn}n∈N is a Cauchy sequence in R(Lτ ) and take αn :=
fn |O(R). Since R(τ) is complete in its uniform topology, {αn}n∈N ⊆ R(L)
converges to a real continuous function α ∈ R(L). Hence for any k ∈ N, there
exists an n0 ∈ N such that for all n ≥ n0,

|αn − α| ≤ 1

2k
,

and then Lemma 2.1 gives the inequality αn(U) ≤ α(V ) for all U ⊆ 1
2k

V in

O(R); particularly, for all r ∈ R,

αn(r −
1

2k
, r +

1

2k
) ≤ α(r − 1

k
, r +

1

k
)

(because (r − 1
2k , r +

1
2k ) ⊆ 1

2k
(r − 1

k , r +
1
k )). Thus

⊤ =
L∨

r∈R

L∧
k∈N

αn(r −
1

2k
, r +

1

2k
) ≤

L∨
r∈R

L∧
k∈N

α(r − 1

k
, r +

1

k
) ,

because every αn is L-extendable, and hence α is L-extendable. Consequently,
there exists an f ∈ R(Lτ ) such that f |O(R)= α, by Remark 2.4. So for any
k ∈ N, there exists an n0 ∈ N such that for all n ≥ n0 and r ∈ R,

|fn − f |({r}) ≤ |fn − f |(p, q) = |αn − α|(p, q) ≤ 1

2k
(p, q) ,

where p, q ∈ Q with 1
2k < p < r < q or p < r < q < 1

2k or p < r = 1
2k < q. This

completes the proof. □

Corollary 4.2. Let {fn}n∈N ⊆ R(Lτ ). Then there is an f ∈ R(Lτ ) such that

∞∧
n=1

z(fn) = z(f) .

Proof. Take ϕn := |fn| ∧ 2−n. Then, by the proof of Theorem 4.1, the Cauchy
sequence {ϕ1+ · · ·+ϕn | n ∈ N} has a supremum f in the poset R(Lτ ) and the
Cauchy sequence {ϕ1 |O(R) + · · ·+ ϕn |O(R)| n ∈ N} has the supremum f |O(R)
in the poset R(τ). Thus∨

n∈N coz(fn) =
∨

n∈N coz(ϕn)

=
∨

n∈N coz(ϕn |O(R))

= coz(f |O(R)) by the proof of [10, Proposition 3.6]

= coz(f) ,

so that
∧

n∈N z(fn) = z(f) as desired. □
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5. ideals and z-filters in modified pointfree topology

The join of two zero elements of Lτ is also a zero element and so is the meet
of two zero elements, by Theorem 3.7. This means that z[Lτ ] is a sub-lattice of
L. Continuing our study of the relations between algebraic properties of R(Lτ )
and lattice properties of Lτ , we now examine the special features of a family
of zero-elements in z[Lτ ].

Definition 5.1. A proper filter of z[Lτ ] is called a z-filter on Lτ . Therefore,
if F is a z-filter on Lτ , then

(i) ⊥ ̸∈ F ⊆ z[Lτ ] and ⊤ ∈ F ,
(ii) for every a, b ∈ F , there exists ⊥ ̸= c ∈ F that c ≤ a ∧ b, and
(iii) if b ∈ F , a ∈ L, and b ≤ a, then a ∈ F .

Let a ∈ A and F ⊆ z[Lτ ]. We say a meets F if and only if a∧ b ̸= ⊥, for all
b ∈ F . A z-ultrafilter F on Lτ is maximal element of collection of all z-filters
on Lτ with inclusion relation. It is evident that:

(1) A z-filter F on Lτ is a z-ultrafilter if and only if a meets F implies
a ∈ F , for every a ∈ z[Lτ ].

(2) If F and G are disjoint z-ultrafilter on Lτ , then there is elements a ∈ F
and b ∈ G such that a ∧ b = ⊥.

(3) If {Fi}i∈I is a nonempty collection of z-filters on Lτ , then
∩

i∈I Fi is a
z-filter on Lτ .

(4) Every z-filter on Lτ is contained in a z-ultrafilter on Lτ .

Proposition 5.2. In R(Lτ ), the following statements hold.

(1) If I is a proper ideal in R(Lτ ), then the family

z[I] = {z(f) | f ∈ I}
is a z-filter on Lτ .

(2) If F is a z-filter on Lτ , then the family

z−1[F ] = {f | z(f) ∈ F}
is a proper ideal in R(Lτ ).

Proof. (1) It suffices to check that conditions (i)-(iii) of Definition 5.1 hold for
z[I].
(i) Since I contains no unit, we conclude from Theorem 3.8 that ⊥ /∈ z[I].
(ii) Let z1, z2 ∈ z[I]. Then there exist f, g ∈ I such that z1 = z(f) and
z2 = z(g). Since I is an ideal, f2 + g2 ∈ I. Hence

z1 ∧ z2 = z(f2 + g2) ∈ z[I].

(iii) Let z ∈ z[I], ζ ∈ z[Lτ ] with z ≤ ζ and let f ∈ I and g ∈ R(Lτ ) satisfy
z = z(f), ζ = z(g). Since I is an ideal, we have fg ∈ I. Hence if z ≤ ζ, then

ζ = z ∨ ζ = z(fg) ∈ z[I].



Zero elements and z-ideals in modified pointfree topology 2220

(2) Let J = z−1[F ]. By Definition 5.1 and Theorem 3.8, J contains no unit.
Let f, g ∈ J , and let h ∈ R(Lτ ). Then

z(f − g) = z(f + (−g)) ≥ z(f) ∧ z(−g)) ≥ z(f) ∧ z(g) ∈ F

and hence z(f−g) ∈ F , by Definition 5.1. Therefore f−g ∈ z−1[F ]. Moreover,

z(hf) = z(h) ∨ z(h) ≥ z(f) ∈ F ,

and hence z(fh) ∈ F , by Definition 5.1. Therefore fh ∈ z−1[F ]. This com-
pletes the proof that J is a proper ideal in R(Lτ ). □

Proposition 5.3. In R(Lτ ), the following statements hold.

(1) If M is a maximal ideal in R(Lτ ), then z[M ] is a z-ultrafilter on Lτ .
(2) If F is a z-ultrafilter on Lτ , then z−1[F ] is a maximal ideal in R(Lτ ).

The mapping z is one-one from the set of all maximal ideals in R(Lτ )
onto the set of all z-ultrafilters on Lτ .

Proof. Since z and z−1 preserve inclusion, the result follows at once from Propo-
sition 5.2. □

Proposition 5.4. For any f, g ∈ R(Lτ ), the following statements are equiva-
lent.

(1) ⟨f, g⟩ ̸= R(Lτ ).
(2) z(f) ∧ z(g) ̸= ⊥.
(3) f2 + g2 and |f |+ |g| are not units of R(Lτ ).

Proof. (1) implies (3): Since f2 + g2 ∈ ⟨f, g⟩ ̸= R(Lτ ), we infer that f2 + g2 is
not unit and hence |f |+ |g| is not unit too, because z(f2 + g2) = z(|f |+ |g|).

(3) implies (2): Assume that z(f) ∧ z(g) = ⊥, consequently

z(f2 + g2) = z(|f |+ |g|) = z(f) ∧ z(g) = ⊥,

so that f2 + g2 and |f |+ |g| are unit which is in contradiction to the condition
(3).

(2) implies (1): Let h ∈ ⟨f, g⟩. Then there exist h1, h2 ∈ R(Lτ ) such that
h = h1f + h2g and so

z(h1f + h2g) ≥ z(h1f) ∧ z(h2g)

= (z(h1) ∨ z(f)) ∧ (z(h2) ∨ z(g))

≥ z(f) ∧ z(g) ̸= ⊥ .

Thus z(h) ̸= ⊥. Hence h is not unit.
□

Proposition 5.5. Let M be a maximal ideal in R(Lτ ). If z(f) meets every
member of Z(M ], then f ∈ M .
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Proof. The set z[M ] is a z-ultrafilter on Lτ , by 5.3(1) and so, if z(f) meets
every member of z[M ], then z(f) ∈ z[M ]. Therefore f ∈ z−1[z[M ]]; moreover,
M ⊆ z−1[z[M ]], and M is a maximal ideal, so that f ∈ M = z−1[z[M ]]. □

The properties stated in the foregoing proposition are, in fact, characteristic
of maximal ideals and z-filters: if a z-filter F contains every zero-element that
meets all members of F , then, clearly, F is a z-ultrafilter. Like any mapping,
Z satisfies for F ⊆ z[Lτ ],

z[z−1[F ]] = F and z−1[z[I]] ⊇ I.

The first relation implies that every z-filter is of the form z[J ] for some ideal J
in R(Lτ ). In the second relation, the inclusion may be proper, as the example
shown in [15, p. 26], whenever we identify C(X) with R(P (X)O(X)), by the
following theorem proved in [14].

Theorem 5.6. The assignment f 7→ f−1 from C(X) to R(P(X)O(X)) is an

f-ring isomorphism, where f−1(A) = {x | f(x) ∈ A}, for all A ∈ P(X).

6. z-ideals and prime ideals in modified pointfree topology

We recall the notion of a z-ideal of a ring A as was introduced by Mason
in [21]. In the lattice theory this notion is known as “z-ideals à la Mason”.
Denote by Max(A) the set of all maximal ideals of a ring A. For a ∈ A and
S ⊆ A, let

M(a) = {M ∈ Max(A) | a ∈ M} and M(S) = {M ∈ Max(A) | S ⊆ M}.
Note that, since an ideal contains an element if and only if it contains the
principal ideal generated by the element, we have that M(a) = M(⟨a⟩). An
ideal I of a ring A is called a z-ideal à la Mason if whenever M(a) ⊆ M(b) and
a ∈ I, then b ∈ I. We shall define a z-ideal of R(Lτ ) “topologically”.

Definition 6.1. An ideal I of a ring R(Lτ ) is called a z-ideal if whenever
z(f) ≤ z(g), f ∈ I and g ∈ R(Lτ ), then g ∈ I.

Proposition 6.2. Every z-ideal à la Mason of R(Lτ ) is a z-ideal.

Proof. For the proof, it suffices to show that z(f) ≤ z(g) implies M(f) ⊆ M(g).
Assume on the contrary that M(f) ⊈ M(g). Then there exists a maximal ideal
M such that f ∈ M but it does not contain g, and consequently z(f) ≰ z(g),
by definition. This contradicts the hypothesis. □

If F is a z-filter, then z−1[F ] is a z-ideal (since z[z−1[F ]] = F). Hence if J
is any ideal in R(Lτ ), then I = z−1[z[J ]] is a z-ideal; clearly, I is the smallest
z-ideal containing J . It is evident that every maximal ideal is a z-ideal and the
intersection of an arbitrary (nonempty) family of z-ideals is a z-ideal. We now
see some examples of z-ideals and give some properties of them.
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Definition 6.3. Let L be a lattice. The element ⊥ < p ∈ L is called a particle
if and only if p ≤

∨
i ai, whenever

∨
i ai exists, implies p ≤ ai for some i.

A straightforward calculation shows that every atom in a frame is a particle.
Furthermore, it follows at once that any particle is co-prime.

Proposition 6.4. Let Lτ be a topoframe. Then the following statements hold.

(1) If S ⊆ L, then MS = {f ∈ R(Lτ ) | s ≤ z(f) for each s ∈ S)} is a
z-ideal.

(2) For each a ∈ L, Oa = {f ∈ R(Lτ ) | a ≤ (z(f))◦} is a z-ideal.
(3) For each particle p ∈ L, if it exists, Mp = {f ∈ R(Lτ ) | p ≤ z(f)} is a

maximal z-ideal.

Proof. (1) Let f, g ∈ MS . Then for every s ∈ S, s ≤ z(f) and s ≤ z(g), so that

s ≤ z(f) ∧ z(g) ≤ z(f − g)

and hence f − g ∈ MS . Let f ∈ MS , and h ∈ R(Lτ ). Then

z(hf) = z(h) ∨ z(f) ≥ z(f) ≥ s

for all s ∈ S. Hence fh ∈ MS . Thus, MS is an ideal in R(Lτ ). Clearly, MS is
a z-ideal.

(2) Let f, g ∈ Oa. Then a ≤ z(f)◦, and a ≤ z(f)◦. Hence

(z(f − g))◦ ≥ (z(f) ∧ z(g))◦ = (z(f))◦ ∧ (z(g))◦ ≥ a .

Therefore f − g ∈ Oa. Suppose now that f ∈ Oa and h ∈ R(Lτ ). Then

(z(hf))◦ = (z(h) ∨ z(f))◦ ≥ (z(f))◦ ≥ a .

Hence fh ∈ Oa. Thus, Oa is an ideal in R(Lτ ). Obviously, Oa is a z-ideal.
(3) The set Mp is just a special case of MS in the statement (1), and hence

it is a z-ideal. Since p ̸= ⊥, Theorem 3.8 shows that Mp is a proper ideal. To
verify that Mp is maximal, consider f ∈ R(Lτ ) \Mp. Then there exists a real
number r such that p ≤ f({r}), since p is a particle and

p ≤ ⊤ = f(R) =
∨
r∈R

f({r}).

Note that r ̸= 0, since f /∈ Mp. In order to show that Mp is a maximal ideal ,
it suffices to prove that 1−1

r f ∈ Mp. For this,

z(1− 1
r f) =

∨
{1({a}) ∧ (−1

r f)({b}) | a+ b = 0}
=

∨
{1({1}) ∧ (−1

r f)({b}) | 1 + b = 0}
= (−1

r f)({−1})
=

∨
{−1

r ({c}) ∧ f({d}) | cd = −1}
=

∨
{−1

r ({−
1
r}) ∧ f({d}) | − 1

rd = −1}
= f({r})
≥ p .
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□

Proposition 6.5. Every z-ideal in R(Lτ ) is an intersection of prime ideals.

Proof. For all n ∈ N and f ∈ R(Lτ ), z(f
n) = z(f), by Theorem 3.7. Hence if

I is any z-ideal, then fn ∈ I implies f ∈ I, and so I =
√
I. This means that I

is the intersection of all the prime ideals containing it. □

We have already observed that every intersection of maximal ideals is a
z-ideal. The converse is not true, however. To see a z-ideal that is not an
intersection of maximal ideals, consider the example in [15, p. 28], whenever,
by Theorem 5.6, we identify C(X) with R(P (X)O(X)).

Definition 6.6. Let f ∈ R(Lτ ) and z ∈ z[Lτ ]. We shall say that f is non-
negative on z if z ∧ f(−∞, 0) = ⊥. Likewise, we say that f is non-positive on
z if z ∧ f(0,+∞) = ⊥. We say that f does not change sign on z when f is
non-negative on z or f is non-positive on z.

The following lemma will be useful in the proof of the next theorem that
clarifies a relation between prime ideals and z-ideals.

Lemma 6.7. Let g, h ∈ R(Lτ ). Then

(|g| − |h|)(−∞, 0) ≥ z(g) ∧ coz(h) .

Proof. By Lemma 3.6, we have

(|g| − |h|)(−∞, 0)

≥
∨

t∈Q(|g|(−∞, t) ∧ (−|h|)(−∞,−t))

=
∨

t∈Q(|g|(−∞, t) ∧ |h|(t,+∞))

=
∨

t∈Q(g ∨ (−g))(−∞, t) ∧ (h ∨ (−h))(t,+∞))

=
∨

t∈Q(g(−∞, t) ∧ (−g)(−∞, t)) ∧ (h(t,+∞) ∨ (−h)(t,+∞))

=
∨

t∈Q((g(−∞, t) ∧ g(−t,+∞)) ∧ (h(t,+∞) ∨ h(−∞,−t)))

=
∨

t>0(g(−t, t)) ∧ h((t,+∞) ∨ (−∞,−t)))

≥ g({0}) ∧
∨

t>0(h((t,+∞) ∨ (−∞,−t)))

= z(g) ∧ coz(h).

The proof is now complete. □

Theorem 6.8. For any z-ideal I in R(Lτ ), the following are equivalent.

(1) I is a prime ideal.
(2) I contains a prime ideal.
(3) For all g, h ∈ R(Lτ ), if gh = 0, then g ∈ I or h ∈ I.
(4) For every f ∈ R(Lτ ), there is a zero-element of z[I] on which f does

not change sign.
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Proof. (1) implies (2): trivial.
(2) implies (3): if I contains a prime ideal P , and gh = 0, then gh ∈ P ,

whence either g or h is in P and hence in I.
(3) implies (4): observe that for every f ∈ R(Lτ ),

(f ∨ 0)(f ∧ 0) = f+(−f−) = 0

(see [8, p.80]). Then, by hypothesis, either f ∨ 0 or f ∧ 0 is in I , and hence
z(f ∨ 0) or z(f ∧ 0) is in z[I], however, f does not change sign on them, since

z(f ∧ 0) ∧ f(−∞, 0) = f [0,+∞) ∧ f(−∞, 0) = ⊥
and

z(f ∨ 0) ∧ f(0,+∞) = f(−∞, 0] ∧ f(0,+∞) = ⊥ .

(4) implies (1): given gh ∈ I, consider the function |g| − |h|. By hypothesis,
there is a zero-element z[I] of I on which |g| − |h| is non-negative, say, i.e.,
z ∧ (|g| − |h|)(−∞, 0) = ⊥. Then, by Lemma 6.7,

⊥ = z ∧ (|g| − |h|)(−∞, 0) ≥ z ∧ z(g) ∧ coz(h),

which follows that z∧ z(g) ≤ z(h). Hence z∧ z(gh) ≤ z(h), so that z(h) ∈ z[I].
Since I is a z-ideal, h ∈ I, and thus I is prime. □
Remark 6.9. An obvious consequence of the latter theorem is that every prime
ideal in R(Lτ ) is contained in a unique maximal ideal; for, if M and M ′ are
distinct maximal ideals, their intersection is a z-ideal (since M and M ′are z-
ideals), but it is not prime (since If J and J ′ are ideals, neither containing each
other, then J ∩ J ′ is not prime), and hence by Theorem 6.8, M ∩M ′ contains
no prime ideal.

Definition 6.10. By a prime z-filter, we shall mean a z-filter F with the
following property: whenever the join of two zero-elements belongs to F , then
at least one of them belongs to F .

Proposition 6.11. In R(Lτ ), the following statements hold.

(1) If P is a prime ideal in R(Lτ ), then z[P ] is a prime z-filter.
(2) If F is a prime z-filter, then z−1[F ] is a prime z-ideal.

Proof. (1) Let Q = z−1[z[P ]]. Then z[Q] = z[P ], and Q is a z-ideal containing
the prime ideal P . By Theorem 6.8, Q is prime. Suppose, now, that z(f) ∨
z(g) ∈ z[P ]. This implies that z(fg) ∈ z[Q]; therefore fg belongs to the z-ideal
Q. Since Q is prime, it contains f , say. Then z(f) ∈ z[Q] = z[P ].

(2) Suppose that fg ∈ P = z−1[F ]. Then z(fg) = z(f) ∨ z(g) ∈ z[P ] = F .
By hypothesis, z(f), say, belongs to z[P ]. Then f belongs to P , since the ideal
P = z−1[F ] is a z-ideal. □
Remark 6.12. It is immediate from the preceding theorem and Theorem 6.9
that a prime z-filter is contained in a unique z-ultrafilter. In addition, since
every maximal ideal in R(Lτ ) is prime, every z-ultrafilter is a prime z-filter.
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