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Abstract. Let D be an integral domain with quotient field K and E a
K-vector space. Let R = D ∝ E be the trivial extension of D by E, and
w the so-called w-operation. In this paper, we show that R is a w-FF ring
if and only if D is a w-FF domain; and in this case, each w-flat w-ideal

of R is w-invertible.
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1. Introduction: motivations and results

Let R be a commutative ring with identity. Finitely generated flat ideals
were first studied by Sally and Vasconcelos in [13]. This paper contains a
number of interesting probings into what makes a flat ideal of the polynomial
ring R[X] finitely generated. In [5], El Baghdadi et al. called a ring in which
every flat ideal is finitely generated an FF ring and continued to investigate
the stability of FF rings under localization and homomorphic image, and their
transfer to various contexts of constructions such as direct products, pullback
rings, and trivial extensions. It is well known that a nonzero finitely generated
ideal of an integral domain is flat if and only if it is invertible; so an FF-domain
is an integral domain in which each flat ideal is invertible. For example, Krull
domains are FF domains [20, Corollary 3]. In [9], the authors introduced
the notion of a w-FF domain as follows: An integral domain R is a w-FF
domain if every nonzero w-flat w-ideal of R is w-invertible. It is known that
w-FF-domains are FF domains [9, Proposition 3(1)]. Also, it is known that
a w-finite type w-ideal of an integral domain is w-flat if and only if it is w-
invertible [9, Lemma 1]. Therefore, R is a w-FF domain if and only if every
w-flat w-ideal of R is of w-finite type. Recall that D is a Krull domain if and
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only if each nonzero ideal of D is w-invertible; so every Krull domain is a w-FF
domain.

Let D be an integral domain with quotient field K, E a K-vector space,
and R = D ∝ E the trivial extension of D by E. In [5, Theorem 3.11], the
authors showed that D ∝ E is an FF ring if and only if D is an FF-domain.
They also proved that if (A,m) is a local FF ring and if E′ is an A-module
with mE′ = 0, then A ∝ E′ is an FF ring [5, Theorem 3.14]. In this paper, we
extend w-FF property to a commutative ring with zero divisors. Recall that
a w-ideal has w-FF property if it is w-flat and of w-finite type. Precisely, we
show that R = D ∝ E is a w-FF ring if and only if D is a w-FF domain; and
in this case, each w-flat w-ideal of R is w-invertible. To do this, we completely
characterize the ideals of R that are not contained in (0) ∝ E. We also prove
that if (A,m) is a w-local FF ring and E′ is an A-module with mE′ = 0, then
A ∝ E′ is a w-FF ring.

2. The w-operation and the trivial extension

Let R be a commutative ring with identity, T (R) the total quotient ring of R
and M a unitary R-module. An element of R is said to be regular if it is not a
zero divisor. An ideal is regular if it contains a regular element. For a nonzero
fractional ideal I of R, define I−1 = {x ∈ T (R) | xI ⊆ R} and Iv = (I−1)−1.
A finitely generated ideal J of R is a Glaz-Vasconcelos ideal (GV-ideal) if the
natural homomorphism R → HomR(J,R) is an isomorphism. It is known that
if R is an integral domain, then a nonzero finitely generated ideal J of R is a
GV-ideal if and only if J−1 = R.

Let M be an R-module. Define the w-envelope of M as

Mw = {x ∈ E(M) | Jx ⊆ M for some GV-ideal J of R},

where E(M) denotes the injective envelope (or injective hull) of M (see [7]).
Then Mw is independent of E(M), up to isomorphism. We say that M is GV-
torsion if for each x ∈ M , there exists a GV-ideal J of R such that Jx = 0; and
M is GV-torsion-free (or co-semi-divisorial) if whenever Jx = 0 for any GV-
ideal J of R and x ∈ M , we have x = 0. It is proved, [19, Theorem 1.4], that
M is GV-torsion-free if and only if HomR(N,M) = 0 for any GV-ideal J of R
and any R/J-module N . Recall that M is a w-module if Mw = M . An ideal I
of R is called a w-ideal if I is a w-module as an R-module and an ideal P of R
is called a maximal w-ideal of R if P is maximal among the proper w-ideals of
R. An ideal I of R is w-invertible if (II−1)w = R. We call M a w-flat module
if MP is a flat RP -module for every maximal w-ideal P of R. We call M a w-
faithfully flat module if M is w-flat and (M/PM)w ̸= 0 for all maximal w-ideals
P of R. It was shown in [8, Proposition 2.5] that M is w-faithfully flat if and
only if MP is faithfully flat for all maximal w-ideals P of R. Thus, faithfully
flat modules are w-faithfully flat. A module homomorphism g : A → B is a
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w-epimorphism if gP : AP → BP is an epimorphism for all maximal w-ideals
P of R; M is of w-finite type if there exist a finitely generated free module F
and a w-epimorphism g : F → M . It is clear that if M is of w-finite type, then
MP is finitely generated for all maximal w-ideals P of R. We say that R is a
w-FF ring if each w-flat w-ideal of R is of w-finite type. Clearly, an integral
domain that is a w-FF ring is a w-FF domain.

Example 2.1. (1) An FF ring whose maximal ideals are w-ideals is a w-FF
ring. Indeed, this follows from the fact that a commutative ring whose maximal
ideals are w-ideals is a DW ring, i.e., every ideal is a w-ideal [14, Theorem 3.8].

(2) In [17], Wang and McCasland introduced and studied strong Mori do-
mains, that is, integral domains which satisfy the ascending chain condition
on integral w-ideals. This concept was generalized to the semistar operation
context [12] and the setup of (commutative) rings with zero-divisors [19, Defi-
nition 4.1]. In the latter case, it is called w-Noetherian. It is known that R is
w-Noetherian if and only if each w-ideal of R is of w-finite type [19, Proposition
4.3]. Clearly, Noetherian rings are w-Noetherian rings, and w-Noetherian rings
are w-FF rings.

The trivial extension of R by M (also called the idealization of M over R)
is a commutative ring R ∝ M with identity (even an R-algebra) whose under-
lying group is R ⊕M , and the multiplication is defined by (r1,m1)(r2,m2) =
(r1r2, r1m2 + r2m1). It is well known that the prime (respectively, maximal)
ideals of R ∝ M have the form I ∝ M , where I is a prime (respectively,
maximal) ideal of R [6, Theorem 25.1] (or [2, Theorem 3.2]); if I is a finitely
generated ideal of R and M is a finitely generated R-module, then I ∝ M is
a finitely generated ideal of R ∝ M [1, Theorem 9(1)]. Denote by T (R) the
total ring of fractions of R. Then by [6, Theorem 25.10], for an ideal I of R,
we have (I ∝ M)−1 = I−1 ∝ M if M is a T (R)-module.

Now let D be an integral domain, and R the trivial extension of D with
respect to a vector space E over the quotient field K of D. Then an element
(a, e) ∈ R = D ∝ E is regular if and only if a ̸= 0 [6, Theorem 25.3].

Proposition 2.2. Let D be an integral domain with quotient field K, E a
vector space over K, and R = D ∝ E the trivial extension of D by E. Let
J be an ideal of R such that J ⊈ (0) ∝ E, and let I = {a ∈ D | (a, e) ∈
J for some e ∈ E}. Then the following assertions hold.

(1) I is a nonzero ideal of D.
(2) J = I ∝ E = ⟨{(a, 0) | a ∈ I}⟩.
(3) J is finitely generated if and only if I is finitely generated.
(4) J ∈ GV(R) if and only if I ∈ GV(D).
(5) Jw = Iw ∝ E.
(6) J is of w-finite type if and only if I is of w-finite type.
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(7) J is invertible (respectively, w-invertible) if and only if I is invertible
(respectively, w-invertible).

Proof. (1) This is clear.
(2) Let (x, e) ∈ J . Then x ∈ I. If x ̸= 0, then (x, e) = (x, 0) · (1, 1

xe) ∈
⟨{(a, 0) | a ∈ I}⟩. Next, if x = 0, then (0, e) = (a′, 0) · (0, 1

a′ e) ∈ ⟨{(a, 0) |
a ∈ I}⟩ for every 0 ̸= a′ ∈ I. Hence J ⊆ ⟨{(a, 0) | a ∈ I}⟩. Clearly, we have
⟨{(a, 0) | a ∈ I}⟩ ⊆ I ∝ E. For I ∝ E ⊆ J , let (b, α) ∈ I ∝ E. If b ̸= 0, then
there is (b, β) ∈ J for some β ∈ E. Hence (b, α) = (b, β) · (1, 1

b (α − β)) ∈ J .

Assume b = 0. Then (0, α) = (c, δ) · (0, 1
cα) ∈ J , where (c, δ) ∈ J with c ̸= 0.

Therefore I ∝ E ⊆ J .
(3) This follows directly from (2).
(4) Note that if 0 ̸= a ∈ D, then (a, e) is regular in R for every e ∈ E.

Thus by (2), J is regular. Hence J ∈ GV(R) if and only if Jw = R and J
is finitely generated; if and only if Jv = R and J is finitely generated [19,
Theorem 3.12]; if and only if Iv = D and I is finitely generated (by (3) because
(I ∝ E)v = Iv ∝ E); if and only if I ∈ GV(D).

(5) Note that every GV-ideal J ′ of R is regular; so J ′ ⊈ (0) ∝ E. Hence
(x, e) ∈ Jw if and only if (x, e) · (A ∝ E) ⊆ I ∝ E for some A ∈ GV(D) by (4);
if and only if xA ⊆ I; if and only if x ∈ Iw; if and only if (x, e) ∈ Iw ∝ E.

(6) This follows directly from (3) and (5).
(7) Note that J−1 = (I ∝ E)−1 = I−1 ∝ E; hence JJ−1 = II−1 ∝ E. Thus,

JJ−1 = R (respectively, (JJ−1)w = R) if and only if II−1 = D (respectively,
(II−1)w = D). □

Let w-Spec(R) be the set of all prime w-ideals of R. The w-dimension of R,
denoted by w-dim(R), is the supremum of the heights of maximal w-ideals of
R. The next result is an immediate consequence of Proposition 2.2(5).

Corollary 2.3. Let the notation be as in Proposition 2.2. Then there ex-
ists an order-preserving bijection from w-Spec(D) into w-Spec(R). Hence, w-
dim(D) = w-dim(R).

For more on the trivial extension, the readers can refer to Huckaba’s book [6]
and Anderson–Winders’ interesting article [2].

3. The w-FF property in trivial extensions

Let R be a commutative ring with identity and let R[X] be the polynomial
ring over R. For f ∈ R[X], let c(f) be the ideal of R generated by the coeffi-
cients of f . Let Nw = {f ∈ R[X] | c(f)w = R}. Let f ∈ Nw, and assume that
fg = 0 for g ∈ R[X]. By [16, Theorem 1.7.16], there is an integer m ≥ 1 such
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that c(f)m+1c(g) = c(f)mc(fg). Hence, by [18, Lemma 2.9],

c(g) ⊆ c(g)w = ((c(f)m+1)wc(g))w = (c(f)m+1c(g))w

= (c(f)mc(fg))w = ((c(f)m)wc(fg))w

= c(fg)w = {0},

and thus g = 0. Therefore, every element of Nw is regular and Nw is a (satu-
rated) multiplicative subset of R[X]. The quotient ring R[X]Nw is called the
w-Nagata ring of R. Let M be an R-module. Then M [X]Nw is an R[X]Nw -
module and is called the w-Nagata module of M . In [15, Proposition 3.9(3)], it
is shown that M is of w-finite type if and only if M [X]Nw is finitely generated.

Let D → R be a faithfully flat ring homomorphism and let M be a D-
module. It is known that if the R-module M ⊗D R is finitely generated, then
M is finitely generated [11, Exercise 7.3]. The following is the w-operation
analogue of this result.

Lemma 3.1. Let D → R be a w-faithfully flat ring homomorphism and let
M be a D-module. If the R-module M ⊗D R is of w-finite type, then M is of
w-finite type.

Proof. Let X be an indeterminate and Nw = {f ∈ D[X] | c(f)w = D}. Since
the argument in the proof of [4, Theorem 1.7] works equally well for D being a
commutative ring with identity, R[X]Nw is faithfully flat over D[X]Nw . By [15,
Proposition 3.9(3)], M [X]Nw ⊗D[X]Nw

R[X]Nw is a finitely generated R[X]Nw -
module. Thus, M [X]Nw

is a finitely generated D[X]Nw
-module [11, Exercise

7.3]. Hence, again by [15, Proposition 3.9(3)], M is of w-finite type, □

Lemma 3.2. Let D ⊆ R be an extension of commutative rings such that R is
a w-faithfully flat D-module. If R is a w-FF ring, then D is a w-FF ring

Proof. Let I be a w-flat w-ideal of D. Then I ⊗D R ∼= IR is a w-flat w-ideal
of R [4, Lemma 1.5]. Since R is a w-FF ring, IR is of w-finite type. Since R is
a w-faithfully flat D-module, I is of w-finite type by Lemma 3.1. Thus, D is a
w-FF ring. □

Corollary 3.3. Let R[X] be the polynomial ring over R. If R[X] is a w-FF
ring, then R is a w-FF ring.

Proof. This follows directly from Lemma 3.2 because R[X] is a faithfully (hence
w-faithfully) flat R-module. □

Let M be a unitary R-module, and let φ1 : R → R ∝ M and φ2 : R ∝ M →
R be two ring homomorphisms defined by φ1(r) = (r, 0) and φ2(r,m) = r,
respectively. Then φ1 and φ2 induce functors R∝MM → RM and RM →
R∝MM, where R∝MM (respectively, RM) denotes the category of (R ∝ M)-
modules (respectively, R-modules) and the respective “scalar products” are
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ra := (r, 0)a and (r,m)a := ra. Note that the map RM → R∝MM → RM is
the identity map [2, p. 24].

From now on, unless otherwise stated, D always denotes an integral domain
with quotient field K, E stands for a K-vector space, R = D ∝ E is the trivial
extension of D by E, and T = K ∝ E is the trivial extension of K by E. It is
well-known (special case of [2, Corollary 3.4]) that the ideals of R are either of
the form I ∝ E for an ideal I of D or 0 ∝ F where F is a D-submodule of E.
Note that the ring R may be defined as a pullback construction [5], as shown
by the following pullback diagram:

(3.1)

R = D ∝ E −−−−→ D = R/(0 ∝ E)

i

y j

y
T = K ∝ E

φ−−−−→ K = T/(0 ∝ E).

We next give the main result of this paper, which is the w-operation analogue
of [5, Theorem 3.11] that R = D ∝ E is an FF ring if and only if D is an FF-
domain.

Theorem 3.4. Given a pullback diagram (3.1), R is a w-FF ring if and only
if D is a w-FF domain. In this case, each w-flat w-ideal of R is w-invertible.

To prove this theorem, we first need several lemmas. Let R ⊆ T be an
extension of commutative rings. Following [18, Definition 3.1], we say that T
is w-linked over R (or R ⊆ T is a w-linked extension) if T as an R-module is a
w-module. Clearly, flat ⇒ w-flat ⇒ w-linked.

Lemma 3.5. With the same notation as in (3.1), the following assertions hold.

(1) T is a flat R-module, and hence R ⊆ T is a w-linked extension.
(2) If J is w-flat over R, then J ⊗R T is w-flat over T .
(3) Every ideal of T is a w-ideal.

Proof. (1) This is an immediate consequence of the fact that T = RD\{0} (see
the proof of [5, Theorem 3.11]).

(2) This follows from the fact that the argument in the proof of [4, Lemma
1.5] works equally well for D being a commutative ring with identity.

(3) Note that T is zero-dimensional. Thus, every ideal of T is a w-ideal [14,
Theorem 3.8]. □

Our next lemma shows that the GV-torsion property descends under a cer-
tain w-linked extension. Note that D ⊆ R is a w-linked extension (Proposi-
tion 2.2(5)).

Lemma 3.6. If an R-module M is GV-torsion, then M as a D-module is
GV-torsion.
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Proof. By [21, Lemma 1], it suffices to show that if a D-module N is GV-
torsion-free, then HomD(R,N) is GV-torsion-free as an R-module. Let J be a
GV-ideal of R. Then J is finitely generated, say

J = ⟨{(di, ei) | di ∈ D, ei ∈ E and i = 1, . . . , n}⟩.

Let I = ⟨d1, . . . , dn⟩. Then I is a GV-ideal of D by Proposition 2.2(4). If
Jf = 0 for f ∈ HomD(R,N), then for any r ∈ R, If(r) ⊆ Jf(r) = 0. Since
N is GV-torsion-free as a D-module, we have f(r) = 0. Hence f is identically
zero. Thus HomD(R,N) is GV-torsion-free as an R-module. □

The following lemma appears in [10, Theorem 3.3].

Lemma 3.7. Let R be any commutative ring with identity and let M be an
R-module. Then M is w-flat if and only if TorR1 (N,M) is GV-torsion for any
R-module N .

We are now ready to prove Theorem 3.4.

Proof of Theorem 3.4. (⇒) Since D ⊆ R is a faithfully flat extension [5], this
follows from Lemma 3.2.

(⇐) Assume that D is a w-FF domain, and let J be a nonzero w-flat w-
ideal of R. Then JT (= J ⊗R T ) is a nonzero flat ideal of T by Lemma 3.5 and
Example 2.1(1), and hence JT = T = K ∝ E [5, Lemma 3.12]. Thus, there
exists an (a, e) ∈ J with a ̸= 0, and hence J = I ∝ E for some nonzero w-ideal
I of D by Proposition 2.2(2) and (5).

Claim: I is w-flat over D. Recall that for any D-module N ,

TorD1 (I,N ⊗D R) ∼=TorR1 (I ⊗D R,N ⊗D R)

as abelian groups [3, Proposition 4.1.1, Section VI]; so TorR1 (I ⊗D R,N ⊗D R)
is GV-torsion by Lemma 3.7, because I ⊗D R is w-flat over R. On the other
hand, N is a direct summand of N ⊗D R since D is a direct summand of R.
Therefore by Lemma 3.6, TorD1 (I,N) is GV-torsion. Thus again by Lemma 3.7,
I is w-flat over D.

Under the present hypotheses, by Claim, we have that I is of w-finite type
because D is a w-FF domain. Therefore by Proposition 2.2(6), J is of w-finite
type over R.

For “In this case” part of the statement, recall from [9] that a w-flat w-ideal
of D is of w-finite type if and only if it is w-invertible. Thus, a nonzero w-flat
w-ideal of R is w-invertible by Proposition 2.2(7). □

Corollary 3.8. Let K be a field, K[X] the polynomial ring over K,
K[X]/X2K[X] a quotient ring, x the image of X under the canonical map
K[X] → K[X]/X2K[X], and R = D + xK[x]. Then R is a w-FF ring if and
only if D is a w-FF domain.
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Proof. Clearly, R is a subring ofK[x] and xK[x] is aK-vector space. Also, R ∼=
D ∝ xK[x] since x2 = 0. Thus, the result follows directly from Theorem 3.4.

□

It is clear that a nonzero finitely generated ideal is of w-finite type; hence
Noetherian rings are w-FF rings. We next give examples of w-FF rings that
are not Noetherian.

Example 3.9. (1) Let Z be the ring of integers, Q the field of rational numbers,
n a positive integer, and R = Z ∝ (Q[X]/XnQ[X]). Then R is a w-FF ring by
Theorem 3.4, but since Q[X]/XnQ[X] is not a finitely generated Z-module, R
is not Noetherian [2, Theorem 4.8]

(2) Let D be a Krull domain of dimension ≥ 2, and R = D + xK[x] as in
Corollary 3.8. Then R is a w-FF ring by Corollary 3.8. However, note that
D ̸= K; so K is not a finitely generated D-module. Thus, R is not a Noetherian
ring.

Recall that a commutative ring is w-local if it is local and the unique maximal
ideal is a w-ideal. The following result is the w-operation analogue of [5, The-
orem 3.14].

Theorem 3.10. Let (A,m) be a w-local FF ring and R = A ∝ E the trivial
extension of A by an A-module E such that mE = 0. Then R is a w-FF ring.

Proof. Since (A,m) is w-local, by Corollary 2.3, (R,m ∝ E) is also w-local.
Since A is a w-local FF ring, A is a local FF ring. Then by [5, Theorem 3.14],
R is an FF ring. By Example 2.1(1), R is a w-FF ring. □

Corollary 3.11. Let (A,m) be a w-local Noetherian ring and R = A ∝ E the
trivial extension of A by an A-module E such that mE = 0. Then R is a w-FF
ring.

Proof. This follows from Theorem 3.10 because Notherian rings are w-FF rings.
□

Recall that if a commutative ring R is zero-dimensional, then R is a DW
ring [16, Corollary 6.3.13].

Example 3.12. Let D be a one-dimensional local domain with maximal ideal
M such that M2 ̸= M , A := D/M2, m := M/M2, and E := m. Then m is
a w-ideal of A, and hence A is a w-local FF ring (cf. [13, Lemma 2.1]). Note
that mE = 0. Thus, R = A ∝ E is a w-FF ring by Theorem 3.10. For a
concrete example, let D = Q+XC[[X]] (respectively, D = R+XC[[X]]) and
M = XC[[X]], where Q (respectively, R,C) is the field of rational numbers
(respectively, real numbers, complex numbers). Then R is a non-Noetherian
(respectively, Noetherian) w-FF ring.
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