
...

Bulletin of the

.

Iranian Mathematical Society

.

ISSN: 1017-060X (Print)

.

ISSN: 1735-8515 (Online)

.

Vol. 43 (2017), No. 7, pp. 2233–2258

.

Title:

.

Duality for the class of a multiobjective problem with
support functions under K-Gf-invexity assumptions

.

Author(s):

.

I.P. Debnath and S.K. Gupta

.

Published by the Iranian Mathematical Society

.

http://bims.ims.ir



Bull. Iranian Math. Soc.
Vol. 43 (2017), No. 7, pp. 2233–2258
Online ISSN: 1735-8515

DUALITY FOR THE CLASS OF A MULTIOBJECTIVE

PROBLEM WITH SUPPORT FUNCTIONS UNDER

K-Gf -INVEXITY ASSUMPTIONS

I.P. DEBNATH∗ AND S.K. GUPTA

(Communicated by Maziar Salahi)

Abstract. In this article, we formulate two dual models Wolfe and
Mond-Weir related to symmetric nondifferentiable multiobjective pro-
gramming problems. Furthermore, weak, strong and converse duality

results are established under K-Gf -invexity assumptions. Nontrivial ex-
amples have also been depicted to illustrate the theorems obtained in the
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known results appeared in the literature.
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1. Introduction

Duality theory is an important part of the optimization theory. Special, dual
problems of optimization, are applied to many types of optimization problems.
They are used for the proof of optimality of solutions, for designing and a
theoretical justification of optimization algorithms, for physical or economic
interpretation of received solutions. Quite often dual problems introduce new
meaning to modeled problems. For example, economic resources optimal allo-
cation dual problems are usually models of rational pricing.

It is a possible situation where the dual problem to a dual optimization
problem coincides with an initial optimization problem. This case is named
symmetric duality [21]. It is well known that the symmetric duality is applied
for linear programming problems. In general, this does not happen for nonlinear
programming problems. Symmetric duality was first introduced by Dorn [7]
and called the same to be symmetric if the dual of the dual can be recast as
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the primal problem. Outstandingly, many researchers working in this direction,
has developed the concept of symmetric duality.

Interestingly, multiobjective optimization has a vast number of applications,
for example in goal programming, risk programming, etc. Miettinen [15] and
Pardalos et al. [16] gave the conditions for optimality in the case of multi-
objective programming problems. Further, using the concept of higher-order
cone-preinvex and cone-pseudoinvex functions, Gupta and Jayswal [9] studied
the duality relations for a higher-order symmetric Mond-Weir type multiobjec-
tive problem over cones, which therefore extends some of the results in [8, 14].
Introducing the concept of higher order strictly and strongly K-pseudoinvexity,
recently, Suneja and Louhan [19] discussed recent developments in nondifferen-
tiable multiobjective optimization under higher order K-invexity. Agarwal et
al. [1] have given some corrective measures in the work of Chen [5]. Gupta et
al. [10] constructed a pair of higher-order Wolfe type symmetric dual programs
for nondifferentiable multiobjective programming problems over cones under
(F, α, ρ, d)-convexity assumptions. Motivated by various concepts of general-
ized convexity, Jayswal and Kummari [11] studied higher order duality for mul-
tiobjective programming problem under (ϕ, ρ)-invexity assumptions. Recently,
Jayswal and Kummari [12] established necessary and sufficient optimality con-
ditions for a nondifferentiable minimax semi-infinite programming problems in
complex spaces under invexity assumptions. Considering an improved defini-
tion of generalized type I univex function, Soleimani-damaneh [17] addressed
the optimality and duality of multiobjective optimization problems.

Very recently, Dehui and Xiaoling [6] have established necessary and
sufficient optimality conditions for a multiobjective programming problem
with support functions and hence derived the duality theorems for general
Mond-Weir type dual problem under (G,C, ρ)-convexity assumptions. Jiao [13]
introduced new concepts of nonsmooth K-α-dI -invex and generalized type I
univex functions over cones using Clarke’s generalized directional derivative
and dI -invexity for a nonsmooth vector optimization problem with cone
constraints. Further, the author has also established sufficient optimality
conditions and Mond-Weir type duality results under K-α-dI -invexity and
type I cone-univexity assumptions. In recent past, several definitions such
as, nonsmooth univex, nonsmooth quasiunivex and nonsmooth pseudoinvex
functions have been introduced by Xianjun [20]. Introducing these new con-
cepts, sufficient optimality conditions for a nonsmooth multiobjective problem
have been derived and then weak and strong duality results are established
for a Mond-Weir type multiojective dual programs. Recently, Antczak [3] has
established the saddle point criteria and Wolfe duality theorems for a class of
nondifferentiable vector optimization problems.
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In this article, we consider a concept of K-Gf -invexity and formulate Wolfe
and Mond-Weir type symmetric dual models related to nondifferentiable mul-
tiobjective programming problems. Various nontrivial examples which shows
the existence of K-Gf -invex and K-Gf -incave functions have been illustrated.
Considering the Wolfe and Mond-Weir type symmetric primal-dual models,
appropriate duality results have been established. Further, several examples
verifying the weak duality results for both the Wolfe and Mond-Weir type
primal-dual pairs have also been discussed in the paper.

2. Notations and preliminaries

Throughout this article, let Rn denotes n-dimensional Euclidean space and
Rn

+ be its non-negative orthant. Consider the following multiobjective pro-
gramming problem:

(P) K −minimize f(x)

subject to x ∈ X0 = {x ∈ S : −g(x) ∈ C},
where S ⊂ Rn be open, f : S → Rk, g : S → Rm, K and C are closed convex
pointed cones with nonempty interiors in Rk and Rm, respectively.

In this section, we provide some definitions that will follow-up throughout
the manuscript.

Definition 2.1 ([10]). The positive polar cone C∗ of C is defined as

C∗ = {z ∈ Rm : xT z ≧ 0, for all x ∈ C}.

Definition 2.2 ([10]). A point x̄ ∈ X0 is said to be an efficient solution of a
multiobjective programming problem (P) if there exists no other x ∈ X0 such
that

f(x̄)− f(x) ∈ K\{0}.

Let C1 ⊆ Rn and C2 ⊆ Rm be closed convex cones with non-empty interiors
and S1 and S2 be non-empty open sets in Rn and Rm, respectively such that
C1 × C2 ⊆ S1 × S2. Suppose f = (f1, f2, . . . , fk) : S1 × S2 → Rk be a vector-
valued differentiable function.

Definition 2.3. The function f is said to be K-invex at u ∈ S1 with respect
to η : S1 × S2 → Rn if for all x ∈ S1 and for fixed v ∈ S2, we have {f1(x, v)−
f1(u, v)− ηT (x, u)∇f1(u, v), . . . , fk(x, v)− fk(u, v)− ηT (x, u)∇fk(u, v)} ∈ K.

Now, we generalize the definition of a real-valued G-invex function intro-
duced by Antczak [2] to the vectorial case.

Definition 2.4 ([2]). The function f is said to be K −Gf -invex (or, K −G-
invex) at u ∈ S1 (with respect to η) if there exists a differentiable vector-
valued function Gf = (Gf1 , . . . , Gfk) : R → Rk such that any of its component
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Gfi : Ifi(S1 × S2) → R, where Ifi(S1 × S2), i = 1, 2, . . . , k, is the range of
fi, is a strictly increasing function on its domain and η : S1 × S2 → Rn is a
vector-valued function such that, for all x ∈ S1 for fixed v ∈ S2

{Gf1(f1(x, v))−Gf1(f1(u, v))− ηT (x, u)(G′
f1(f1(u, v))∇f1(u, v)), . . . ,

Gfk(fk(x, v))−Gfk(fk(u, v))− ηT (x, u)(G′
fk
(fk(u, v))∇fk(u, v))} ∈ K.

We will now show the existence of the above definition by giving an example.

Example 2.5. Let k = 2, n = 1, S1 = S2 = R+, C1 = C2 = R+ and K =
{(x, y) ∈ R2 : y ≧ 0, x ≦ y}. Let also f : S1×S2 → R2, Gfi : Ifi → R (i = 1, 2)
and η : S1 × S2 → R be defined as:

f(x, y) = {f1(x, y), f2(x, y)},

where

f1(x, y) = ey, f2(x, y) = xey, Gf1(t) = t, Gf2(t) = t2

and η(x, u) = x− u.

Next, we will show that the function defined above is K − Gf -invex at
u = 0. Applying the definition of K −Gf -invex at u = 0, we have

{
Gf1(f1(x, v))−Gf1(f1(u, v))− ηT (x, u)(G′

f1(f1(u, v))∇xf1(u, v)),

Gf2(f2(x, v))−Gf2(f2(u, v))− ηT (x, u)(G′
f2(f2(u, v))∇xf2(u, v))

}
= (0, x2e2v) ∈ K

Hence, f = (f1, f2) is K−Gf -invex function at u = 0 in S1 with respect to η.

Definition 2.5. The function f is said to be K−Gf -incave (or, K−G-incave)
at u ∈ S1 (with respect to ξ) if there exists a differentiable vector-valued
function Gf = (Gf1 , . . . , Gfk) : R → Rk such that any of its component
Gfi : Ifi(S1 × S2) → R, where Ifi(S1 × S2), i = 1, 2, . . . , k, is the range of fi,
is a strictly increasing function on its domain and a vector-valued function
ξ : S1 × S2 → Rn such that, for all x ∈ S1 and for fixed v ∈ S2,

{Gf1(f1(x, v))−Gf1(f1(u, v))− ξT (x, u)(G′
f1
(f1(u, v))∇f1(u, v)), . . . ,

Gfk(fk(x, v))− Gfk(fk(u, v))− ξT (x, u)(G′
fk
(fk(u, v))∇fk(u, v))} ∈ −K.

Example 2.6. Let k = 2, n = 1, S1 = S2 = R, C1 = C2 = R and
K = {(x, y) ∈ R2 : y ≧ 0, 2x ≦ 3y}, then −K = {(x, y) ∈ R2 : 2x ≧ 3y, y ≦ 0}.

Let f(x, y) = {f1(x, y), f2(x, y)}, where f1(x, y) = x2 sin2 y, f2(x, y) = y2.
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Suppose Gf1(t) = t, Gf2(t) = t2 and η(x, u) = xu, where
f : S1 × S2 → R2, Gfi : Ifi → R (i = 1, 2) and η : S1 × S2 → R.

Now, at u = 0 ∈ S1, for all x ∈ S1 and for fixed v ∈ S2, we have,{
Gf1(f1(x, v))−Gf1(f1(u, v))− ηT (x, u)(G′

f1(f1(u, v))∇xf1(u, v)),

Gf2(f2(x, v))−Gf2(f2(u, v))− ηT (x, u)(G′
f2(f2(u, v))∇xf2(u, v))

}
= (x2 sin2 v, 0) ∈ −K

Hence, f = (f1, f2) is K − Gf -incave function at u = 0 in S1 with respect
to η.

Definition 2.7 ([10]). Let D be a compact convex set in Rn. The support
function of D is defined by

S(x|D) = max{xT y : y ∈ D}.
The subdifferentiable of S(x|D) is given by

∂S(x|D) = {z ∈ D : zTx = S(x|D)}.
For any set S ⊂ Rn, the normal cone to S at a point x ∈ S is defined by

NS(x) = {y ∈ Rn : yT (z − x) ≦ 0 for all z ∈ S}.

3. Duality model I

Consider the following pair of Mond-Weir type nondifferentiable multiobjec-
tive symmetric dual programs:

Primal Problem (MP)

K-minimize

F = {Gf1(f1(x, y)) + S(x|D1)− yT z1, . . . , Gfk(fk(x, y)) + S(x|Dk)− yT zk}
subject to

(3.1) −
[ k∑

i=1

λi(G
′
fi(fi(x, y))∇yfi(x, y)− zi)

]
∈ C∗

2 ,

(3.2) yT
[ k∑

i=1

λi(G
′
fi(fi(x, y))∇yfi(x, y)− zi)

]
≧ 0,

(3.3) λ ∈ intK∗, x ∈ C1, zi ∈ Ei, i = 1, 2, . . . , k.
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Dual Problem (MD)
K-maximize

G = {Gf1(f1(u, v))− S(v|E1) + uTw1, . . . , Gfk(fk(u, v))− S(v|Ek) + uTwk}

subject to

(3.4)
[ k∑

i=1

λi(G
′
fi(fi(u, v))∇xfi(u, v) + wi)

]
∈ C∗

1 ,

(3.5) uT
[ k∑

i=1

λi(G
′
fi(fi(u, v))∇xfi(u, v) + wi)

]
≦ 0,

(3.6) λ ∈ intK∗, v ∈ C2, wi ∈ Di, i = 1, 2, . . . , k,

where for i = 1, 2, . . . , k,

(i) K∗, C∗
1 and C∗

2 are the positive polar cones of K, C1 and C2, respec-
tively,

(ii) fi : S1 × S2 → R, Gf = (Gf1 , . . . , Gfk) : R → Rk such that any of its
component Gfi : Ifi(S1 × S2) → R is a strictly increasing function on
its domain are differentiable functions,

(iii) Di and Ei are compact convex sets in Rn and Rm, respectively, and
(iv) S(x|Di) and S(v|Ei) are the support functions of Di and Ei, respec-

tively.

Remark 3.1. If Di = {0}, Ei = {0}, fi = f , i = 1, 2, . . . , k, and Gf (t) = t, then
the model (MP) and (MD) reduce to the models discussed in Khurana [14].

Next, we will prove weak, strong and converse duality results between (MP)
and (MD).

Theorem 3.2 (Weak duality). Let (x, y, λ, z1, z2, . . . , zk) and (u, v, λ, w1, w2,
. . . , wk) be feasible for (MP) and (MD), respectively. If the following conditions
hold:

(I) {(f1(·, v)), . . . , (fk(·, v))} and {(.)Tw1, . . . , (·)Twk} are K − Gf -invex
and K-invex, respectively at u with respect to η1 for fixed v,

(II) {(f1(x, ·)), . . . , (fk(x, ·))} and {(.)T z1, . . . , (.)T zk} are K − Gf -incave
and K-invex, respectively at y with respect to η2 for fixed x,

(III) η1(x, u) + u ∈ C1 and η2(v, y) + y ∈ C2,

then {
Gf1(f1(u, v))− S(v|E1) + uTw1, . . . , Gfk(fk(u, v))− S(v|Ek) + uTwk

}
(3.7)

−
{
Gf1(f1(x, y)) + S(x|D1)− yT z1, . . . , Gfk(fk(x, y)) + S(x|Dk)− yT zk

}
̸∈ K\{0}
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Proof. The proof is given by contradiction. Let us suppose that (3.7) does not
hold. Then{
Gf1(f1(u, v))− S(v|E1) + uTw1, . . . , Gfk(fk(u, v))− S(v|Ek) + uTwk

}
−

{
Gf1(f1(x, y)) + S(x|D1)− yT z1, . . . , Gfk(fk(x, y)) + S(x|Dk)− yT zk

}
∈ K\{0}.

Now, from the fact that λ ∈ intK∗, it follows that

(3.8)
k∑

i =1

λi

[
(Gfi(fi(x, y))+S(x|Di)−yT zi)− (Gfi(fi(u, v))−S(v|Ei)+uTwi)

]
< 0.

Hypothesis (III) and (3.4) imply

[η1(x, u) + u]T
( k∑

i=1

λi(G
′
fi(fi(u, v))∇xfi(u, v) + wi)

)
≧ 0.

The above inequality together with (3.5) yield

(3.9) η1(x, u)
T
( k∑

i=1

λi(G
′
fi(fi(u, v))∇xfi(u, v) + wi)

)
≧ 0.

Since {(f1(·, v)), . . . , (fk(·, v))} is K − Gf -invex at u with respect to η1 for
fixed v, therefore we have{
Gf1(f1(x, v))−Gf1(f1(u, v))− ηT1 (x, u)(G

′
f1
(f1(u, v))∇xf1(u, v)), . . . ,

Gfk(fk(x, v)) −Gfk(fk(u, v))− ηT1 (x, u)(G
′
fk
(fk(u, v))∇xfk(u, v))

}
∈ K,

which using λ ∈ intK∗ yields

(3.10)
k∑

i =1

λi(Gfi(fi(x, v))−Gfi(fi(u, v))) ≧ ηT1 (x, u)
k∑

i =1

λi(G
′
fi(fi(u, v))∇xfi(u, v)).

Also, by hypothesis (I), we obtain

{xTw1 − uTw1 − ηT1 (x, u)w1, . . . , x
Twk − uTwk − ηT1 (x, u)wk} ∈ K.

It follows from λ ∈ intK∗ that

(3.11)
k∑

i=1

λi(x
Twi − uTwi) ≧ ηT1 (x, u)

k∑
i=1

λiwi.
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Adding (3.10) and (3.11), we get

k∑
i=1

λi(Gfi(fi(x, v)) + xTwi −Gfi(fi(u, v))− uTwi)

≧ ηT1 (x, u)
k∑

i=1

λi(G
′
fi(fi(u, v))∇xfi(u, v) + wi).

Further, it follows from (3.9) that

(3.12)
k∑

i=1

λi(Gfi(fi(x, v)) + xTwi −Gfi(fi(u, v))− uTwi) ≧ 0.

Hypothesis (III) and (3.1) yield

[η2(v, y) + y]T
k∑

i=1

λi(G
′
fi(fi(x, y))∇yfi(x, y)− zi) ≦ 0,

which together with (3.2) give

(3.13) ηT2 (v, y)

k∑
i=1

λi(G
′
fi(fi(x, y))∇yfi(x, y)− zi) ≦ 0.

Now, from hypothesis (II), we get

{Gf1(f1(x, v))−Gf1(f1(x, y))− ηT
2 (v, y)(G

′
f1(f1(x, y))∇y(f1(x, y)), . . . ,

Gfk(fk(x, v))−Gfk(fk(x, y))− ηT
2 (v, y)(G

′
fk(fk(x, y))∇y(fk(x, y)))} ∈ −K

and

(vT z1 − yT z1 − ηT2 (v, y)z1, . . . , v
T zk − yT zk − ηT2 (v, y)zk) ∈ K

It follows from λ ∈ intK∗ that

(3.14)
k∑

i =1

λi(Gfi(fi(x, v))−Gfi(fi(x, y)))−ηT2 (v, y)
k∑

i =1

λiG
′
fi(fi(x, y))∇yfi(x, y)≦ 0

and

(3.15)
k∑

i=1

λi(v
T zi − yT zi)− ηT2 (v, y)

k∑
i=1

λizi ≧ 0.

From (3.14) and (3.15), we get
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k∑
i=1

λi(Gfi(fi(x, y))− yT zi −Gfi(fi(x, v)) + vT zi)

≧ −ηT2 (v, y)

k∑
i=1

λi(G
′
fi(fi(x, y))∇yfi(x, y)− zi).

From (3.13), it follows that

(3.16)
k∑

i=1

λi(Gfi(fi(x, y))− yT zi −Gfi(fi(x, v)) + vT zi) ≧ 0.

Now, on adding (3.12) and (3.16), we obtain

k∑
i=1

λi(Gfi(fi(x, y))− yT zi + vT zi −Gfi(fi(u, v)) + xTwi − uTwi) ≧ 0.

Finally, using xTwi ≦ S(x|Di) and vT zi ≦ S(v|Ei), i = 1, 2, . . . , k, we get

k∑
i=1

λi

[
(Gfi(fi(x, y)) + S(x|Di)− yT zi)− (Gfi(fi(u, v))− S(v|Ei) + uTwi)

]
≧ 0,

which contradicts (3.8). This ends the proof of the theorem. □

Now, we illustrate the above weak duality theorem by the following example:

3.1. Numerical illustration. Let k = 2, n = m = 1. Let also S1 = S2 = R+,
C1 = C2 = R+ and

K = {(x, y) ∈ R2 : x ≧ 0,−x ≦ y ≦ x}.

Then C∗
1 = C∗

2 = R+ and K∗ = K and −K = {(x, y) ∈ R2 : x ≦ 0,−x ≧ y ≧
x}. Let f(x, y) = {f1(x, y), f2(x, y)}, f : S1 × S2 → R2, where,

f1(x, y) = − cos2 x− sin2 y and f2(x, y) = − sin2 y.

Suppose Gf1(t) = t, Gf2(t) = t2, where Gfi : Ifi → R (i = 1, 2), and the
functions η1, η2 : S1 × S2 → R be given by η1(x, u) = x, η2(v, y) = v. Let

D1 = [0, 1], D2 = {0}, E1 = {0} and E2 = [0, 1]. Then S(x|D1) =
x+ |x|

2
,

S(x|D2) = S(v|E1) = 0 and S(v|E2) =
v + |v|

2
. Under these settings, the

primal (MP) and dual (MD) reduce to the following problems (EMP) and
(EMD):
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Primal Problem (EMP). minimize F (x, y, λ, z1, z2) =
{
− cos2 x− sin2 y+

x+ |x|
2

, sin4 y − yT z2

}
subject to [

− 2λ1 sin y cos y + λ2(4 sin
3 y cos y − z2)

]
≦ 0,

yT
[
− 2λ1 sin y cos y + λ2(4 sin

3 y cos y − z2)
]
≧ 0,

|λ2|< λ1, x ≧ 0, z2 ∈ [0, 1].

Dual Problem (EMD). maximize G(u, v, λ, w1, w2) =
{
− cos2 u− sin2 v+

uTw1, sin
4 v − v + |v|

2

}
subject to

λ1(2 sinu cosu+ w1) ≧ 0,

uTλ1(2 sinu cosu+ w1) ≦ 0,

|λ2|< λ1, v ≧ 0, w1 ∈ [0, 1].

Now, first we shall show that for the primal (EMP) and dual (EMD), the
hypotheses of Theorem 3.2 hold.

(A.1) {(f1(·, v)), (f2(·, v))} is K − Gf -invex at u = 0 with respect to η1
for fixed v for all x ∈ S1, since{

Gf1(f1(x, v))−Gf1(f1(u, v))− ηT1 (x, u)(G
′
f1(f1(u, v))∇xf1(u, v)),

Gf2(f2(x, v))−Gf2(f2(u, v))− ηT1 (x, u)(G
′
f2(f2(u, v))∇xf2(u, v))

}
= (1− cos2 x, 0) ∈ K

and {(.)Tw1, (.)
Tw2} is K-invex at u = 0 with respect to η1 for fixed v for all

x ∈ S1, since

{xTw1 − uTw1 − ηT1 (x, u)w1, x
Tw2 − uTw2 − ηT1 (x, u)w2} = (0, 0) ∈ K,

(A.2) {(f1(x, .)), (f2(x, .))} is K−Gf -incave at y = 0 with respect to η2 for
fixed x for all v ∈ S2, since{

Gf1(f1(x, v))−Gf1(f1(x, y))− ηT2 (v, y)(G
′
f1(f1(x, y))∇yf1(x, y)),

Gf2(f2(x, v))−Gf2(f2(x, y))− ηT2 (v, y)(G
′
f2(f2(x, y))∇yf2(x, y))

}
= (− sin2 v, sin4 v) ∈ −K,
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and {(.)T z1, (.)T z2} is K-invex at y = 0 with respect to η2 for fixed x for all
v ∈ S2, since

{vT z1 − yT z1 − ηT2 (v, y)z1, v
T z2 − yT z2 − ηT2 (v, y)z2} = (0, 0) ∈ K

(A.3) η1(x, u) + u = x + u ∈ C1, ∀ x, u ∈ S1, and η2(v, y) + y = v + y ∈
C2, ∀ v, y ∈ S2.

Any point (x, 0, λ1, λ2, 0, z2) such that x ≧ 0, |λ2|< λ1 and 0 ≦ z2 ≦ 1 are
feasible to (EMP). Also, the points (0, v, λ1, λ2, w1, 0) such that v ≧ 0, |λ2|< λ1

and 0 ≦ w1 ≦ 1 satisfy the problem (EMD). Now, at these feasible points,

G(u, v, λ, w1, w2)− F (x, y, λ, z1, z2)

= (− 1− sin2 v, sin4 v − v + |v|
2

)− (− cos2 x+
x+ |x|

2
, 0)

= ( cos2 x− 1− sin2 v − x+ |x|
2

, sin4 v − v + |v|
2

)

= ( cos2 x− 1− sin2 v − x, sin4 v − v)

̸∈ K\{0} (since cos2 x− 1− sin2 v − x ≦ 0, ∀ x, v ≧ 0).

In particular, the points (x, y, λ1, λ2, z1, z2) = (π6 , 0, 1,
1
2 , 0,

1
4 ) and

(u, v, λ1, λ2, w1, w2) = (0, π
4 , 1,

1
2 ,

1
2 , 0) are feasible for the problems (EMP) and

(EMD), respectively and also

G(u, v, λ, w1, w2)− F (x, y, λ, z1, z2) = (
−2π − 9

12
,
1− π

4
) ̸∈ K\{0}

Hence verified. □

Theorem 3.3 (Strong duality). Let (x̄, ȳ, λ̄, z̄1, z̄2, . . . , z̄k) be an efficient so-
lution of (MP). Fix λ = λ̄ in (MD). Let

(I) {G′
fi
(fi(x̄, ȳ))∇yfi(x̄, ȳ)− z̄i}ki=1 be linearly independent;

(II) the matrix
k∑

i=1

λ̄i{G′′
fi(fi(x̄, ȳ))∇yfi(x̄, ȳ)∇yfi(x̄, ȳ)

T + G′
fi(fi(x̄, ȳ))∇yyfi(x̄, ȳ)}

be positive or negative definite;
(III) Rk

+ ⊆ K.

Then there exists w̄i ∈ Di, i = 1, 2, . . . , k, such that (x̄, ȳ, λ̄, w̄1, w̄2, . . . , w̄k) is
a feasible solution for (MD) and the objective values of (MD) and (MD) are
equal. Moreover, if the hypotheses in Theorem 3.2 hold for all feasible solutions
of (MD) and (MD), then (x̄, ȳ, λ̄, w̄1, w̄2, . . . , w̄k) is an efficient solution for
(MD).

Proof. Given that (x̄, ȳ, λ̄, z̄1, z̄2, . . . , z̄k) is an efficient solution of (MP). Fol-
lowing the necessary optimality conditions, given by Fritz John [4], there exist
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α ∈ K∗, β ∈ C2 and µ ∈ R+ such that

(3.17)

[ k∑
i =1

αi(G
′
fi(fi(x̄, ȳ))∇xfi(x̄, ȳ) + ξi)

+ (β − µȳ)T
k∑

i =1

λ̄i(G
′′
fi(fi(x̄, ȳ))∇xfi(x̄, ȳ)∇yfi(x̄, ȳ)

T

+G′
fi(fi(x̄, ȳ))∇xyfi(x̄, ȳ))

]T
(x− x̄) ≧ 0 for all x ∈ C1,

(3.18)

k∑
i =1

(αi − µλ̄i)(G
′
fi(fi(x̄, ȳ))∇yfi(x̄, ȳ)− z̄i)

+ (β − µȳ)T
[ k∑
i =1

λ̄i(G
′′
fi(fi(x̄, ȳ))∇yfi(x̄, ȳ)∇yfi(x̄, ȳ)

T

+G′
fi(fi(x̄, ȳ))∇yyfi(x̄, ȳ))

]
= 0,

(3.19) (β − µȳ)T
[
G′

fi(fi(x̄, ȳ))∇yfi(x̄, ȳ)− z̄i

]
(λi − λ̄i) ≧ 0

for all λ ∈ intK∗, i = 1, 2, . . . , k,

(3.20) βT
k∑

i=1

λ̄i(G
′
fi(fi(x̄, ȳ))∇yfi(x̄, ȳ)− z̄i) = 0,

µȳT
k∑

i=1

λ̄i(G
′
fi(fi(x̄, ȳ))∇yfi(x̄, ȳ)− z̄i) = 0,

(3.21) αiȳ + λ̄iβ − λ̄iµȳ ∈ NEi(z̄i), i = 1, 2, . . . , k,

ξTi x̄ = S(x̄|Di), i = 1, 2, . . . , k,

(3.22) ξi ∈ Di, i = 1, 2, . . . , k, (α, β, µ) ̸= 0.

Inequality (3.19) can be rewritten as

(3.23) (β − µȳ)T
[
G′

fi(fi(x̄, ȳ))∇yfi(x̄, ȳ)− z̄i

]
= 0, i = 1, 2, . . . , k.

Post-multiplying the inequality (3.18) by (β − µȳ) and using (3.23), we have

(3.24)
(β − µȳ)T

[ k∑
i =1

λ̄i(G
′′
fi(fi(x̄, ȳ))∇yfi(x̄, ȳ)(∇yfi(x̄, ȳ))

T

+G′
fi(fi(x̄, ȳ))∇yyfi(x̄, ȳ))

]
(β − µȳ) = 0.
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Using hypothesis (II) in (3.24), we get

(3.25) β = µȳ.

Substituting β = µȳ in (3.18), we have

k∑
i=1

(αi − µλ̄i)(G
′
fi(fi(x̄, ȳ))∇yfi(x̄, ȳ)− z̄i) = 0.

From hypothesis (I), we obtain

(3.26) αi = µλ̄i, i = 1, 2, . . . , k.

We now claim that αi ̸= 0 for all i = 1, 2, . . . , k. If possible, αt0 = 0 for some
i = t0, then µλ̄t0 = 0. Since λ̄ ∈ intK∗ ⊆ intRk

+ (by hypothesis (III)), therefore

λ̄ > 0 and thus µ = 0. This together with (3.25) yields β = 0. Therefore,
(α, β, µ) = 0, a contradiction to (3.22). Hence αi ̸= 0, for all i. Also, from the
fact that α ∈ K∗ and K∗ ⊆ Rk

+, it follows that αi > 0, i = 1, 2, . . . , k. Hence,
the relation (3.26) implies µ > 0. Now, using (3.25) in (3.17), we obtain

(3.27)
[ k∑

i=1

αi(G
′
fi(fi(x̄, ȳ))∇xfi(x̄, ȳ) + ξi)

]T
(x− x̄) ≧ 0, for all x ∈ C1.

Substituting (3.26) in (3.27) and the fact that µ > 0 give

(3.28)
[ k∑

i=1

λ̄i(G
′
fi(fi(x̄, ȳ))∇xfi(x̄, ȳ) + ξi)

]T
(x− x̄) ≧ 0, for all x ∈ C1.

Let x ∈ C1. Then x̄+x ∈ C1 as C1 is a closed convex cone and so from (3.28),
it yields

xT
k∑

i=1

λ̄i(G
′
fi(fi(x̄, ȳ))∇xfi(x̄, ȳ) + ξi) ≧ 0,

which implies
k∑

i=1

λ̄i(G
′
fi(fi(x̄, ȳ))∇xfi(x̄, ȳ) + ξi) ∈ C∗

1 .

Now, taking x = 0 and x = 2x̄ simultaneously in (3.28), we have

(3.29) x̄T
k∑

i=1

λ̄i(G
′
fi(fi(x̄, ȳ))∇xfi(x̄, ȳ) + ξi) = 0.

Also, from the expression (3.25), we get ȳ =
β

µ
∈ C2 as µ > 0. Again, setting

ξi = w̄i, i = 1, 2, . . . , k, (x̄, ȳ, λ̄, w̄1, w̄2, . . . , w̄k) satisfies all the constraints of
the dual problem and hence (x̄, ȳ, λ̄, w̄1, w̄2, . . . , w̄k) is a feasible solution of the
(MD). Further, the expressions (3.21), (3.25) and αi > 0, yield

ȳ ∈ NEi(z̄i).
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Again since Ei, i = 1, 2, . . . , k are compact convex sets in Rn, ȳT z̄i = S(ȳ|Ei).
Rewriting the expression (3.29), we obtain

(3.30) x̄T
k∑

i=1

λ̄i(G
′
fi(fi(x̄, ȳ))∇xfi(x̄, ȳ)) = −x̄T ξi = −S(x̄|Di).

Further, from (3.20), (3.25) and µ > 0, we have

ȳT
k∑

i=1

λ̄i(G
′
fi(fi(x̄, ȳ))∇yfi(x̄, ȳ)− z̄i) = 0,

which gives

(3.31) ȳT
k∑

i=1

λ̄i(G
′
fi(fi(x̄, ȳ))∇yfi(x̄, ȳ)) = ȳT z̄i = S(ȳ|Ei).

Therefore, (3.30) and (3.31) together give{
Gf1(f1(x̄, ȳ)) + S(x̄|D1)− ȳT z̄1, . . . , Gfk(fk(x̄, ȳ)) + S(x̄|Dk)− ȳT z̄k

}
=

{
Gf1(f1(x̄, ȳ))− S(ȳ|E1) + x̄T ξ1, . . . , Gfk(fk(x̄, ȳ))− S(ȳ|Ek) + x̄T ξk

}
,

that is, the two objective values coincide.
Next, we will show that (x̄, ȳ, λ̄, w̄1, w̄2, . . . , w̄k) is an efficient solution of

(MD). On the contrary, assume that (x̄, ȳ, λ̄, w̄1, w̄2, . . . , w̄k) is not an efficient
solution of (MD). Then there exists (u∗, v∗, λ̄, w∗

1 , w
∗
2 , . . . , w

∗
k), a feasible solu-

tion for (MP) such that{
Gf1(f1(u

∗, v∗))− S(v∗|E1) + u∗Tw∗
1 , . . . , Gfk(fk(u

∗, v∗))− S(v∗|Ek) + u∗Tw∗
k

}
−

{
Gf1(f1(x̄, ȳ))− S(ȳ|E1) + x̄T w̄1, . . . , Gfk(fk(x̄, ȳ))− S(ȳ|Ek) + x̄T w̄k

}
∈ K\{0}

Finally, using x̄T w̄i = S(x̄|Di) and ȳT z̄i = S(ȳ|Ei), i = 1, 2, . . . , k, in the
above expression, we have{

Gf1(f1(u
∗, v∗))− S(v∗|E1) + u∗Tw∗

1 , . . . , Gfk(fk(u
∗, v∗))− S(v∗|Ek) + u∗Tw∗

k

}
−

{
Gf1(f1(x̄, ȳ)) + S(x̄|D1)− ȳT z̄1, . . . , Gfk(fk(x̄, ȳ)) + S(x̄|Dk)− ȳT z̄k

}
∈ K\{0}

which contradicts Theorem 3.2. Hence (x̄, ȳ, λ̄, w̄1, w̄2, . . . , w̄k) is the efficient
solution of (MD). This ends the proof. □

Theorem 3.4 (Converse duality). Let (ū, v̄, λ̄, w̄1, w̄2, . . . , w̄k) be an efficient
solution of (MD). Fix λ = λ̄ in (MP). Let

(I) {G′
fi
(fi(ū, v̄))∇xfi(ū, v̄)− w̄i}ki=1 be linearly independent;
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(II) the matrix
k∑

i=1

λ̄i{G′′
fi(fi(ū, v̄))∇xfi(ū, v̄)(∇xfi(ū, v̄))

T +

G′
fi(fi(ū, v̄))∇xxfi(ū, v̄)} be positive or negative definite;

(III) Rk
+ ⊆ K.

Then there exists z̄i ∈ Ei, i = 1, 2, . . . , k, such that (ū, v̄, λ̄, z̄1, z̄2, . . . , z̄k) is
a feasible solution for (MP) and the objective values of (MP) and (MD) are
equal. Moreover, if the hypotheses in Theorem 3.3 hold for all feasible solutions
of (MP) and (MD), then (ū, v̄, λ̄, z̄1, z̄2, . . . , z̄k) is an efficient solution for (MP).

Proof. The proof follows on the lines of Theorem 3.3. □

4. Duality model II

Consider the following pair of Wolfe type nondifferentiable multiobjective
symmetric dual programs:

Primal problem (WP). K-minimize F = {Gf1(f1(x, y)) + S(x|D)e1 −

yT
k∑

i=1

λi(G
′
fi(fi(x, y))∇yfi(x, y))e1, . . . , Gfk(fk(x, y)) + S(x|D)ek−

yT
k∑

i=1

λi(G
′
fi(fi(x, y))∇yfi(x, y))ek}

subject to

(4.1) −
[ k∑

i=1

λi(G
′
fi(fi(x, y))∇yfi(x, y))− z

]
∈ C∗

2 ,

(4.2) λT e = 1,

(4.3) λ ∈ intK∗, x ∈ C1, z ∈ E.

Dual Problem (WD). K-maximize G = {Gf1(f1(u, v))− S(v|E)e1

− uT

k∑
i=1

λi(G
′
fi(fi(u, v))∇xfi(u, v))e1, . . . , Gfk(fk(u, v))− S(v|E)ek

−uT
k∑

i=1

λi(G
′
fi(fi(u, v))∇xfi(u, v))ek}

subject to

(4.4)
[ k∑
i =1

λi(G
′
fi(fi(u, v))∇xfi(u, v)) + w

]
∈ C∗

1 ,
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λT e = 1,

λ ∈ intK∗, v ∈ C2, w ∈ D,

where e = (e1, e2, . . . , ek) ∈ intK is fixed and for i = 1, 2, . . . , k,

(i) K∗, C∗
1 and C∗

2 are the positive polar cones of K, C1 and C2, respec-
tively,

(ii) fi : S1 × S2 → R, Gf = (Gf1 , . . . , Gfk) : R → Rk such that any of its
component Gfi : Ifi(S1 × S2) → R is a strictly increasing function on
its domain are differentiable functions,

(iii) D and E are compact convex sets in Rn and Rm, respectively, and
(iv) S(x|D) and S(v|E) are the support functions of D and E, respectively.

Remark 4.1. If D = {0}, E = {0}, fi = f , i = 1, 2, . . . , k, and Gf (t) = t, then
(WP) and (WD) become the models discussed in Suneja et al. [18].

Next, we will prove weak, strong and converse duality results between (WP)
and (WD).

Theorem 4.2 (Weak duality). Let (x, y, λ, z) and (u, v, λ, w) be feasible for
(WP) and (WP), respectively. If the following conditions hold:

(I) {(f1(·, v)), . . . , (fk(·, v))} and {(·)Twe1, . . . , (.)Twek} are K−Gf -invex
and K-invex at u with respect to η1 for fixed v,

(II) {(f1(x, .)), . . . , (fk(x, .))} and {(.)T ze1, . . . , (.)T zek} K − Gf -incave
and K-invex at y with respect to η2 for fixed x and

(III) η1(x, u) + u ∈ C1 and η2(v, y) + y ∈ C2,

then

{
Gf1(f1(u, v))− S(v|E)e1 − uT

k∑
i=1

λi(G
′
fi(fi(u, v))∇xfi(u, v))e1, . . . ,(4.5)

Gfk (fk(u, v))− S(v|E)ek − uT
k∑

i=1

λi(G
′
fi(fi(u, v))∇xfi(u, v))ek

}
−
{
Gf1(f1(x, y)) + S(x|D)e1 − yT

k∑
i=1

λi(G
′
fi(fi(x, y))∇yfi(x, y))e1, . . . ,

Gfk (fk(x, y)) + S(x|D)ek − yT
k∑

i=1

λi(G
′
fi(fi(x, y))∇yfi(x, y))ek

}
̸∈ K\{0}.
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Proof. Contrary to (4.5), suppose that{
Gf1(f1(u, v))− S(v|E)e1 − uT

k∑
i=1

λi(G
′
fi(fi(u, v))∇xfi(u, v))e1, . . . ,

Gfk(fk(u, v))− S(v|E)ek − uT
k∑

i=1

λi(G
′
fi(fi(u, v))∇xfi(u, v))ek

}
−

{
Gf1(f1(x, y)) + S(x|D)e1 − yT

k∑
i=1

λi(G
′
fi(fi(x, y))∇yfi(x, y))e1, . . . ,

Gfk(fk(x, y)) + S(x|D)ek − yT
k∑

i=1

λi(G
′
fi(fi(x, y))∇yfi(x, y))ek

}
∈ K\{0}.

Now, (4.2), (4.3) and the above expression imply

(4.6)[ k∑
i =1

λiGfi(fi(x, y)) + S(x|D)− yT
k∑

i=1

λi(G
′
fi(fi(x, y))∇yfi(x, y))

]
−
[ k∑

i=1

λiGfi(fi(u, v))− S(v|E)− uT
k∑

i=1

λi(G
′
fi(fi(x, y))∇yfi(x, y))

]
< 0.

Since {(f1(·, v)), . . . , (fk(·, v))} is K−Gf -invex at u with respect to η1 for fixed
v, we have{

Gf1(f1(x, v))−Gf1(f1(u, v))− ηT1 (x, u)(G
′
f1(f1(u, v))∇xf1(u, v)), . . . ,

Gfk(fk(x, v))−Gfk(fk(u, v))− ηT1 (x, u)(G
′
fk
(fk(u, v))∇xfk(u, v))

}
∈ K.

Using λ ∈ intK∗, it follows that

(4.7)

k∑
i =1

λi

[
Gfi(fi(x, v))−Gfi(fi(u, v))

]
− ηT1 (x, u)

[ k∑
i =1

λi(G
′
fi(fi(u, v))∇xfi(u, v))

]
≧ 0.

Since {(.)Twe1, . . . , (.)Twek} is K-invex at u with respect to η1 for fixed v, we
have{
xTwe1 − uTwe1 − ηT1 (x, u)we1, . . . , x

Twek − uTwek − ηT1 (x, u)wek

}
∈ K.

Using (4.2) and the fact that λ ∈ intK∗, we get

(4.8) xTw − uTw ≧ ηT1 (x, u)w.
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Adding (4.7) and (4.8), we have

(4.9)

k∑
i =1

λi

[
Gfi(fi(x, v))−Gfi(fi(u, v))

]
+ xTw

− uTw ≧ ηT1 (x, u)
[ k∑
i =1

λi(G
′
fi(fi(u, v))∇xfi(u, v)) + w

]
.

Further, hypothesis (III) and (4.4) give

[η1(x, u) + u]T
[ k∑

i=1

λi(G
′
fi(fi(u, v))∇xfi(u, v)) + w

]
≧ 0,

which along with (4.9) yields

(4.10)

k∑
i =1

λi

[
Gfi(fi(x, v))−Gfi(fi(u, v))

]
+ xTw − uTw

+ uT
[ k∑
i =1

λi(G
′
fi(fi(u, v))∇xfi(u, v)) + w

]
≧ 0.

Similarly, from hypotheses (II), (III), constraints (4.1)-(4.2) and λ ∈ intK∗, we
get

(4.11)

k∑
i =1

λi

[
Gfi(fi(x, y))−Gfi(fi(x, v))

]
+ vT z − yT z

− yT
[ k∑
i =1

λi(G
′
fi(fi(x, y))∇yfi(x, y))− z

]
≧ 0.

Further, adding (4.10) and (4.11), we get{ k∑
i=1

λi(Gfi(fi(x, y)) + xTw − yT
k∑

i=1

λi

[
G′

fi(fi(x, y))∇yfi(x, y)
]}

−
{ k∑

i=1

λi(Gfi(fi(u, v))− vT z − uT
k∑

i=1

λi

[
G′

fi(fi(u, v))∇xfi(u, v)
]}

≧ 0.

Finally, using the fact that xTw ≦ S(x|D) and vT z ≦ S(v|E), it follows that{ k∑
i=1

λi(Gfi(fi(x, y)) + S(x|D)− yT
k∑

i=1

λi

[
G′

fi(fi(x, y))∇yfi(x, y)
]}

−
{ k∑

i=1

λi(Gfi(fi(u, v))− S(v|E)− uT
k∑

i=1

λi

[
G′

fi(fi(u, v))∇xfi(u, v)
]}

≧ 0,

which contradicts (4.6). Hence the result. □
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4.1. Numerical illustration. Let k = 2, n = m = 1, S1 = S2 = R+, C1 =
C2 = R+. Then C∗

1 = C∗
2 = R+. Let also f : S1 × S2 → R2, f(x, y) =

{f1(x, y), f2(x, y)}, where

f1(x, y) = cos2 y and f2(x, y) = sin2 x+ cos2 y.

Suppose G = (Gf1 , Gf2) : R → R2 be defined as:

Gf1(t) = t, Gf2(t) = 2t.

Consider (η1, η2) : S1 × S2 → R as:

η1(x, u) = x, η2(v, y) = v.

Let K = {(x, y) ∈ R2 : x ≧ 0, y ≧ −x}. Then −K = {(x, y) ∈ R2 : x ≦
0, y ≦ −x} and K∗ = {(x, y) ∈ R2

+ : x ≧ y}. Let (e1, e2) = (1, 1) ∈ intK. Let

D = [0, 1] and E = {0}. Then S(x|D) =
x+ |x|

2
and S(v|E) = 0.

Under the above defined expressions, the primal-dual pair (WP) and (WD)
reduce to the following problems (EWP) and (EWD):

Primal Problem (EWP). Minimize L(x, y, λ, z) =
{
cos2 y +

x+ |x|
2

+

yT (2λ1 sin y cos y + 4λ2 sin y cos y),

2(sin2 x+ cos2 y) +
x+ |x|

2
+ yT (2λ1 sin y cos y + 4λ2 sin y cos y)

}
,

subject to [
− 2λ1 sin y cos y − 4λ2 sin y cos y

]
≦ 0,

λ1 + λ2 = 1,

λ1 > 0, λ2 > 0, λ1 − λ2 > 0, x ≧ 0.

Dual Problem (EWD). Maximize M(u, v, λ, w) =
{
cos2 v −

uT (4λ2 sinu cosu), 2(sin
2 u+ cos2 v)− uT (4λ2 sinu cosu)

}
subject to

4λ2 sinu cosu+ w ≧ 0,

λ1 + λ2 = 1,

λ1 > 0, λ2 > 0, λ1 − λ2 > 0, v ≧ 0, w ∈ [0, 1].

First, we shall show that for the primal (EWP) and dual (EWD), the
hypotheses of Theorem 4.2 hold.
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(B.1) {(f1(·, v)), (f2(·, v))} is K − Gf -invex at u = 0 with respect to η1
for fixed v for all x ∈ S1, since{

Gf1(f1(x, v))−Gf1(f1(u, v))− ηT1 (x, u)(G
′
f1(f1(u, v))∇xf1(u, v)),

Gf2(f2(x, v))−Gf2(f2(u, v))− ηT1 (x, u)(G
′
f2(f2(u, v))∇xf2(u, v))

}
= (0, 2 sin2 x) ∈ K,

and {(.)Twe1, (.)Twe2} is K-invex at u = 0 with respect to η1 for fixed v for
all x ∈ S1, since
(xTw − uTw − ηT1 (x, u)w, x

Tw − uTw − ηT1 (x, u)w) = (0, 0) ∈ K.

(B.2) {(f1(x, .)), (f2(x, .))} is K − Gf -incave at y = 0 with respect to
η2 for fixed x for all v ∈ S2, since{

Gf1(f1(x, v))−Gf1(f1(x, y))− ηT
2 (v, y)(G

′
f1(f1(x, y))∇yf1(x, y)), Gf2(f2(x, v))

−Gf2(f2(x, y))− ηT
2 (v, y)(G

′
f2(f2(x, y))∇yf2(x, y))

}
= (cos2 v − 1, 2(cos2 v − 1)) ∈ −K,

and {(.)T ze1, (.)T ze2} is K-invex at y = 0 with respect to η2 for fixed x for all
v ∈ S2, since

(vT z − yT z − ηT2 (v, y)z, v
T z − yT z − ηT2 (v, y)z) = (0, 0) ∈ K.

(B.3) η1(x, u)+u = x+u ∈ C1, ∀ x, u ∈ S1 and η2(v, y)+y = v+y ∈ C2, ∀ v, y ∈
S2. The points (x, 0, λ1, λ2, z) s.t. x ≧ 0, λ1 + λ2 = 1 with λ1 > 0, λ2 > 0 and
λ1 − λ2 > 0 are feasible to (EWP). Also, the points (0, v, λ1, λ2, w) s.t. v ≧ 0,
λ1 + λ2 = 1 with λ1 > 0, λ2 > 0 and λ1 − λ2 > 0 satisfy (EWD).
Now, at these feasible points,

M(u, v, λ, w)− L(x, y, λ, z)= ( cos2 v, 2 cos2 v)−(1 +
x+ |x|

2
, 2(sin2 x+ 1) +

x+ |x|
2

)

= ( cos2 v, 2 cos2 v)− (1 + x, 2(sin2 x+ 1) + x)

= ( cos2 v − 1− x, 2 cos2 v − 2(sin2 x+ 1)− x)

̸∈K\{0}(since cos2 v − 1− x ≦ 0, ∀ x, v ≧ 0).

In particular, the points (x, y, λ1, λ2, z) = (π6 , 0,
3
4 ,

1
4 , 0) and (u, v, λ1, λ2, w) =

(0, π
3 ,

3
4 ,

1
4 , 1) are feasible for the problems (EWP) and (EWD), respectively

and also

M(u, v, λ, w)− L(x, y, λ, z) =
(−9− 2π

12
,
−12− π

6

)
̸∈ K\{0}

Hence verified. □

Theorem 4.3 (Strong duality). Let (x̄, ȳ, λ̄, z̄) be an efficient solution of (WP).
Fix λ = λ̄ in (WD). Let
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(I) the vectors {G′
f1
(f1(x̄, ȳ))∇yf1(x̄, ȳ), . . . , G

′
fk
(fk(x̄, ȳ))∇yfk(x̄, ȳ)} be

linearly independent;
(II) the matrix

k∑
i=1

λ̄i{G′′
fi(fi(x̄, ȳ))∇yfi(x̄, ȳ)∇yfi(x̄, ȳ)

T + G′
fi(fi(x̄, ȳ))∇yyfi(x̄, ȳ)}

be positive or negative definite;

Then, there exists w̄ ∈ D, such that (x̄, ȳ, λ̄, w̄) is a feasible solution for (WD)
and the objective values of (WD) and (WD) are equal. Furthermore, if the
hypotheses in Theorem 4.2 hold for all feasible solutions of (WD) and (WD),
then (x̄, ȳ, λ̄, w̄) is an efficient solution for (WD).

Proof. Since (x̄, ȳ, λ̄, z̄) is an efficient solution of (WD). Hence, according to
the Fritz John optimality condition [4], there exist α ∈ K∗, β ∈ C2 and η ∈ R
such that

(4.12)

[ k∑
i =1

αi(G
′
fi(fi(x̄, ȳ))∇xfi(x̄, ȳ)) + (αT e)γ̄

+ (β − (αT e)ȳ)
{ k∑

i =1

λ̄i(G
′′
fi(fi(x̄, ȳ))∇xfi(x̄, ȳ)∇yfi(x̄, ȳ)

T

+G′
fi(fi(x̄, ȳ))∇xyfi(x̄, ȳ))

}]T
(x− x̄) ≧ 0, for all x ∈ C1,

(4.13)

k∑
i =1

(αi − (αT e)λ̄i)(G
′
fi(fi(x̄, ȳ))∇yfi(x̄, ȳ))

+ (β − (αT e)ȳ)T
[ k∑
i =1

λ̄i

{
G′′

fi(fi(x̄, ȳ))∇yfi(x̄, ȳ)∇yfi(x̄, ȳ)
T

+G′
fi(fi(x̄, ȳ))∇yyfi(x̄, ȳ)

}]
= 0,

(4.14)
[
[(β − (αT e)ȳ)TG′

fi(fi(x̄, ȳ))∇yfi(x̄, ȳ)] + ηei

]
(λi − λ̄i) ≧ 0,

for all λ ∈ intK∗, i = 1, 2, . . . , k,

(4.15) βT
[ k∑

i=1

λ̄i(G
′
fi(fi(x̄, ȳ))∇yfi(x̄, ȳ))− z̄

]
= 0,

ηT (λ̄T e− 1) = 0,

(4.16) β ∈ NE(z̄),

γ̄ ∈ D, γ̄T x̄ = S(x̄|D),
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(4.17) (α, β, η) ̸= 0.

Inequality (4.14) can be re-written as

(4.18) [(β − (αT e)ȳ)TG′
fi(fi(x̄, ȳ))∇yfi(x̄, ȳ)] + ηei = 0.

Multiplying (4.18) by (αi − (αT e)λ̄i), i = 1, 2, . . . , k, summing for all i, and
using λT e = 1, we obtain

(4.19) (β − (αT e)ȳ)T
[ k∑

i=1

(G′
fi(fi(x̄, ȳ))∇yfi(x̄, ȳ))

]
(αi − (αT e)λ̄i) = 0.

Again, multiplying (4.13) by (β − (αT e)ȳ)T and using (4.19), we get

(β − (αT e)ȳ)T
[ k∑

i=1

λ̄i

{
G′′

fi(fi(x̄, ȳ))∇yfi(x̄, ȳ)∇yfi(x̄, ȳ)
T

+G′
fi(fi(x̄, ȳ))∇yyfi(x̄, ȳ)

}]
(β − (αT e)ȳ) = 0.

Applying hypothesis (II), we have

(4.20) β = (αT e)ȳ.

Using (4.20) in (4.18), we get η = 0, as e = (e1, e2, . . . , ek) ∈ intK implies
e ̸= 0. Now, (4.13) and (4.20) together gives

k∑
i=1

(αi − (αT e)λ̄i)(G
′
fi(fi(x̄, ȳ))∇yfi(x̄, ȳ)) = 0.

From hypothesis (I), we have

(4.21) αi = (αT e)λ̄i, i = 1, 2, . . . , k.

If α = 0, then αT e = 0 and hence (4.20) gives β = 0, which is a contradiction
to (α, β, η) ̸= 0. Thus αT e > 0 as 0 ̸= α ∈ K∗ and e ∈ intK. Hence

ȳ =
β

αT e
∈ C2. Substituting (4.20), (4.21) and using the fact that αT e > 0 in

(4.12), we obtain

(4.22)
[ k∑

i=1

λ̄i(G
′
fi(fi(x̄, ȳ))∇xfi(x̄, ȳ)) + γ̄

]T
(x− x̄) ≧ 0, for all x ∈ C1.

Since C1 is a closed convex cone, therefore x, x̄ ∈ C1 implies x + x̄ ∈ C1 and
hence from (4.22), we have

xT
[ k∑

i=1

λ̄i(G
′
fi(fi(x̄, ȳ))∇xfi(x̄, ȳ)) + γ̄

]
≧ 0, for all x ∈ C1,
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which implies [ k∑
i=1

λ̄i(G
′
fi(fi(x̄, ȳ))∇xfi(x̄, ȳ)) + γ̄

]
∈ C∗

1 .

Thus (x̄, ȳ, λ̄, w̄ = γ̄) is a feasible solution for (WD). Considering x = 0 and
x = 2x̄, in (4.22), yields

x̄T
[ k∑

i=1

λ̄i(G
′
fi(fi(x̄, ȳ))∇xfi(x̄, ȳ)) + γ̄

]
= 0,

which further reduces to

(4.23) x̄T
[ k∑

i=1

λ̄i(G
′
fi(fi(x̄, ȳ))∇xfi(x̄, ȳ))

]
= −x̄T γ̄ = −S(x̄|D).

From (4.16) and (4.20) we have, (αT e)ȳ ∈ NE(z̄). Since αT e > 0, ȳ ∈ NE(z̄).

Now, expressions (4.15), (4.20) and the fact that αT e > 0 yield

ȳT
[ k∑

i=1

λ̄i(G
′
fi(fi(x̄, ȳ))∇yfi(x̄, ȳ))− z̄

]
= 0,

which implies

(4.24) ȳT
[ k∑

i=1

λ̄i(G
′
fi(fi(x̄, ȳ))∇yfi(x̄, ȳ))

]
= ȳT z̄ = S(ȳ|E).

Using (4.23) and (4.24), we obtain{
Gf1(f1(x̄, ȳ)) + S(x̄|D)e1 − ȳT

k∑
i=1

λ̄i(G
′
fi(fi(x̄, ȳ))∇yfi(x̄, ȳ))e1, . . . ,

Gfk(fk(x̄, ȳ)) + S(x̄|D)ek − ȳT
k∑

i=1

λ̄i(G
′
fi(fi(x̄, ȳ))∇yfi(x̄, ȳ))ek

}
=

{
Gf1(f1(x̄, ȳ))− S(ȳ|E)e1 − x̄T

k∑
i=1

λ̄i(G
′
fi(fi(x̄, ȳ))∇xfi(x̄, ȳ))e1, . . . ,

Gfk(fk(x̄, ȳ))− S(ȳ|E)ek − x̄T
k∑

i=1

λ̄i(G
′
fi(fi(x̄, ȳ))∇xfi(x̄, ȳ))ek

}
.

Hence, the two objective functions have equal values. Now, let (x̄, ȳ, λ̄, w̄) be
not an efficient solution of (WD), then there exists (x̂, ŷ, λ̄, ŵ) which is feasible
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for (WD) such that{
Gf1(f1(x̂, ŷ))− S(ŷ|E)e1 − x̂T

k∑
i=1

λ̄i(G
′
fi(fi(x̂, ŷ))∇xfi(x̂, ŷ))e1, . . . ,

Gfk(fk(x̂, ŷ))− S(ŷ|E)ek − x̂T
k∑

i=1

λ̄i(G
′
fi(fi(x̂, ŷ))∇xfi(x̂, ŷ))ek

}
−

{
Gf1(f1(x̄, ȳ))− S(ȳ|E)e1 − x̄T

k∑
i=1

λ̄i(G
′
fi(fi(x̄, ȳ))∇xfi(x̄, ȳ))e1, . . . ,

Gfk(fk(x̄, ȳ))− S(ȳ|E)ek − x̄T
k∑

i=1

λ̄i(G
′
fi(fi(x̄, ȳ))∇xfi(x̄, ȳ))ek

}
∈ K\{0},

which from (4.23) and (4.24) yield{
Gf1(f1(x̂, ŷ))− S(ŷ|E)e1 − x̂T

k∑
i=1

λ̄i(G
′
fi(fi(x̂, ŷ))∇xfi(x̂, ŷ))e1, . . . ,

Gfk(fk(x̂, ŷ))− S(ŷ|E)ek − x̂T
k∑

i=1

λ̄i(G
′
fi(fi(x̂, ŷ))∇xfi(x̂, ŷ))ek

}
−

{
Gf1(f1(x̄, ȳ)) + S(x̄|D)e1 − ȳT

k∑
i=1

λ̄i(G
′
fi(fi(x̄, ȳ))∇yfi(x̄, ȳ))e1, . . . ,

Gfk(fk(x̄, ȳ)) + S(x̄|D)ek − ȳT
k∑

i=1

λ̄i(G
′
fi(fi(x̄, ȳ))∇yfi(x̄, ȳ))ek

}
∈ K\{0},

which is a contradiction to Theorem 4.2. Hence, (x̄, ȳ, λ̄, w̄) is the efficient
solution of (WD). □

Theorem 4.4 (Converse duality). Let (ū, v̄, λ̄, w̄) be an efficient solution of
(WD). Fix λ = λ̄ in (WP). Let

(I) the vectors {G′
f1
(f1(ū, v̄))∇xf1(ū, v̄), . . . , G

′
fk
(fk(ū, v̄))∇xfk(ū, v̄)} be

linearly independent;
(II) the matrix

k∑
i=1

λ̄i{G′′
fi(fi(ū, v̄))∇xfi(ū, v̄)∇xfi(ū, v̄)

T + G′
fi(fi(ū, v̄))∇xxfi(ū, v̄)}

be positive or negative definite;

Then there exists z̄ ∈ E, such that (ū, v̄, λ̄, z̄) is a feasible solution for (WP )
and the objective values of (WP ) and (WD) are equal. Futhermore, if the
hypotheses in Theorem 4.2 hold for all feasible solutions of (WP ) and (WD),
then (ū, v̄, λ̄, z̄) is an efficient solution for (WP ).
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Proof. The proof follows on the lines of Theorem 4.2. □

5. Conclusions

In this paper, we have considered the Gf -invex functions over cones and
examples which justify the definitions have been illustrated. Two types of dual
models-Mond-Weir and Wolfe type multiobjective symmetric dual programs
have been formulated. It is to be remarked that the functions which are taken
in the primal-dual programs are not differentiable. Considering these nondiffer-
entiable dual programs, we have discussed the corresponding duality relations.
Numerical examples which illustrates the weak duality results of Mond-Weir
and Wolfe type models have also been depicted in the paper. These results can
be further extended to second order nondifferentiable symmetric dual programs
and in the fractional programming case also. Several results appearing in the
literature comes out as special cases.
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