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1. Introduction

The question of localization in non-commutative rings was first considered by
Ore in 1933 (see [10]). Since the process of localization is a powerful algebraic
tool with which to study the structure of the ring, a great deal of work has
been done by various authors since then (see for example [1, 3, 6, 8, 9, 11]). A
particular contribution to the theory of localization at a prime ideal is due to
Hajarnavis (see [8]). He proves that in a prime Noetherian PI ring a right
invertible prime ideal is localizable. In fact, a right invertible ideal in a prime
Noetherian PI ring is invertible. Thus it is non-eventually idempotent and
projective on both sides. In this paper, we prove that in a prime Noetherian
right bounded ring R, a non-eventually idempotent prime ideal P which is left
projective is right localizable. This result both weakens the PI condition and
generalizes the result of Hajarnavis to a larger set of prime ideals. To prove this
result, the first observation we made is that in a result of Braun and Hajarnavis
([1, Proposition 3.7]), the PI condition is superfluous (see Proposition 3.1). We
prove in Proposition 3.7 that if R is a bounded Noetherian prime ring, then
any projective prime ideal P is (two-sided) localizable where localized ring
RP is a principal right and left ideal ring and P is a height-1 prime ideal of R.
Moreover, we show that in a Noetherian prime ring R, if P is a projective prime
ideal then P (i) = P i is satisfied for all i, where P (i) denotes the i-th symbolic
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power of P . This proposition generalizes the result appeared in [3, Lemma 1.2]
since an invertible ideal is projective.

2. Preliminaries and notation

Throughout this note R will denote a ring with nonzero identity.
Let R be an order in a simple Artinian ring Q. Let I be an ideal of R. Define

I∗ = {q ∈ Q : qI ⊆ R} and I+ = {q ∈ Q : Iq ⊆ R}. The ideal I is called right
invertible if II+ = R, left invertible if I∗I = R. If I is a non-zero ideal of
R, then the dual basis Lemma [2, Proposition 3.1, p. 132] shows that IR is
projective if and only if 1 ∈ II∗. Similarly RI is projective if and only if
1 ∈ I+I.

If A is an ideal of a ring R, then C(A) will denote the set

{c ∈ R : [c+A] is a regular element of the ring R/A} .

Thus C(0) is the set of all regular elements of R.
A prime ideal P is said to have height 1 if P does not properly contain a

chain of two distinct prime ideals. Let P be a prime ideal of a Noetherian ring
R. The symbolic powers P (n) of P are those described by Goldie, [6]. These
have the property that

C(P ) = C(P (n)) for all n ≥ 1.

When R is a prime right Noetherian ring and a prime ideal P satisfies the
right Ore condition with respect to C(P ), we may form the right localization
RP which is a local ring with Jacobson radical PRP . In this case we say that
P is right localizable. Left localizability of a prime ideal is defined analogously.
Note that, under two sided assumptions, the left localization coincides with the
right localization. In this case we have PRP = RPP .

A ring R is called a pri-(pli) ring if every right (left) ideal of R is principal.
A ring R is called right bounded if each essential right ideal contains a non-

zero two sided ideal which is essential as a right ideal. Left bounded rings can
be defined analogously. A ring which is both right and left bounded is called a
bounded ring.

An ideal I is called eventually idempotent if In = In+1 for some n ≥ 0.
Conditions will be assumed to hold on both right and left, unless otherwise

stated. For any unexplained terminology we refer the reader to [4] or [7].

3. Localization in bounded rings

Let R be a ring and let I be a (two-sided) ideal of R. If IR is a projective
module then we say that I is a right projective ideal of R. Left projectivity of
an ideal is defined analogously. If I is an ideal of R such that both RI and IR
are projective modules, then we say that I is a projective ideal of R.
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Proposition 3.1. Let R be a prime Noetherian ring, and let IR be a non-zero
right projective ideal. Then exactly one of the following holds:

(1) I is eventually idempotent.
(2)

∩
i I

i = {0}.

Proof. Suppose that
∩

i I
i ̸= {0}. Let c be a regular element in this intersection.

Since c ∈ Ii we have (Ii)∗c ⊆ (Ii)∗Ii ⊆ R and so (Ii)∗ ⊆ Rc−1 for all i. It
is easily seen that (I∗)i ⊆ (Ii)∗ and

{
(I∗)i

}
is an ascending chain of left R-

modules. Since R is Noetherian, we have (I∗)k = (I∗)k+1 for some k. Therefore
(I∗)k+1Ik ⊆ R and so Ik+1(I∗)k+1Ik ⊆ Ik+1. Since IR is projective we have
R ⊆ (Ik+1)(I∗)k+1. Hence we have Ik ⊆ Ik+1 and consequently Ik = Ik+1. □

Lemma 3.2. Let R be an order in a simple Artinian ring, and let I be a right
projective ideal of R. Then the following statements hold:

(1) I∗I is idempotent.
(2) If J is another right projective ideal of R, then IJ is also a right projec-

tive ideal of R. In particular, Ik is a right projective ideal of R for all
k ≥ 0.

Proof. (1) is given in [5, Lemma 1.1].
For (2) let J be a right projective ideal of R. Then 1 ∈ II∗ and 1 ∈ JJ∗.

Also it is clear that J∗I∗ ⊆ (IJ)∗. It follows that

1 ∈ II∗ ⊆ I(JJ∗)I∗ ⊆ IJ(IJ)∗,

i.e., IJ is a right projective ideal of R. □

Note that similar statements as in the above lemma can be given for left
projective ideals. The only difference occurs in part (1) in which we need to
consider the ideal II+ instead of I∗I.

Proposition 3.3. Let R be an order in a simple Artinian ring, and let P be
a right projective prime ideal of R. If P is eventually idempotent, then either
P is idempotent or P = PP+.

Furthermore if P is also left projective, then P is idempotent.

Proof. Assume that P k = P k+1 for some k ≥ 1. Assume also that P is not
idempotent. Then k ≥ 2. Choose k as the smallest positive integer such that
P k = P k+1 . Since

(
P k

)∗
P k ⊆ R, we have

(
P k

)∗
P k =

(
P k

)∗
P k+2 ⊆ P 2.

Then (
P k−1

)∗
P k−1PP+ ⊆

(
P k

)∗
P kP+ ⊆ P 2P+ ⊆ P.

Since
(
P k−1

)∗
P k−1 ⊆ R, PP+ ⊆ R, and P is prime, we have either(

P k−1
)∗

P k−1 ⊆ P or PP+ ⊆ P .

Suppose that
(
P k−1

)∗
P k−1 ⊆ P . Since P is right projective, P k−1 is

also right projective by Lemma 3.2, and so
(
P k−1

)∗
P k−1 is an idempotent
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ideal again by Lemma 3.2. This gives that
(
P k−1

)∗
P k−1 ⊆ P k−1, hence(

P k−1
)∗

P k−1 = P k−1, which implies that P k−1 is idempotent, by Lemma 3.2.

But since k ≥ 2, 2k − 2 ≥ k, and so P k−1 = P 2k−2 ⊆ P k ⊆ P k−1. It follows
that P k−1 = P k, which contradicts with the choice of k.

Therefore we must have PP+ ⊆ P , or equivalently PP+ = P .
For the last statement of the proposition, suppose that P is also a left

projective ideal of R. Then by (1) above, we see that either P is idempotent
or P = PP+. However PP+ is an idempotent ideal by the left-handed version
of Lemma 3.2. This completes the proof. □

Lemma 3.4. Let R be a prime Noetherian ring, and let P be a right projective
prime ideal of R. Then

(1) For every n ≥ 1, xc ∈ Pn for some c ∈ C(P ) and x ∈ R implies x ∈ Pn.
(2) If, further, P is not eventually idempotent, then C(P ) ⊆ C(0).

Proof. To prove (1) we use induction on n. If n = 1, then clearly there is
nothing to prove. Let n > 1 and assume that the first part of the lemma has
been established for n − 1. Let xc ∈ Pn for some x ∈ R and c ∈ C(P ). Then
clearly x ∈ P . Since P ∗x ⊆ R and P ∗xc ⊆ Pn−1, we have P ∗x ⊆ Pn−1 by our
inductive hypothesis. Thus x ∈ PP ∗x ⊆ Pn because PR is projective.

For (2), let c ∈ C(P ). To see that c ∈ C(0), it is enough to show that the
left annihilator of c is zero. Thus let xc = 0 for some x ∈ R. Then x ∈ Pn for
every n, by (1) above. Since P is not eventually idempotent, by Proposition
3.1,

∩
n≥1 P

n = 0. Hence x = 0. This completes the proof. □

Note that the above lemma can also be given analogously for left projective
prime ideals of a prime Noetherian ring.

Theorem 3.5. Let R be a right bounded Noetherian prime ring. Let P be a
non-eventually idempotent prime ideal such that RP is projective. Then P is
right localizable. Furthermore, every non-idempotent projective prime ideal of
a bounded Noetherian prime ring is localizable.

Proof. We need to prove that the right Ore condition is satisfied with respect
to C(P ). Let r, c ∈ R with c ∈ C(P ). By Lemma 3.4, c ∈ C(0). Therefore cR
is an essential right ideal of R. Since R is a right bounded ring, cR contains
a nonzero ideal. Let B be the ideal of R which is maximal among all nonzero
ideals contained in cR. In particular, 0 ̸= B ⊆ cR. Assume that B ⊆ P . Then
B ⊆ cP since c ∈ C(P ). Thus B ⊆ BP+ ⊆ cR, and hence B = BP+ by
maximality of B. Since P is left projective we have

B ⊆ BP+P = BP ⊆ B,

which gives that B = BP = BP 2 = . . .. Thus B ⊆
∩

n P
n which is a con-

tradiction since
∩

n P
n = {0} by Proposition 3.1. Therefore B ̸⊆ P , and so

B ∩C(P ) ̸= ∅, i.e. there exists c′ ∈ C(P ) such that c′ ∈ B. Since rB ⊆ B ⊆ cR
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we have rc′ = cr′ for some r′ ∈ R. It follows that the right Ore condition is
satisfied with respect to C(P ) and R is right localizable at P .

For the second statement of the theorem, assume that R is a bounded Noe-
therian prime ring and P is a non-idempotent projective prime ideal of R. By
Proposition 3.3, P is not eventually idempotent. It follows from the proof of
the first part that P is right localizable. Symmetric arguments show that P is
also left localizable. This completes the proof. □

The following example shows that the condition that P is not eventually
idempotent in the above theorem is not superfluous.

Example 3.6. Let

R =

(
k[x, y] (x, y)
k[x, y] k[x, y]

)
and P =

(
(x, y) (x, y)
k[x, y] k[x, y]

)
,

where k is a field and x, y are variables. Note that R is a bounded Noetherian
prime ring. It is not difficult to see that P+ is equal to the ring of 2×2 matrices
over k[x, y] and that 1 ∈ P+ = P+P . It follows that RP is projective. Also
since R/P ∼= k, P is a maximal (and hence a prime) ideal of R. However P is
not right localizable. Indeed, if we take

α =

(
0 0
1 0

)
and β =

(
1 0
0 0

)
,

then β ∈ C(P ) and one cannot find elements β′ ∈ C(P ) and α′ ∈ R such that
αβ′ = βα′.

Theorem 3.7. Let R be a bounded Noetherian prime ring. Then for a non-
idempotent projective prime ideal P , the localized ring RP is a pri-pli ring and
P has height 1. Moreover, P (i) = P i for all i.

Proof. Note that RP is a prime Noetherian ring and J = PRP = RPP is
its Jacobson radical. Since P is right projective, we have R ⊆ PP ∗ and so
RP ⊆ PP ∗RP ⊆ PRPP

∗RP ⊆ PRP (PRP )
∗. Therefore J = PRP is a right

projective ideal of RP . Similarly it can be shown that J is also a left projective
ideal of RP . Now we prove that J is not idempotent. Suppose on the contrary
that J = J2. Then we have PRP = P 2RP and so PRP ∩R = P 2RP ∩R.

Claim: PnRP ∩R = Pn for all n.
Proof of the claim: Clearly Pn ⊆ PnRP ∩ R is satisfied. For the converse

let x ∈ PnRP ∩ R. Then xc ∈ Pn for some c ∈ C(P ). By Lemma 3.4(1), we
have x ∈ Pn.

Now since PRP ∩R = P 2RP ∩R, we have P = P 2, which contradicts with
the assumption that P is not idempotent. Thus J is not idempotent. Clearly
JJ+ ⊆ RP is satisfied. Since J is left projective, if JJ+ ⊆ J we get J = J2,
which is a contradiction since J is non-idempotent. Thus JJ+ = RP , which
means that J is right invertible. Similarly it can be shown that J is also left
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invertible and so J is invertible. By [9, Proposition 1.3] it follows that RP is a
pri-pli ring.

Now since J is an invertible prime ideal, J has height 1 in RP by the invert-
ible ideal theorem [4, Theorem 3.4], and thus P has height 1 in R.

Now we will prove that P (i) = P i for all i. In fact, this result is true for all
projective prime ideals in a prime Noetherian ring. Note that we use the same
notation and definition of symbolic powers as in [6]. For i = 1, P (1) = P by
definition.
Let i > 1 and assume that P (i−1) = P i−1. Now take any x ∈ P (i). Then
there exist c, d ∈ C(P ) such that cxd ∈ PP (i−1) = P i by assumption. Thus
x ∈ P i by Lemma 3.4(1) and its left analogue. Conversely take any x ∈ P i

and choose G = F = R. Then GxF ∈ PP i−1 ⊆ PP (i−1), and therefore
x ∈ κ(PP (i−1)) = P (i). □
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