Bulletin of the Iranian Mathematical Society Vol. 36 No. 2 (2010), pp 75-83.

THE STRUCTURE AND AMENABILITY OF ℓ^P -MUNN ALGEBRAS

S. NASERI^{*} AND H. SAMEA

Communicated by Gholamhossein Esslamzadeh

ABSTRACT. We introduce the notion of $\mathcal{LM}_{I}^{p}(\mathcal{A})$, where \mathcal{A} is a Banach space, I is an index set and $1 \leq p < \infty$. We find necessary and sufficient conditions for which $\mathcal{LM}_{I}^{p}(\mathcal{A})$ is a Banach algebra and investigate amenability of this Banach algebra. Applications to $\ell^{p}(S)$ $(1 \leq p < \infty)$, where S is a Brandt semigroup, are also given.

1. Introduction

Some properties of ℓ^1 -Munn algebras were investigated by Esslamzadeh [3], where the author introduced the notion and used them as a tool for studying certain semigroup algebras. For more information, see [2-4]. Our aim here is to introduce and investigate the properties of ℓ^p -Munn algebras. It enables us to study some properties of l^p -spaces on Brandt semigroups. This paper is organized as follows. Our notations are introduced in the present section. In section 2, we introduce and investigate the structure of $\mathcal{LM}_I^p(\mathcal{A})$, for the Banach space \mathcal{A} , the index set I, and $1 \leq p < \infty$. The Banach space $\mathcal{LM}_I^p(\mathcal{A})$ is the vector space of all $I \times I$ -matrices A over \mathcal{A} such that $||A||_p = \left(\sum_{i,j\in I} ||A_{ij}||^p\right)^{\frac{1}{p}} < \infty$. We find

MSC(2010): Primary: 43A07.

Keywords: Banach algebra, amenability, semigroup. Received: 30 September 2008. Accepted: 30 July 2009.

^{*}Corresponding author

 $[\]bigodot$ 2010 Iranian Mathematical Society.

⁷⁵

necessary and sufficient conditions for which $\mathcal{LM}_{I}^{p}(\mathcal{A})$ is a Banach algebra. We prove that if \mathcal{A} is a unital Banach algebra, then $\mathcal{LM}_{I}^{p}(\mathcal{A})$ is a Banach algebra if and only if $1 \leq p \leq 2$. Moreover, it is proved that if G is a group and S is a Brandt semigroup over G with index set I, then the Banach space $\ell^{p}(S)/\mathbb{C}\delta_{0}$ is isometrically isomorphic with $\mathcal{LM}_{I}^{p}(\ell^{p}(G))$. Moreover, if G is a finite group, and I is finite, then $(\ell^{p}(S),*)/\mathbb{C}\delta_{0}$ is isometrically isomorphic with $\mathcal{LM}_{I}^{p}(\ell^{p}(G),*)$. Finally, in Section 3 we study the amenability of the Banach algebra $\mathcal{LM}_{I}^{p}(\mathcal{A})$ $(1 \leq p \leq 2)$ over a Banach algebra \mathcal{A} with a unit. We prove that $\mathcal{LM}_{I}^{p}(\mathcal{A})$ $(1 \leq p \leq 2)$ is amenable, if and only if \mathcal{A} is amenable, and I is finite.

The following are some of the notations which we use here.

Let \mathcal{A} be a Banach algebra. If \mathcal{A} admits a unit $e_{\mathcal{A}}$ ($ae_{\mathcal{A}} = e_{\mathcal{A}}a = a$, for all $a \in \mathcal{A}$) and $||e_{\mathcal{A}}|| = 1$, we say that \mathcal{A} is a unital normed algebra. For a Banach algebra \mathcal{A} , an \mathcal{A} -bimodule will always refer to a Banach \mathcal{A} -bimodule X; that is, a Banach space which is algebraically an \mathcal{A} -bimodule, and for which there is a constant $C_X \geq 0$ such that for $a \in \mathcal{A}, x \in X, ||a.x|| \leq C_X ||a|| ||x||, ||x.a|| \leq C_X ||x|| ||a||$. A derivation $D: \mathcal{A} \longrightarrow X$ is a linear map, always taken to be continuous, satisfying D(ab) = D(a).b + a.D(b), for $a, b \in \mathcal{A}$. For every $x \in X$, we define ad_x by $ad_x(a) = a.x - x.a$, for $a \in \mathcal{A}$. Note that ad_x is a derivation which is called an inner derivation. A Banach algebra \mathcal{A} is called amenable if and only if, for any \mathcal{A} -bimodule X, every derivation $D: \mathcal{A} \longrightarrow X^*$ is inner.

2. The structure of the Banach space $\mathcal{LM}_{I}^{p}(\mathcal{A}) \ (1 \leq p < \infty)$ over a Banach algebra \mathcal{A}

Definition 2.1. Let \mathcal{A} be a Banach space, $1 \leq p < \infty$, and I be an arbitrary index set, and let $\mathcal{LM}_{I}^{p}(\mathcal{A})$ be the vector space of all $I \times I$ -matrices A over \mathcal{A} such that

$$||A||_p = \left(\sum_{i,j\in I} ||A_{ij}||^p\right)^{\frac{1}{p}} < \infty.$$

Then, it is easy to check that $\mathcal{LM}_{I}^{p}(\mathcal{A})$ with scaler multiplication, matrix addition, and the norm $\|.\|_{p}$ is a Banach space. This Banach space is called ℓ^{p} -Munn Banach space over \mathcal{A} . If $\mathcal{LM}_{I}^{p}(\mathcal{A})$ is a Banach algebra, then $\mathcal{LM}_{I}^{p}(\mathcal{A})$ is called the ℓ^{p} -Munn Banach algebra over \mathcal{A} with index set I. The structure of $\ell^p\text{-}\mathrm{Munn}$ algebras

The space $\mathcal{LM}_{I}^{1}(\mathcal{A})$ over a unital Banach algebra \mathcal{A} is called the ℓ^{1} -Munn Banach algebra over \mathcal{A} with index set I (see [3]). If I is finite, then $\|.\|_{\mathcal{LM}^{2}(\mathbb{C})}$ is called Frobenius norm.

A Brandt semigroup S over a group G with index set I consists of all canonical $I \times I$ matrix units over $G \bigcup \{0\}$ and a zero matrix 0. Note that an $I \times I$ matrix whose entries are zero except one, is called a canonical matrix unit.

Let G be a group and S be a Brandt semigroup over G. For $f \in \ell^p(S)$, and $i, j \in I$, define $f_{ij} : G \longrightarrow \mathbb{C}$ by

$$f_{ij}(g) = f((g)_{ij}),$$

where $(g)_{ij}$ is the matrix with (k, l)-entry equal to g if (k, l) = (i, j) and 0 if $(k, l) \neq (i, j)$. Since for every $i, j \in I$,

$$\sum_{g \in G} |f((g)_{ij})|^p \le \sum_{s \in S} |f(s)|^p < \infty,$$

then we have $f_{ij} \in \ell^p(G)$. It is clear that if $A = [f_{ij}]$, then $A \in \mathcal{LM}^p_I(\ell^p(G))$. Now, as in Proposition 5.6 of [3], let

$$\Phi: \ell^p(S) \longrightarrow \mathcal{LM}^p_I(\ell^p(G)): f \mapsto [f_{ij}].$$

It is clear that Φ is a well-defined linear map with $\|\Phi\| \leq 1$. Suppose $A \in \mathcal{LM}_{I}^{p}(\ell^{p}(G))$ and $A = [f_{ij}]$. Define $f : S \longrightarrow \mathbb{C}$ by f(0) = 0 and $f((g)_{ij}) = f_{ij}(g)$, for $g \in G$ and $i, j \in I$. Since

$$\sum_{s \in S} |f(s)|^p = \sum_{i,j \in I} \sum_{g \in G} |f((g)_{ij})|^p = \sum_{i,j \in I} ||f_{ij}||_p^p < \infty,$$

Then $f \in \ell^p(S)$. Clearly $\Phi(f) = A$. Hence, Φ is onto. Therefore, there is an isometrical isomorphism from $\ell^p(S)/\mathbb{C}\delta_0$ onto $\mathcal{LM}^p_I(\ell^p(G))$. Thus, we have the following result.

Proposition 2.2. Let G be a group and S be a Brandt semigroup over G with the index set I. Then, the Banach space $\ell^p(S)/\mathbb{C}\delta_0$ is isometrically isomorphic with $\mathcal{LM}^p_I(\ell^p(G))$.

For the rest of the paper, we assume that \mathcal{A} is a Banach algebra.

Theorem 2.3. Let $1 \le p \le 2$. The Banach space $\mathcal{LM}_I^p(\mathcal{A})$ with matrix multiplication and norm $\|.\|_p$ is a Banach algebra.

Proof. Let $A, B \in \mathcal{LM}_{I}^{p}(\mathcal{A})$, and $i, j \in I$. Since $1 \leq p \leq 2$, then for q with $\frac{1}{p} + \frac{1}{q} = 1$, we have $q \geq 2 \geq p$. Hence, $\ell^{p}(I) \subseteq \ell^{q}(I)$ and $||f||_q^p \leq ||f||_p^p \ (f \in \ell^p(I)).$ We denote the function $f: I \to \mathbb{C}$, by $(f(i))_i$. Now, we have

$$\left(\sum_{k\in I} \|A_{ik}\| \|B_{kj}\|\right)^{p} = \|(\|A_{ik}\|)_{k}(\|B_{kj}\|)_{k}\|_{1}^{p}$$

$$\leq \|(\|A_{ik}\|)_{k}\|_{p}^{p}\|(\|B_{kj}\|)_{k}\|_{q}^{p}$$

$$\leq \|(\|A_{ik}\|)_{k}\|_{p}^{p}\|(\|B_{kj}\|)_{k}\|_{p}^{p}$$

$$= \left(\sum_{k\in I} \|A_{ik}\|^{p}\right) \left(\sum_{l\in I} \|B_{lj}\|^{p}\right).$$

Therefore,

$$\|AB\|_{p}^{p} = \sum_{i,j\in I} \left\| \sum_{k\in I} A_{ik} B_{kj} \right\|^{p}$$

$$\leq \sum_{i,j\in I} \left(\sum_{k\in I} \|A_{ik}\| \|B_{kj}\| \right)^{p}$$

$$\leq \sum_{i,j\in I} \left(\sum_{k\in I} \|A_{ik}\|^{p} \right) \left(\sum_{l\in I} \|B_{lj}\|^{p} \right)$$

$$= \left(\sum_{i,k\in I} \|A_{ik}\|^{p} \right) \left(\sum_{j,l\in I} \|B_{lj}\|^{p} \right)$$

$$= \|A\|_{p}^{p} \|B\|_{p}^{p}.$$

Hence, $||AB||_p \leq ||A||_p ||B||_p$. This shows that $||.||_p$ is an algebra norm. Hence, $\mathcal{LM}_I^p(\mathcal{A})$ is a Banach algebra.

Example 2.4. Let \mathcal{A} be a non-zero Banach space. Define

$$a.b = 0 \quad (a, b \in \mathcal{A}).$$

With this multiplication \mathcal{A} is a Banach algebra. Now, let I be an arbitrary set and $1 \leq p < \infty$. Then for each $A, B \in \mathcal{LM}_{I}^{p}(\mathcal{A}), AB = 0$. Hence, $\mathcal{LM}_{I}^{p}(\mathcal{A})$ is a Banach algebra.

Proposition 2.5. Let I be an infinite set and \mathcal{A} be a Banach algebra such that $\mathcal{A}^2 \neq 0$. Then, for each $2 , <math>\mathcal{LM}_I^p(\mathcal{A})$ is not an algebra.

The structure of $\ell^p\text{-}\mathsf{Munn}$ algebras

Proof. Since $\mathcal{A}^2 \neq 0$, then there exist $a, b \in \mathcal{A}$ such that $ab \neq 0$. Let $\{i_n\}_{n \in \mathbb{N}}$ be an infinite subset of distinct elements of I. Define the $I \times I$ -matrix A over \mathcal{A} by $A_{i_1i_n} = \frac{1}{\sqrt{n}}a$ $(n \in \mathbb{N})$ and $A_{ij} = 0$, for other $i, j \in I$. Also, define the $I \times I$ -matrix B over \mathcal{A} by $B_{i_ni_1} = \frac{1}{\sqrt{n}}b$ $(n \in \mathbb{N})$ and $B_{ij} = 0$, for other $i, j \in I$. It is easy to see that $A, B \in \mathcal{LM}_I^p(\mathcal{A})$. But AB is not even well defined, since

$$(AB)_{i_1i_1} = \sum_{n \in \mathbb{N}} A_{i_1i_n} B_{i_ni_1} = \left(\sum_{n \in \mathbb{N}} \frac{1}{n}\right) ab.$$

Proposition 2.6. Let I be a set with at least two elements, and \mathcal{A} be a unital Banach algebra. Then, $\mathcal{L}M_{I}^{p}(\mathcal{A})$ is a Banach algebra if and only if $1 \leq p \leq 2$.

Proof. By Theorem 2.3, if $1 \le p \le 2$, then $\mathcal{L}M_I^p(\mathcal{A})$ is a Banach algebra. By Proposition 2.5, if I is infinite, and $2 , then <math>\mathcal{L}M_I^p(\mathcal{A})$ is not a Banach algebra. Now, suppose I is finite. Let $i_1, i_2 \in I$ and $i_1 \ne i_2$. Define the $I \times I$ -matrix A over \mathcal{A} by $A_{i_1i_1} = A_{i_1i_2} = e_{\mathcal{A}}$ and $A_{ij} = 0$, for other $i, j \in I$. Also, define the $I \times I$ -matrix B over \mathcal{A} by $B_{i_1i_1} = B_{i_2i_1} = e_{\mathcal{A}}$ and $B_{ij} = 0$, for other $i, j \in I$. Then,

$$||AB||_p = 2 > 2^{\frac{2}{p}} = 2^{\frac{1}{p}} 2^{\frac{1}{p}} = ||A||_p ||B||_p,$$

and so $\|.\|_p$ is not an algebra norm. Hence, $\mathcal{L}M^p_I(\mathcal{A})$ is not a Banach algebra.

Remark 2.7. (a) Let I be finite and \mathcal{A} be a Banach algebra with the unit $e_{\mathcal{A}}$. Suppose Card(I) = m. If $(A_1, \ldots, A_m) \in \mathcal{A}^m$, $1 \leq p < \infty$ and $\frac{1}{p} + \frac{1}{q} = 1$, then

$$||(A_i)_i||_1 = ||(A_i e_{\mathcal{A}})_i||_1 \le ||(A_i)_{i \in I}||_p ||(e_{\mathcal{A}})_{i \in I}||_q = m^{\frac{1}{q}} ||e_{\mathcal{A}}|| ||(A_i)_{i \in I}||_p$$

· …

Thus, for arbitrary $I \times I$ matrices A, B on \mathcal{A} ,

...

$$\begin{split} \|AB\|_{p}^{p} &= \sum_{i,j\in I} \left\| \sum_{k\in I} A_{ik} B_{kj} \right\|^{p} \leq \sum_{i,j\in I} \left(\sum_{k\in I} \|A_{ik}\| \|B_{kj}\| \right)^{p} \\ &= \sum_{i,j\in I} \left\| (\|A_{ik}\|)_{k} (\|B_{kj}\|)_{k} \right\|_{1}^{p} \leq \sum_{i,j\in I} \left\| (\|A_{ik}\|)_{k} \right\|_{1}^{p} \left\| (\|B_{lj}\|)_{l} \right\|_{1}^{p} \\ &\leq m^{\frac{2p}{q}} \|e_{\mathcal{A}}\|^{2p} \sum_{i,j\in I} \left\| (\|A_{ik}\|)_{k} \right\|_{p}^{p} \left\| (\|B_{lj}\|)_{l} \right\|_{p}^{p} = m^{\frac{2p}{q}} \|e_{\mathcal{A}}\|^{2p} \|A\|_{p}^{p} \\ &\qquad \|B\|_{p}^{p}. \end{split}$$

Hence, $||AB||_p \le m^{\frac{2}{q}} ||e_{\mathcal{A}}||^2 ||A||_p ||B||_p$. (b) Let I be finite and \mathcal{A} be a Banach algebra with the unit $e_{\mathcal{A}}$. Suppose Card(I) = m. By (a), it is easy to see that $(\mathcal{L}M_I^p(\mathcal{A}), m^{\frac{2}{q}} \|e_{\mathcal{A}}\|^2 \|.\|_p)$ is a Banach algebra.

(c) Let I be finite and \mathcal{A} be a Banach algebra with the unit $e_{\mathcal{A}}$. Suppose Card(I) = m. Define the norm |||.||| on \mathcal{A} by |||a||| = C||a|| $(a \in C)$ \mathcal{A}), where $C \geq m^{\frac{2}{q}} \|e_{\mathcal{A}}\|^2$. Let $\widetilde{\mathcal{A}}$ denote the algebra \mathcal{A} with the norm $\|\|.\|\|$ and A be an $I \times I$ -matrix over $\widetilde{\mathcal{A}}$. Then,

$$\|A\|_{\mathcal{L}M^p_I(\widetilde{\mathcal{A}})} = C\|A\|_{\mathcal{L}M^p_I(\mathcal{A})}.$$

From this equality and (a), for each $A, B \in \mathcal{L}M^p_I(\widetilde{\mathcal{A}})$ we obtain,

$$\begin{aligned} \|AB\|_{\mathcal{L}M^p_I(\widetilde{\mathcal{A}})} &= C \|AB\|_{\mathcal{L}M^p_I(\mathcal{A})} \leq Cm^{\frac{2}{q}} \|e_{\mathcal{A}}\|^2 \|A\|_{\mathcal{L}M^p_I(\mathcal{A})} \|B\|_{\mathcal{L}M^p_I(\mathcal{A})} \\ &= \frac{m^{\frac{2}{q}} \|e_{\mathcal{A}}\|^2}{C} \|A\|_{\mathcal{L}M^p_I(\widetilde{\mathcal{A}})} \|B\|_{\mathcal{L}M^p_I(\widetilde{\mathcal{A}})} \leq \|A\|_{\mathcal{L}M^p_I(\widetilde{\mathcal{A}})} \\ &\|B\|_{\mathcal{L}M^p_I(\widetilde{\mathcal{A}})}. \end{aligned}$$

Therefore, $\mathcal{L}M^p_I(\widetilde{\mathcal{A}})$ is a Banach algebra.

Example 2.8. The algebra $\mathcal{A} = \mathbb{C}$ with the norm $||\mathcal{A}|| = 3|\mathcal{A}|$ $(\mathcal{A} \in \mathcal{A})$ is a Banach algebra with a the unit that is not unital (since $||1|| = 3 \neq 1$). Then, by notations of Remark 2.7, $\mathcal{A} = \mathbb{C}$ with C = 3. Let $I = \{1, 2\}$. Since $C \geq 2^{2\frac{2}{3}}|1|$, then by remark 2.7, $\mathcal{L}M_{I}^{3}(\mathcal{A})$ is a Banach algebra. This example shows that we can not replace the condition " \mathcal{A} is unital" by " \mathcal{A} has a unit" in the Proposition 2.6.

The structure of ℓ^p -Munn algebras

Proposition 2.9. Let G be a finite group with Card(G) = m, 1 ∞ , and S be a Brandt semigroup over G with the index set I. Then, $\ell^p(S)$ is closed under convolution if and only if I is finite. Moreover, if I is finite, then there exists a constant C such that $\ell^p(S)$ with the product

$$\delta_s * \delta_t = \delta_{st} \quad (s, t \in S),$$

and the norm $C\|.\|_p$ defines a Banach algebra. Also, $\ell^p(G)$ with the norm $C \|.\|_p$ is a Banach algebra under convolution, and $\ell^p(S)/\mathbb{C}\delta_0$ is an isometric Banach algebra-isomorphic with $\mathcal{LM}^p_I(\ell^p(G))$.

Proof. Suppose I is infinite. Let $\{i_n\}_{n \in \mathbb{N}}$ be an infinite subset of distinct elements of *I*. Let $f = \sum_{n=1}^{\infty} \frac{1}{n} \delta_{(e)_{i_1 i_n}}$, and $g = \sum_{n=1}^{\infty} \frac{1}{n} \delta_{(e)_{i_n i_1}}$. Clearly, $f, g \in \ell^p(S)$. But

$$f * g(0) = \sum_{m,n \in \mathbb{N}, m \neq n} \frac{1}{mn} = \infty.$$

Hence, $\ell^p(S)$ is not closed under convolution.

Suppose I is finite with Card(I) = l. It is easy to see that the Banach space $\ell^p(G)$ with the norm $\|.\|_{\ell^p(G)} = m^{1-\frac{1}{p}}\|.\|_p$ and the product

$$\delta_x * \delta_y = \delta_{xy} \quad (x, y \in G),$$

defines a convolution Banach algebra. Note that δ_e (e is the unit of G) is the unit of $\ell^p(G)$ with $\|\delta_e\|_{\ell^p(G)} = m^{1-\frac{1}{p}}$.

By Theorem 2.3, for $p \leq 2$, $\mathcal{LM}^p_I(\ell^p(G))$ defines a Banach algebra. In

this case, let $C = m^{1-\frac{1}{p}}$ For p > 2, by Remark 2.7(c), $\||.\|| = l^{\frac{2}{q}} \|\delta_e\|_{\ell^p(G)}^2 \|.\|_{\ell^p(G)} = l^{\frac{2}{q}} \|\delta_e\|_{\ell^p(G)}^2 m^{1-\frac{1}{p}} \|.\|_p = l^{\frac{2}{q}} m^{3(1-\frac{1}{p})} \|.\|_p.$ Thus, $\mathcal{LM}_I^p(\ell^p(G))$ defines a Banach algebra. In this case, let C =

 $l^{\frac{2}{q}}m^{3(1-\frac{1}{p})}$. It is easy to see that for the mapping

$$\Phi: (\ell^p(S), C \|.\|_p) \longrightarrow \mathcal{LM}^p_I((\ell^p(G), C \|.\|_p)): f \mapsto [f_{ij}],$$

 $\Phi(\delta_s * \delta_t) = \Phi(\delta_s) \Phi(\delta_t)$. Hence, Φ is an algebra homomorphism. Therefore, by Proposition 2.2, the Banach algebra $(\ell^p(S), C \|.\|_p)/\mathbb{C}\delta_0$ is isometrically algebra isomorphic with $\mathcal{LM}^p_I((\ell^p(G), C \|.\|_p)).$

Remark 2.10. By Proposition 5.6 of [3], for a Brandt semigroup S over a group G with an index set I, $\ell^1(S)/\mathbb{C}\delta_0$ is isometrically algebra isomorphic with $\mathcal{LM}_I(\ell^1(G))$.

3. Amenability of the Banach algebra $\mathcal{LM}_{I}^{p}(\mathcal{A}) \ (1 \leq p \leq 2)$ over a Banach algebra \mathcal{A} with unit

Throughout this section, we suppose \mathcal{A} has a unit which we denote by $e_{\mathcal{A}}$.

Lemma 3.1. Let \mathcal{A} be a Banach algebra with unit $e_{\mathcal{A}}$, and $1 \leq p \leq 2$. The following conditions are equivalent:

(1) $\mathcal{LM}_{I}^{p}(\mathcal{A})$ has a bounded approximate identity.

(2) I is finite.

Proof. (1) \Rightarrow (2) Suppose on the contrary that I is infinite and $(E_{\alpha})_{\alpha}$ is an approximate identity for $\mathcal{LM}_{I}^{p}(\mathcal{A})$. For every finite subset F of I, define E_{F} by $(E_{F})_{ii} = e_{\mathcal{A}}$ if $i \in F$, $(E_{F})_{ii} = 0$ if $i \in I - F$ and $(E_{F})_{ij} = 0$ if $i \neq j$. Then,

$$(CardF)^{\frac{1}{p}} = (\sum_{i \in F} ||e_{\mathcal{A}}||^{p})^{\frac{1}{p}} = ||E_{F}||_{p}$$

$$= \lim_{\alpha} ||E_{F}E_{\alpha}||_{p} = \lim_{\alpha} (\sum_{i \in F, j \in I} ||(E_{\alpha})_{ij}||^{p})^{\frac{1}{p}}$$

$$\leq \lim \inf ||E_{\alpha}||_{p}.$$

Therefore, $\lim_{\alpha} ||E_{\alpha}||_{p} = \infty$. Thus, $\mathcal{LM}_{I}^{p}(\mathcal{A})$ does not have a bounded approximate identity.

 $(2) \Rightarrow (1)$ Suppose *I* is finite. Then, it is clear that E_I is a unit for $\mathcal{LM}^p_I(\mathcal{A})$.

Theorem 3.2. Let \mathcal{A} be a Banach algebra with a unit and $1 \leq p \leq 2$. The following conditions are equivalent:

(i) $\mathcal{LM}^p_I(\mathcal{A})$ is amenable.

(ii) \mathcal{A} is amenable and I is finite.

Proof. (i) \Rightarrow (ii): Since $\mathcal{LM}_{I}^{p}(\mathcal{A})$ is amenable, then by Proposition(2.2.1) of [5], $\mathcal{LM}_{I}^{p}(\mathcal{A})$ has a bounded approximate identity and by Lemma 3.1, I is a finite set. By Corollary 4 of Section 4 of [1], there exists an equivalent norm |||.||| on \mathcal{A} such that $\widetilde{\mathcal{A}} = (\mathcal{A}, |||.|||)$ is unital. Since I is finite, then the identity map $A \mapsto A$; $\mathcal{LM}_{I}^{p}(\mathcal{A}) \longrightarrow \mathcal{LM}_{I}(\widetilde{\mathcal{A}})$ is continuous. Indeed, if $c||a|| \leq |||a||| \leq C||a||$ $(a \in \mathcal{A})$, then by Remark

2.7(a), $||A||_{\mathcal{LM}_{I}(\widetilde{\mathcal{A}})} \leq \frac{C}{c^{2}}(Card(I))^{\frac{2}{q}} ||e_{\mathcal{A}}||^{2} ||A||_{\mathcal{LM}_{I}^{p}(\mathcal{A})}$. So, $\mathcal{LM}_{I}^{p}(\mathcal{A})$ is Banach algebra isomorphic with $\mathcal{LM}_{I}(\widetilde{\mathcal{A}})$. Hence, $\mathcal{LM}_{I}(\widetilde{\mathcal{A}})$ is amenable, and so by Theorem 4.1 of [3], $\widetilde{\mathcal{A}}$ is amenable. Therefore, \mathcal{A} is amenable. (ii) \Rightarrow (i): We apply the notations of the above paragraph. By Theorem 4.1 of [3], $\mathcal{LM}_{I}(\widetilde{\mathcal{A}})$ is amenable. Hence, $\mathcal{LM}_{I}^{p}(\mathcal{A})$ is amenable. \Box

Remark 3.3. The above theorem remains valid, if we replace the condition " $1 \le p \le 2$ " by " $\mathcal{LM}_I^p(\mathcal{A})$ is a Banach algebra".

Example 3.4. Let S be a Brandt semigroup over a finite group G with a finite index I. Then, by Proposition 2.9, Theorem 3.2, and Remark 3.3, the convolution Banach algebra $\ell^p(S)$ is amenable.

Acknowledgments

The first author is grateful to the Office of Graduate Studies of the University of Isfahan for its support and the second author also thanks the University of Bu-Ali Sina (Hamedan) for its support. Also, the authors thank the referee for his invaluable comments.

References

- F. Bonsall, J. Duncan, Complete Normed Algebras, Springer-Verlag, New York, 1973.
- [2] H. G. Dales, A. T. M. Lau D. Strauss, *Banach algebras on semigroups and their compactifications*, To appear in the Memoirs of AMS.
- [3] G. H. Esslamzadeh, Banach algebra structure and amenability of a class of matrix algebras with applications, J. Funct. Anal. 161 (1999) 364-383.
- [4] G. H. Esslamzadeh, Ideals and representations of certain semigroup algebras, Semigroup Forum 69 (2004) 51-56.
- [5] V. Runde, Lectures on Amenability, Lecture Notes in Mathematics, Vol. 1774, Springer, Berlin, 2002.

S. Naseri

Department of Mathematics, University of Isfahan, Isfahan, Iran. Email: naserisaber@yahoo.com

H. Samea

Department of Mathematics, University of Bu-Ali Sina, Hamedan, Iran. Email: h-samea@basu.ac.ir