
...

Bulletin of the

.

Iranian Mathematical Society

.

ISSN: 1017-060X (Print)

.

ISSN: 1735-8515 (Online)

.

Vol. 43 (2017), No. 7, pp. 2281–2292

.

Title:

.

On the fixed number of graphs

.

Author(s):

.

I. Javaid, M. Murtaza, M. Asif and F. Iftikhar

.

Published by the Iranian Mathematical Society

.

http://bims.ims.ir



Bull. Iranian Math. Soc.
Vol. 43 (2017), No. 7, pp. 2281–2292
Online ISSN: 1735-8515
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Abstract. A set of vertices S of a graph G is called a fixing set of G,

if only the trivial automorphism of G fixes every vertex in S. The fixing
number of a graph is the smallest cardinality of a fixing set. The fixed
number of a graph G is the minimum k, such that every k-set of vertices
of G is a fixing set of G. A graph G is called a k-fixed graph, if its

fixing number and fixed number are both k. In this paper, we study the
fixed number of a graph and give a construction of a graph of higher
fixed number from a graph of lower fixed number. We find the bound

on k in terms of the diameter d of a distance-transitive k-fixed graph.
Keywords: Fixing set, stabilizer, fixing number, fixed number.
MSC(2010): Primary: 05C25; Secondary: 05C60.

1. Introduction

Let G = (V (G), E(G)) be a connected graph of order n. The degree of a
vertex v in G, denoted by degG(v), is the number of edges that are incident to
v in G. The distance between two vertices x and y, denoted by d(x, y), is the
shortest length of a path between x and y in G. The eccentricity of a vertex
x ∈ V (G) is e(x) =maxy∈V (G)d(x, y) and the diameter of G is maxx∈V (G)e(x).
For a vertex v ∈ V (G), the neighborhood of v, denoted by NG(v), is the set of
all vertices adjacent to v in G.

An automorphism of G, g : V (G) → V (G), is a permutation on V (G) such
that g(u)g(v) ∈ E(G) if and only if uv ∈ E(G), i.e., the adjacency is preserved
under automorphism g. The set of all such permutations for a graph G forms
a group under the operation of composition of permutations. It is called the
automorphism group ofG, denoted by Aut(G) which is a subgroup of symmetric
group Sn, the group of all permutations on n vertices. A graph G with the
trivial automorphism group is called a rigid or asymmetric graph and such a
graph has no symmetries. In this paper, all graphs (unless stated otherwise)
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have non-trivial automorphism group i.e., Aut(G) ̸= {id}. Let u, v ∈ V (G),
we say u is similar to v, denoted by u ∼ v (or more specifically u ∼g v) if
there is an automorphism g ∈ Aut(G) such that g(u) = v. It can be seen
that the similarity is an equivalence relation on the vertices of G, and hence,
it partitions the vertex set V (G) into disjoint equivalence classes, called orbits
of G. The orbit of a vertex v is defined as O(v) = {u ∈ V (G)|u ∼ v}. The
idea of fixing sets was introduced by Erwin and Harary in [4]. They used
the following terminology: The stabilizer of a vertex v ∈ V (G) is defined as,
stab(v) = {f ∈ Aut(G)|f(v) = v}. The stabilizer of a set of vertices F ⊆ V (G)
is defined as, stab(F ) = {f ∈ Aut(G)|f(v) = v for all v ∈ F} = ∩v∈F stab(v).
A vertex v is fixed by an automorphism g ∈ Aut(G), if g ∈ stab(v). A set of
vertices F is a fixing set, if stab(F ) is trivial, i.e., the only automorphism that
fixes all vertices of F is the trivial automorphism. The smallest cardinality of a
fixing set is called the fixing number of G and it is denoted by fix(G). We shall
refer a set of vertices A ⊂ V (G) for which stab(A) \ {id} ̸= ∅ as a non-fixing
set. A vertex v ∈ V (G) is called a fixed vertex, if stab(v) = Aut(G). Every
graph has a fixing set. Trivially, the set of vertices itself is a fixing set. It is
also clear that a set containing all but one vertex is a fixing set. The following
theorem gives a relation between orbits and stabilizers.

Theorem 1.1 (Orbit-Stabilizer Theorem). Let G be a connected graph and
v ∈ V (G),

|Aut(G)| = |O(v)||stabAut(G)(v)|.

Boutin introduced determining set of a graph in [2]. A set D ⊆ V (G) is said
to be a determining set for G, if whenever g, h ∈ Aut(G) so that g(x) = h(x)
for all x ∈ D, then g(v) = h(v) for all v ∈ V (G). The minimum cardinality of
a determining set of a graph G, denoted by Det(G), is called the determining
number of G. The following lemma given in [5] shows the equivalence between
definitions of fixing set and determining set.

Lemma 1.2 ([5]). A set of vertices is a fixing set if and only if it is a deter-
mining set.

Thus, notions of the fixing number and the determining number of a graph
G are same.

Jannesari and Omoomi have discussed the properties of resolving graphs and
randomly k-dimensional graphs in [7] and [6], which were based on the well-
known graph notions resolving number and metric dimension. In this paper,
we define the fixed number of a graph, fixing graph and k-fixed graphs. We
discuss the properties of these graphs in the context of fixing sets and the fixing
number.

The fixed number of a graph G, fxd(G), is the minimum k such that every k-
set of vertices is a fixing set of G. It may be noted that 0 ≤ fix(G) ≤ fxd(G) ≤
n − 1. A graph is said to be a k-fixed graph, if fix(G) = fxd(G) = k. In this
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paper, the fixed number k, remains in the focus of our attention. A path graph
of even order is a 1-fixed graph. Similarly, a cyclic graph of odd order is a
2-fixed graph. We give a construction of a graph with fxd(G) = r + 1 from
a graph with fxd(G) = r in Theorem 2.8. Also, a characterization of k-fixed
graphs is given in Theorem 3.7.

2. The fixed number

Consider the graph G1 depicted in Figure 1. It is clear that Aut(G) =
{e, (12)(34)(56)}. Also, stab(v) = {id} for all v ∈ V (G). Thus, {v} for each
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(a) Graph G
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Figure 1.

v ∈ V (G) forms a fixing set for G. Hence, fix(G) = fxd(G) = 1 and G is
1-fixed graph. Thus, we have the following proposition immediately from the
definition of fixing set.

Proposition 2.1. Let G be a connected graph and fxd(G) = 1, then

(i) |O(v)| = |Aut(G)| for all v ∈ V (G).

(ii) G does not have fixed vertices.

Proof. (i) Since, |stab(v)| = 1 for all v ∈ V (G), therefore the result follows from
Theorem 1.1. (ii) As stab(v) = Aut(G) for a fixed vertex v ∈ V (G), therefore
{v} does not form a fixing set for G. □

The problem of ‘finding the minimum k such that every k-subset of vertices
of G is a fixing set of G’ is equivalent to the problem of ‘finding the maximum
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r such that there exist an r-subset of vertices of G which is not a fixing set
of G’. Thus, the largest cardinality of a non-fixing set in a graph G helps in
finding the fixed number of G. We can see r = 0 and r = 5 for the graphs
G1 and G2 in Figure 1, respectively. Now, consider the graph G2 in Figure 1.
Here, A = {v1, v2, v3, v4, v5} is a non-fixing set with the largest cardinality and
g = (v6v7) ∈ stab(A) is the only non-trivial automorphism in stab(A). Thus,
there exist a set B = {v6, v7} ⊂ V (G) \A such that v6 ∼g v7. In fact, for each
non-fixing set A and each non-trivial automorphism g ∈ stab(A), there exist at
least one set B ⊂ V (G) \ A such that u ∼g v for all distinct u, v ∈ B. Thus,
we have the following remark about non-fixing sets.

Remark 2.2. Let G be a graph of order n.

(i) If r (0 ≤ r ≤ n− 2) be the largest cardinality of a non-fixing subset of
G, then fxd(G) = r + 1.

(ii) Let A be a non-fixing set of G. For each non-trivial g ∈ stab(A) there
exist at least one set B ⊂ V (G) \ A such that u ∼g v for all distinct
u, v ∈ B.

Proposition 2.3. Let G be a graph and u, v ∈ V (G) such that N(v)\{u} =
N(u)\{v}. Let F be a fixing set of G, then either u or v is in F .

Proof. Let u, v ∈ V (G) such that N(v)\{u} = N(u)\{v}. Suppose on contrary,
both u and v are not in F . As u and v have common neighbors and u, v ̸∈ F , so
there exists an automorphism g ∈ Aut(G) such that g ∈ stab(F ) and g(u) = v.
Hence, stab(F ) has a non-trivial automorphism, a contradiction. □

Theorem 2.4. Let G be a connected graph of order n. Then,
fxd(G) = n− 1 if and only if N(v)\{u} = N(u)\{v} for some u, v ∈ V (G).

Proof. Let u, v ∈ V (G) such that N(v)\{u} = N(u)\{v}. Suppose on contrary
that fxd(G) ≤ n−2, then V (G)\{u, v} is a fixing set for G. But, by Proposition
2.3, every fixing set contains either u or v. This contradiction implies that,
fxd(G) = n− 1.

Conversely, let fxd(G) = n− 1. Then, there exists a non-fixing subset T of
V (G) with |T | = n− 2. Assume T = V (G) \ {u, v} for some u, v ∈ V (G). Our
claim is that u, v are those vertices of G for which N(u) \ {v} = N(v) \ {u}.
Suppose on contrary N(u) \ {v} ≠ N(v) \ {u}, then there exists a vertex
w ∈ T such that w is adjacent to one of the vertices u or v. Without loss
of generality, let w be adjacent to u but not adjacent to v. Let a non-trivial
automorphism g ∈ stab(T ) (such a non-trivial automorphism exists because T
is not a fixing set). Since g is non-trivial and V (G) \ T = {u, v}, g(u) = v.
But u cannot map to v under g, because g ∈ stab(w) and w is adjacent with
u and not adjacent to v. Hence, g also fixes u and v, i.e., g ∈ stab{u, v}
and consequently g becomes trivial. Hence, stab(T ) is trivial, a contradiction.
Thus, N(u) \ {v} = N(v) \ {u}. □
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The following theorem given in [3] is useful for the proof of Corollary 2.6.

Theorem 2.5 ([3]). Let G be a connected graph of order n. Then
fix(G) = n− 1 if and only if G = Kn.

Corollary 2.6. Let G be a graph of order n and G ̸= Kn. If G is (n − 1)-
fixed graph, then for each pair of distinct vertices u, v ∈ V (G), N(u)\{v} ̸=
N(v)\{u}.

Proof. Let N(u)\{v} = N(v)\{u} for some u, v ∈ V (G). Then by Theorem
2.4, fxd(G) = n − 1. Since G ̸= Kn, therefore by Theorem 2.5, fix(G) ̸=
n− 1 = fxd(G). Hence, G is not (n− 1)-fixed. □

The fixing polynomial, F (G, x) =
∑n

i=fix(G) αix
i, of a graph G of order n

is a generating function of sequence {αi} (fix(G) ≤ i ≤ n), where αi is the
number of fixing subsets of G with the cardinality i. For more detail about
fixing polynomial, see [9] where we discussed properties of fixing polynomial
and found it for different families of graphs. For example F (C3, x) = x3 +3x2,
where C3 is the cyclic graph of order 3.

Theorem 2.7. Let G be a k-fixed graph of order n. Then,

F (G, x) =

n∑
i=k

(
n

i

)
xi.

Proof. Since fix(G) = fxd(G) = k and superset of a fixing set is also a fixing
set, each subset of V (G) with the cardinality i (k ≤ i ≤ n) is a fixing set.
Hence, αi =

(
n
i

)
for each i, (k ≤ i ≤ n). □

Theorem 2.8. Let G be a graph of order n and fxd(G) = r. We can construct
a graph G′ of order n+ 1, from G such that fxd(G′) = r + 1.

Proof. Since fxd(G) = r, G has a non-fixing set A with the largest cardinality
|A| = r− 1. By Remark 2.2(ii), for each non-trivial g ∈ stab(A), there exist at
least one set B ⊂ V (G) \A such that u ∼g v for all distinct u, v ∈ B. Consider
B = {v1, v2, . . . , vl}. Take a K1 = {x} and join x with v1, v2, . . . , vl by edges
xv1, xv2, . . . , xvl. We call the new graph G′. This completes the construction
of G′. We shall now find a non-fixing subset of G′ with the largest cardinality.
Since, vi ∼g vj (i ̸= j, 1 ≤ i, j ≤ l) in G and x is adjacent to v1, v2, . . . , vl in
G′. Therefore, we can find a g′ ∈ Aut(G′) such that

g′(u) =

{
x if u = x,
g(u) if u ̸= x

in G′. Clearly, g′ ∈ stab(x)∩ stab(A) = stab({x} ∪A) and vi ∼g′
vj (i ̸= j, 1 ≤

i, j ≤ l) in G′. Since, g′ is non-trivial and A is a non-fixing set of G with the
largest cardinality, A∪{x} is a non-fixing set of G′ with the largest cardinality.
Hence, by Remark 2.2(i), fxd(G′) = |A ∪ {x}|+ 1 = r + 1. □
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The following lemma is useful for finding the fixing number of a tree.

Lemma 2.9 ([4]). Let T be a tree and F ⊂ V (T ), then F fixes T if and only
if F fixes the end vertices of T .

Theorem 2.10. For every integers p and q with 2 ≤ p ≤ q, there exists a
graph G with fix(G) = p and fxd(G) = q.

Proof. For p = q, G = Kp+1 will have the desired property. So we consider
2 ≤ p < q. Consider a graph G obtained from a path w1, w2, . . . , wq−p. Add
p+1 vertices u1, u2, . . . , up+1 and p+1 edges w1u1, w1u2, . . . , w1up+1 with w1.
Thus, |V (G)| = q+1. Consider the set F ⊂ V (G), F = {u1, u2, . . . , up}, then F
fixes the set of end vertices {u1, u2, . . . , up, up+1} of G. As G is a tree and wp−q

is a fixed end vertex, therefore F fixes G by Lemma 2.9. Since F is a fixing
set of G with the minimum cardinality, fix(G) = |F | = p. Also, fxd(G) = q
because U = {w1, w2, . . . , wq−p, u1, u2, . . . , up−1} is the largest non-fixing set
with the cardinality q − 1. □

3. The fixing graph

Let G be a connected graph. The set of fixed vertices of G has no con-
tribution in constructing the fixing sets of G, therefore we define a vertex
set S(G) = {v ∈ V (G) : v ∼ u for some u(̸= v) ∈ V (G)} (set of all ver-
tices of G which are more than one vertex in their orbits). Also consider
Vs(G) = {(u, v) : u ∼ v (u ̸= v) and u, v ∈ V (G)}. If G is an asymmet-
ric graph, then assume that Vs(G) = ∅. Let x ∈ V (G), an arbitrary au-
tomorphism g ∈ stab(x) is said to fix a pair (u, v) ∈ Vs(G), if u ̸∼g v. If
(u, v) ̸∈ Vs(G), then u ̸∼ v, and hence, question of fixing pair (u, v) by a
g ∈ stab(x), has no sense. In this section, we use r and s to denote |S(G)|
and |Vs(G)| respectively. It is clear that r ≤ n and r

2 ≤ s ≤
(
r
2

)
≤

(
n
2

)
where s attains its lower bound in the later inequality in the case, when
r is even and the pair (u, v) is only fixed by automorphisms in stab{u, v}
for all (u, v) ∈ Vs(G). Consider the graph G2 in Figure 1 where r = 6
and s = 7. G2 has a fixed vertex v1, S(G2) = {v2, v3, v4, v5, v6, v7} and
Vs(G2) = {(v2, v3), (v4, v5), (v4, v6), (v4, v7), (v5, v6), (v5, v7), (v6, v7)}. Since su-
perset of a fixing set is also a fixing set, we are interested in a fixing set with
the minimum cardinality. The following remarks tell us the relation between a
fixing set F and S(G).

Remark 3.1. Let G be a graph. A set F ⊂ V (G) is a fixing set of G with the
minimum cardinality, if F ⊂ S(G) and an arbitrary g ∈ stab(F ) fixes S(G).

The Fixing Graph, D(G), of a graph G is a bipartite graph with bipartition
(S(G), Vs(G)). A vertex x ∈ S(G) is adjacent to a pair (u, v) ∈ Vs(G), if u ̸∼g v
for g ∈ stab(x). Let F ⊆ S(G), then ND(G)(F ) = {(x, y) ∈ Vs(G)| x ̸∼g y for
g ∈ stab(F )}. In the fixing graph, D(G), the minimum cardinality of a subset F
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Figure 2. The fixing graph of G2

of S(G) such that ND(G)(F ) = Vs(G) is the fixing number of G. Figure 2 shows
the fixing graph of graph G2 given in Figure 1. Since, ND(G2)(v) ̸= Vs(G2) for
all v ∈ V (G2) and ND(G2){v4, v6} = Vs(G2), {v4, v6} is a fixing set of G2 with
the minimum cardinality, and hence, fix(G2) = 2.

Remark 3.2. Let G be graph and F ⊂ S(G) be a fixing set of G, then
ND(G)(F ) = Vs(G).

Also, {v1, v2, v3, v4, v5} is a non-fixing set of G2 with the largest cardinality.
In fact, every non-fixing set with the largest cardinality must have fixed vertex
v1. Therefore, we have the following proposition.

Proposition 3.3. Let G be a graph and A be a non-fixing subset of G with the
largest cardinality. Then, A contains all fixed vertices of G.

Proof. Let x ∈ V (G) be an arbitrary fixed vertex of G. Suppose on contrary
x ̸∈ A. Then stab(A∪{x}) = stab(A)∩stab(x) = stab(A)∩Aut(G) = stab(A) ̸=
{id} (A is non-fixing set). Consequently, A ∪ {x} is a non-fixing set with the
largest cardinality, a contradiction. □

Let t be the minimum number such that 1 ≤ t ≤ r and every t-subset F of
S(G) has ND(G)(F ) = Vs(G), then t is helpful in finding the fixed number of a
graph G. The following theorem gives a way of finding the fixed number of a
graph using its fixing graph.

Theorem 3.4. Let G be a graph of order n and t (1 ≤ t ≤ r) be the minimum
number such that every subset of S(G) with the cardinality t, has neighborhood
Vs(G) in D(G). Then,

fxd(G) = t+ |V (G) \ S(G)|.
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Proof. We find a non-fixing subset T of V (G) with the largest cardinality. By
Proposition 3.3, T contains the set of fixed vertices V (G) \ S(G). Moreover,
by hypothesis, there is a subset U of S(G) with the cardinality t− 1, such that
ND(G)(U) ̸= Vs(G). Then, U is a non-fixing set of G, and hence, {V (G) \
S(G)}∪U is a non-fixing set. Also, {V (G) \S(G)}∪U is a non-fixing set of G
with the largest cardinality, because by hypothesis, a subset of S(G) with the
cardinality t, forms a fixing set of G. Further {V (G) \ S(G)} ∩ U = ∅. Hence,
by Remark 2.2(i),

fxd(G) = |V (G) \ S(G)|+ |U |+ 1 = |V (G) \ S(G)|+ t.

□

In [8], we found an upper bound on the cardinality of the edge set E(D(G))
of the fixing graph D(G) of a graph G.

Proposition 3.5 ([8]). Let G be a k-fixed graph of order n, then

(3.1) |E(D(G))| ≤ n(

(
n

2

)
− k + 1).

Now, we find a lower bound on |E(D(G))|.

Proposition 3.6. Let G be a k-fixed graph of order n, then

(
r

2
)(r − k + 1) ≤ |E(D(G))|.

Proof. Let z ∈ Vs(G) and A be a set of the vertices of S(G) which are not
adjacent to z. Since ND(G)(A) ̸= Vs(G), A is a non-fixing set of G. Our
claim is degD(G)(z) ≥ r − k + 1. Suppose degD(G)(z) ≤ r − k, then |A| ≥ k,
which contradicts that fxd(G) = k (A is non-fixing set with |A| ≥ k). Thus,
degD(G)(z) ≥ r − k + 1 and consequently,

(3.2) (
r

2
)(r − k + 1) ≤ s(r − k + 1) ≤ |E(D(G))|.

□

Thus, on combining (3.1) and (3.2) we get

(3.3) (
r

2
)(r − k + 1) ≤ |E(D(G))| ≤ n(

(
n

2

)
− k + 1).

Theorem 3.7. If G is a k-fixed graph and |S(G)| = r, then either k ≤ 3 or
k ≥ r − 1.

Proof. For each R ⊆ S(G), let ND(G)(R) = Vs(G)\ND(G)(R). We claim that,

if R, T ⊆ S(G) with |R| = |T | = k−1 and R ̸= T , thenND(G)(R)∩ND(G)(T ) =

∅. Otherwise, there exists a pair {y, z} ∈ ND(G)(R) ∩ ND(G)(T ). Therefore,
{y, z} /∈ ND(G)(R ∪ T ), and hence, R ∪ T is not a fixing set of G. Since,
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R ̸= T , |R ∪ T | > |T | = k − 1, which contradicts that fxd(G) = k. Thus,
ND(G)(R) ∩ND(G)(T ) = ∅.

Since fix(G) = k, for each R ⊆ S(G) with |R| = k − 1, ND(G)(R) ̸= ∅.
Now, let Ω = {R ⊆ S(G) : |R| = k − 1}. Therefore,

|
∪
R∈Ω

ND(G)(R)| =
∑
R∈Ω

|ND(G)(R)| ≥
∑
R∈Ω

1 =

(
r

k − 1

)
.

On the other hand,
∪

R∈Ω ND(G)(R) ⊆ Vs(G). Hence, |
∪

R∈Ω ND(G)(R)| ≤
s ≤

(
r
2

)
. Consequently,

(
r

k−1

)
≤

(
r
2

)
. If r ≤ 4, then k ≤ 3. Now, let r ≥ 5.

Thus, 2 ≤ r+1
2 . We know that for each a, b ≤ n+1

2 ,
(
r
a

)
≤

(
r
b

)
if and only if a ≤ b.

Therefore, if k− 1 ≤ r+1
2 , then k− 1 ≤ 2, which implies k ≤ 3. If k− 1 ≥ r+1

2 ,

then r − k + 1 ≤ r+1
2 . Since,

(
r

r−k+1

)
=

(
r

k−1

)
, we have

(
r

r−k+1

)
≤

(
r
2

)
and

consequently, r − k + 1 ≤ 2, which yields k ≥ r − 1. □

4. The distance-transitive graph

We now study the fixed number in a class of graphs known as the distance-
transitive graphs. A graph G is called distance-transitive, if u, v, x, y ∈ V (G)
satisfying d(u, v) = d(x, y), then there exist an automorphism g ∈ Aut(G) such
that u ∼g x and v ∼g y. For example, the complete graph Kn, the cyclic
graph Cn, the Petersen graph, the Johnson graph etc, are distance-transitive.
For more about distance-transitive graphs see [1]. In this section, we use the
terminology as described in Section 3 related to the fixing graph D(G) of a
graph G. The following proposition given in [1] tells that the distance transitive
graph does not have fixed vertices.

Proposition 4.1 ([1]). A distance-transitive graph is vertex transitive.

Thus, if G is a distance-transitive graph, then S(G) = V (G), r = n and
Vs(G) consists of all

(
n
2

)
pairs of vertices of G (i.e., s =

(
n
2

)
).

Corollary 4.2. Let G be a distance-transitive graph of order n. If G is k-fixed,
then either k ≤ 3 or k ≥ n− 1.

Proof. Since r = n for a distance-transitive graph, the result follows from
Theorem 3.7. □

Moreover, an expression for bounds on |E(D(G))| of a distance-transitive
and k-fixed graph G can be obtained by putting r = n and s =

(
n
2

)
in (3.2)

and use the result in (3.3), we get

(4.1)

(
n

2

)
(n− k + 1) ≤ |E(D(G))| ≤ n(

(
n

2

)
− k + 1).

The following two results given in [7] are useful in our later work.
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Observation 4.3 ( [7]). Let n1, . . . , nr and n be positive integers, with∑r
i=1 ni = n. Then,

∑r
i=1

(
ni

2

)
is minimum if and only if |ni−nj | ≤ 1, for each

1 ≤ i, j ≤ r.

Lemma 4.4 ([7]). Let n, p1, p2, q1, q2, r1 and r2 be positive integers, such that
n = piqi + ri and ri < pi, for 1 ≤ i ≤ 2. If p1 < p2, then
(p1 − r1)

(
q1
2

)
+ r1

(
q1+1
2

)
≥ (p2 − r2)

(
q2
2

)
+ r2

(
q2+1
2

)
.

We define a partition of V (G) with respect to v ∈ V (G), into the distance
classes Ψi(v) (1 ≤ i ≤ e(v)) defined as: Ψi(v) = {x ∈ V (G)| d(v, x) = i} .

Proposition 4.5. Let G be a distance-transitive graph and v, x, y ∈ V (G).
Then x, y ∈ Ψi(v) for some i (1 ≤ i ≤ e(v)) if and only if v is non-adjacent to
the pair (x, y) ∈ Vs(G) in D(G).

Proof. Let x, y ∈ Ψi(v) for some i (1 ≤ i ≤ e(v)), then d(v, x) = d(v, y) = i
and by definition of distance-transitive graph, there exists an automorphism
g ∈ Aut(G) such that v ∼g v and x ∼g y. Thus, x ∼g y by an automorphism
g ∈ stab(v) and consequently, the pair (x, y) is not adjacent to v in D(G).

Conversely, suppose v is non-adjacent to pair (x, y) ∈ Vs(G), then x ∼g y
by an arbitrary g ∈ stab(v). Since g is an isometry, d(v, x) = d(g(v), g(x)) =
d(v, y) = i (say). Thus, x, y are in the same distance class Ψi(v). □

Proposition 4.6. Let G be a distance-transitive graph of order n. If G is

k-fixed, then for each v ∈ V (G), degD(G)(v) =
(
n
2

)
−

∑e(v)
i=1

(|Ψi(v)|
2

)
.

Proof. By Propositon 4.5, the only pairs (x, y) ∈ Vs(G) which are non-adjacent
to v ∈ V (G) are those in which both x, y belong to the same distance class Ψi(v)
for each i (1 ≤ i ≤ e(v)). So the number of such pairs in Vs(G) which are not

adjacent to v is
∑e(v)

i=1

(|Ψi(v)|
2

)
. Therefore, degD(G)(v) =

(
n
2

)
−

∑e(v)
i=1

(|Ψi(v)|
2

)
□

Thus, an expression for |E(D(G))| can be obtained using Proposition 4.6,
(4.2)

|E(D(G))| =
∑

v∈V (G)

[

(
n

2

)
−

e(v)∑
i=1

(
|Ψi(v)|

2

)
] = n

(
n

2

)
−

∑
v∈V (G)

e(v)∑
i=1

(
|Ψi(v)|

2

)
From (4.1) and (4.2) we obtain

(4.3) n(k − 1) ≤
∑

v∈V (G)

e(v)∑
i=1

(
|Ψi(v)|

2

)
≤

(
n

2

)
(k − 1).

Theorem 4.7. Let G be a distance-transitive graph of order n and diameter
d. If G is k-fixed, then k ≥ n−1

d .
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Proof. Note that, for each v ∈ V (G), |
∪e(v)

i=1 Ψi(v)| = n − 1. For v ∈ V (G),
let n − 1 = q(v)e(v) + r(v), where 0 ≤ r(v) < e(v). Then, by Observation

4.3,
∑e(v)

i=1

(|Ψi(v)|
2

)
is minimum if and only if | |Ψi(v)| − |Ψj(v)| | ≤ 1, where

1 ≤ i, j ≤ e(v). This condition will be satisfied, if there are r(v) distance classes
having q(v) + 1 vertices and e(v)− r(v) distance classes having q(v) vertices.
Thus, the number of the pairs of vertices in Ψi(v) having q(v) + 1 vertices

is r(v)
(
q(v)+1

2

)
and the number of the pairs of vertices in Ψi(v) having q(v)

vertices is (e(v)− r(v))
(
q(v)
2

)
. Thus,

(4.4) (e(v)− r(v))

(
q(v)

2

)
+ r(v)

(
q(v) + 1

2

)
≤

e(v)∑
i=1

(
|Ψi(v)|

2

)
.

Let w ∈ V (G) with e(w) = d, r(w) = r, and q(w) = q, then n − 1 = qd + r.
Since, for each v ∈ V (G), e(v) ≤ e(w), by Lemma 4.4,

(d− r)
(
q
2

)
+ r

(
q+1
2

)
≤ (e(v)− r(v))

(
q(v)
2

)
+ r(v)

(
q(v)+1

2

)
. Therefore,

n[(d− r)

(
q

2

)
+ r

(
q + 1

2

)
] ≤

∑
v∈V (G)

[(e(v)− r(v))

(
q(v)

2

)
+ r(v)

(
q(v) + 1

2

)
].

Thus, by relation (4.3) and (4.4)

n[(d− r)

(
q

2

)
+ r

(
q + 1

2

)
] ≤

∑
v∈V (G)

e(v)∑
i=1

(
|Ψi(v)|

2

)
≤

(
n

2

)
(k − 1).

Hence, q[(d−r)(q−1)+r(q+1)] ≤ (n−1)(k−1), which implies, q[(r−d)+(d−
r)q+ r(q+1)] ≤ (n− 1)(k− 1). Therefore, q(r−d)+ q(n− 1) ≤ (n− 1)(k− 1).
Since, q = ⌊n−1

d ⌋, we have

k−1 ≥ q+q
r − d

n− 1
= q+

qr

n− 1
− qd

n− 1
= q+

qr

n− 1
−

⌊n−1
d ⌋d

n− 1
≥ q+

qr

n− 1
−1.

Thus, k ≥ ⌊n−1
d ⌋ + qr

n−1 . Note that, qr
n−1 ≥ 0. If qr

n−1 > 0, then k ≥ ⌈n−1
d ⌉,

since k is an integer. If qr
n−1 = 0, then r = 0 and consequently, d divides n− 1.

Thus, ⌊n−1
d ⌋ = ⌈n−1

d ⌉. Therefore, k ≥ ⌈n−1
d ⌉ ≥ n−1

d . □
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