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ABSTRACT. A set of vertices S of a graph G is called a fixing set of G,
if only the trivial automorphism of G fixes every vertex in S. The fixing
number of a graph is the smallest cardinality of a fixing set. The fixed
number of a graph G is the minimum k, such that every k-set of vertices
of G is a fixing set of G. A graph G is called a k-fixed graph, if its
fixing number and fixed number are both k. In this paper, we study the
fixed number of a graph and give a construction of a graph of higher
fixed number from a graph of lower fixed number. We find the bound
on k in terms of the diameter d of a distance-transitive k-fixed graph.
Keywords: Fixing set, stabilizer, fixing number, fixed number.
MSC(2010): Primary: 05C25; Secondary: 05C60.

1. Introduction

Let G = (V(G), E(G)) be a connected graph of order n. The degree of a
vertex v in G, denoted by degq(v), is the number of edges that are incident to
v in G. The distance between two vertices x and y, denoted by d(z,y), is the
shortest length of a path between z and y in G. The eccentricity of a vertex
r € V(G) is e(r) =max,cy (¢ d(r,y) and the diameter of G is max,cy (a)e(z).
For a vertex v € V(G), the neighborhood of v, denoted by Ng(v), is the set of
all vertices adjacent to v in G.

An automorphism of G, g : V(G) — V(QG), is a permutation on V(G) such
that g(u)g(v) € E(G) if and only if uv € E(G), i.e., the adjacency is preserved
under automorphism g. The set of all such permutations for a graph G forms
a group under the operation of composition of permutations. It is called the
automorphism group of G, denoted by Aut(G) which is a subgroup of symmetric
group S,, the group of all permutations on n vertices. A graph G with the
trivial automorphism group is called a rigid or asymmetric graph and such a
graph has no symmetries. In this paper, all graphs (unless stated otherwise)
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have non-trivial automorphism group i.e., Aut(G) # {id}. Let u,v € V(G),
we say u is similar to v, denoted by u ~ v (or more specifically u ~9 v) if
there is an automorphism g € Aut(G) such that g(u) = v. It can be seen
that the similarity is an equivalence relation on the vertices of GG, and hence,
it partitions the vertex set V(G) into disjoint equivalence classes, called orbits
of G. The orbit of a vertex v is defined as O(v) = {u € V(G)|u ~ v}. The
idea of fixing sets was introduced by Erwin and Harary in [4]. They used
the following terminology: The stabilizer of a vertex v € V(G) is defined as,
stab(v) = {f € Aut(G)|f(v) = v}. The stabilizer of a set of vertices FF C V(G)
is defined as, stab(F) = {f € Aut(G)|f(v) = v for all v € F} = Nyepstab(v).
A vertex v is fized by an automorphism g € Aut(G), if g € stab(v). A set of
vertices F' is a fizing set, if stab(F') is trivial, i.e., the only automorphism that
fixes all vertices of F'is the trivial automorphism. The smallest cardinality of a
fixing set is called the fizing number of G and it is denoted by fiz(G). We shall
refer a set of vertices A C V(G) for which stab(A) \ {id} # 0 as a non-fizing
set. A vertex v € V(G) is called a fized vertex, if stab(v) = Aut(G). Every
graph has a fixing set. Trivially, the set of vertices itself is a fixing set. It is
also clear that a set containing all but one vertex is a fixing set. The following
theorem gives a relation between orbits and stabilizers.

Theorem 1.1 (Orbit-Stabilizer Theorem). Let G be a connected graph and
v e V(Q),
[Aut(G)| = [O(v)][stabau(c) (v)]-

Boutin introduced determining set of a graph in [2]. A set D C V(G) is said
to be a determining set for G, if whenever g, h € Aut(G) so that g(z) = h(zx)
for all x € D, then g(v) = h(v) for all v € V(G). The minimum cardinality of
a determining set of a graph G, denoted by Det(G), is called the determining
number of G. The following lemma given in [5] shows the equivalence between
definitions of fixing set and determining set.

Lemma 1.2 ([5]). A set of vertices is a fizing set if and only if it is a deter-
mining set.

Thus, notions of the fixing number and the determining number of a graph
G are same.

Jannesari and Omoomi have discussed the properties of resolving graphs and
randomly k-dimensional graphs in [7] and [6], which were based on the well-
known graph notions resolving number and metric dimension. In this paper,
we define the fixed number of a graph, fixing graph and k-fixed graphs. We
discuss the properties of these graphs in the context of fixing sets and the fixing
number.

The fized number of a graph G, fxd(G), is the minimum k& such that every k-
set of vertices is a fixing set of G. It may be noted that 0 < fiz(G) < fzd(G) <
n — 1. A graph is said to be a k-fized graph, if fiz(G) = fxzd(G) = k. In this
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paper, the fixed number &, remains in the focus of our attention. A path graph
of even order is a 1-fixed graph. Similarly, a cyclic graph of odd order is a
2-fixed graph. We give a construction of a graph with fzd(G) = r + 1 from
a graph with fzd(G) = r in Theorem 2.8. Also, a characterization of k-fixed
graphs is given in Theorem 3.7.

2. The fixed number

Consider the graph G; depicted in Figure 1. It is clear that Aut(G) =
{e,(12)(34)(56)}. Also, stab(v) = {id} for all v € V(G). Thus, {v} for each

(a) Graph G| (a) Graph G,

FIGURE 1.

v € V(G) forms a fixing set for G. Hence, fiz(G) = fzd(G) = 1 and G is
1-fixed graph. Thus, we have the following proposition immediately from the
definition of fixing set.
Proposition 2.1. Let G be a connected graph and fzd(G) =1, then

(i) |OW)| = |Aut(GQ)| for allv € V(G).

(ii) G does not have fized vertices.

Proof. (i) Since, |stab(v)| = 1 for all v € V(G), therefore the result follows from
Theorem 1.1. (ii) As stab(v) = Aut(G) for a fixed vertex v € V(G), therefore
{v} does not form a fixing set for G. O

The problem of ‘finding the minimum & such that every k-subset of vertices
of G is a fixing set of G’ is equivalent to the problem of ‘finding the maximum
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r such that there exist an r-subset of vertices of G which is not a fixing set
of G’. Thus, the largest cardinality of a non-fixing set in a graph G helps in
finding the fixed number of G. We can see r = 0 and r = 5 for the graphs
G1 and G5 in Figure 1, respectively. Now, consider the graph G5 in Figure 1.
Here, A = {v1, v2, v3,v4,v5} is a non-fixing set with the largest cardinality and
g = (vgv7) € stab(A) is the only non-trivial automorphism in stab(A). Thus,
there exist a set B = {vg,v7} C V(G) \ A such that vg ~9 v7. In fact, for each
non-fixing set A and each non-trivial automorphism g € stab(A), there exist at
least one set B C V(G) \ A such that v ~9 v for all distinct u,v € B. Thus,
we have the following remark about non-fixing sets.

Remark 2.2. Let G be a graph of order n.

(i) If r (0 <r < n—2) be the largest cardinality of a non-fixing subset of
G, then fzd(G) =r+ 1.

(ii) Let A be a non-fixing set of G. For each non-trivial g € stab(A) there
exist at least one set B C V(G) \ A such that u ~9 v for all distinct
u,v € B.

Proposition 2.3. Let G be a graph and u,v € V(G) such that N(v)\{u} =
N(u)\{v}. Let F be a fixing set of G, then either w or v is in F.

Proof. Let u,v € V(G) such that N(v)\{u} = N(u)\{v}. Suppose on contrary,
both w and v are not in F'. As u and v have common neighbors and u,v € F', so
there exists an automorphism g € Aut(G) such that g € stab(F') and g(u) = v.
Hence, stab(F) has a non-trivial automorphism, a contradiction. O

Theorem 2.4. Let G be a connected graph of order n. Then,
fzd(G) =n—1 if and only if N(v)\{u} = N(u)\{v} for some u,v € V(G).

Proof. Let u,v € V(G) such that N(v)\{u} = N(u)\{v}. Suppose on contrary
that fzd(G) < n—2, then V(G)\{u, v} is a fixing set for G. But, by Proposition
2.3, every fixing set contains either v or v. This contradiction implies that,
fzd(G) =n—1.

Conversely, let fxd(G) = n — 1. Then, there exists a non-fixing subset T" of
V(G) with |T| =n — 2. Assume T = V(G) \ {u,v} for some u,v € V(G). Our
claim is that u,v are those vertices of G for which N(u) \ {v} = N(v) \ {u}.
Suppose on contrary N(u) \ {v} # N(v) \ {u}, then there exists a vertex
w € T such that w is adjacent to one of the vertices u or v. Without loss
of generality, let w be adjacent to u but not adjacent to v. Let a non-trivial
automorphism g € stab(T) (such a non-trivial automorphism exists because T
is not a fixing set). Since g is non-trivial and V(G) \ T = {u,v}, g(u) = v.
But u cannot map to v under g, because g € stab(w) and w is adjacent with
u and not adjacent to v. Hence, g also fixes v and v, i.e., g € stab{u,v}
and consequently g becomes trivial. Hence, stab(T) is trivial, a contradiction.
Thus, N(u) \ {v} = N(v) \ {u}. O
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The following theorem given in [3] is useful for the proof of Corollary 2.6.

Theorem 2.5 ([3]). Let G be a connected graph of order n. Then
fiz(G) =n—1 if and only if G = K.

Corollary 2.6. Let G be a graph of order n and G # K,. If G is (n — 1)-
fized graph, then for each pair of distinct vertices u,v € V(G), N(u)\{v} #
N(v)\{u}.

Proof. Let N(u)\{v} = N(v)\{u} for some u,v € V(G). Then by Theorem
2.4, fzd(G) = n — 1. Since G # K,, therefore by Theorem 2.5, fiz(G) #
n—1= fzd(G). Hence, G is not (n — 1)-fixed. O

The fixing polynomial, F(G,z) = Z?:fm(G) a;z%, of a graph G of order n
is a generating function of sequence {a;} (fiz(G) < i < n), where «; is the
number of fixing subsets of G with the cardinality i. For more detail about
fixing polynomial, see [9] where we discussed properties of fixing polynomial
and found it for different families of graphs. For example F(C3,x) = 23 + 322,
where Cj is the cyclic graph of order 3.

Theorem 2.7. Let G be a k-fixed graph of order n. Then,

n
n .
F = ‘.
(G, x) Z (Z>x
i=k
Proof. Since fiz(G) = fzd(G) = k and superset of a fixing set is also a fixing
set, each subset of V(G) with the cardinality ¢ (kK < i < n) is a fixing set.
Hence, o; = (?) for each i, (k < i <mn). O

Theorem 2.8. Let G be a graph of order n and fxd(G) =r. We can construct
a graph G' of order n+ 1, from G such that fzd(G') =r + 1.

Proof. Since fxd(G) = r, G has a non-fixing set A with the largest cardinality
|A] = r —1. By Remark 2.2(ii), for each non-trivial g € stab(A), there exist at
least one set B C V(G) \ A such that u ~9 v for all distinct u,v € B. Consider
B = {v1,va,...,v;}. Take a K1 = {2} and join z with vy,vq,...,v; by edges
U1, TV, ..., xv;. We call the new graph G’. This completes the construction
of G’. We shall now find a non-fixing subset of G’ with the largest cardinality.
Since, v; ~9 v; (i # j,1 < 4,5 <) in G and x is adjacent to vi,ve,...,v; in
G’. Therefore, we can find a ¢’ € Aut(G’) such that
, T if u=ux,
g(u)_{g(u) if utx
in G'. Clearly, ¢’ € stab(z) N stab(A) = stab({z} U A) and v; ~9 v; (i # j,1 <
i,7 <1) in G'. Since, ¢’ is non-trivial and A is a non-fixing set of G with the

largest cardinality, AU{z} is a non-fixing set of G’ with the largest cardinality.
Hence, by Remark 2.2(i), fad(G") = |[AU{z}+1=r+1. O
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The following lemma is useful for finding the fixing number of a tree.

Lemma 2.9 ([1]). Let T be a tree and F C V(T), then F fizes T if and only
if F' fizes the end vertices of T'.

Theorem 2.10. For every integers p and q with 2 < p < q, there exists a
graph G with fix(G) =p and fzd(G) = q.

Proof. For p = q, G = Kp41 will have the desired property. So we consider
2 < p < g. Consider a graph G obtained from a path wi,wa,...,ws—p. Add
p—+1 vertices uy,ug, ..., up+1 and p+1 edges wiur, wiug, ..., wWiUp+1 With wy.
Thus, |V(G)| = g+1. Consider the set F' C V(G), F = {u1,us,...,up}, then F
fixes the set of end vertices {u1,ug, ..., up, up41} of G. As G is a tree and wy_,
is a fixed end vertex, therefore F' fixes G by Lemma 2.9. Since F' is a fixing
set of G with the minimum cardinality, fiz(G) = |F| = p. Also, fzd(G) = ¢
because U = {wq,ws, ..., Wq—p, U1, U2, ..., Up_1} is the largest non-fixing set
with the cardinality ¢ — 1. O

3. The fixing graph

Let G be a connected graph. The set of fixed vertices of G has no con-
tribution in constructing the fixing sets of G, therefore we define a vertex
set S(G) = {v € V(G) : v ~ u for some u(# v) € V(G)} (set of all ver-
tices of G which are more than one vertex in their orbits). Also consider
Vs(G) = {(u,v) : u ~ v (u # v) and u,v € V(G)}. If G is an asymmet-
ric graph, then assume that Vi(G) = 0. Let x € V(G), an arbitrary au-
tomorphism g € stab(z) is said to firx a pair (u,v) € Vi(G), if u %9 v. If
(u,v) € Vs(G), then u 4 v, and hence, question of fixing pair (u,v) by a
g € stab(x), has no sense. In this section, we use r and s to denote |S(G)]
and |Vi(G)| respectively. It is clear that 7 < n and § < s < (g) < (g)
where s attains its lower bound in the later inequality in the case, when
r is even and the pair (u,v) is only fixed by automorphisms in stab{u,v}
for all (u,v) € V4(G). Consider the graph G2 in Figure 1 where r = 6
and s = 7. G9 has a fixed vertex vy, S(G2) = {v2,vs3,v4,v5,v6,v7} and
‘/S(GQ) = {(’UQa '1)3), (U47 ’U5), (1)4, Uﬁ)v (’U4a '07), (U57 vﬁ)a (1)5, U7)7 (’Uﬁa '07)}. Since su-
perset of a fixing set is also a fixing set, we are interested in a fixing set with
the minimum cardinality. The following remarks tell us the relation between a
fixing set F' and S(G).

Remark 3.1. Let G be a graph. A set F' C V(G) is a fixing set of G with the
minimum cardinality, if FF C S(G) and an arbitrary g € stab(F) fixes S(G).

The Fizing Graph, D(G), of a graph G is a bipartite graph with bipartition
(S(G), V5(@)). A vertex x € S(G) is adjacent to a pair (u,v) € V5(G), if u 49 v
for g € stab(x). Let FF C S(G), then Npg)(F) = {(z,y) € Vs(G)| = 49 y for
g € stab(F)}. In the fixing graph, D(G), the minimum cardinality of a subset F
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FI1GURE 2. The fixing graph of G2

of S(G) such that Npg)(F) = Vs(G) is the fixing number of G. Figure 2 shows
the fixing graph of graph Gy given in Figure 1. Since, Np(q,)(v) # Vis(G2) for
all v € V(G2) and Np(a,){vs,ve} = Vs(G2), {va,v6} is a fixing set of G with
the minimum cardinality, and hence, fiz(Gs3) = 2.

Remark 3.2. Let G be graph and F C S(G) be a fixing set of G, then
Np(e)(F) = Vi(G).

Also, {v1,v2,v3,v4,v5} is a non-fixing set of Go with the largest cardinality.
In fact, every non-fixing set with the largest cardinality must have fixed vertex
v1. Therefore, we have the following proposition.

Proposition 3.3. Let G be a graph and A be a non-fixing subset of G with the
largest cardinality. Then, A contains all fized vertices of G.

Proof. Let x € V(G) be an arbitrary fixed vertex of G. Suppose on contrary
x ¢ A. Then stab(AU{z}) = stab(A)Nstab(x) = stab(A)NAut(G) = stab(A) #
{id} (A is non-fixing set). Consequently, AU {z} is a non-fixing set with the
largest cardinality, a contradiction. (|

Let ¢t be the minimum number such that 1 <t < r and every t-subset F' of
S(G) has Np(g)(F) = V4(G), then t is helpful in finding the fixed number of a
graph G. The following theorem gives a way of finding the fixed number of a
graph using its fixing graph.

Theorem 3.4. Let G be a graph of order n and t (1 <t <r) be the minimum
number such that every subset of S(G) with the cardinality t, has neighborhood
Vs(G) in D(G). Then,

frd(G) =t +[V(G)\ S(G)].
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Proof. We find a non-fixing subset T of V(G) with the largest cardinality. By
Proposition 3.3, T' contains the set of fixed vertices V(G) \ S(G). Moreover,
by hypothesis, there is a subset U of S(G) with the cardinality ¢ — 1, such that
Np)(U) # Vi(G). Then, U is a non-fixing set of G, and hence, {V(G) \
S(G)}UU is a non-fixing set. Also, {V(G)\ S(G)}UU is a non-fixing set of G
with the largest cardinality, because by hypothesis, a subset of S(G) with the
cardinality ¢, forms a fixing set of G. Further {V(G) \ S(G)} NU = (). Hence,
by Remark 2.2(i),

frd(G) = [V(G)\ S(G)] + U]+ 1= [V(G)\ S(G)] + 1.
O

In [8], we found an upper bound on the cardinality of the edge set E(D(G))
of the fixing graph D(G) of a graph G.

Proposition 3.5 ([8]). Let G be a k-fized graph of order n, then
(3.1) B(D(G))] < n<(’;) k1),

Now, we find a lower bound on |E(D(G))|.

Proposition 3.6. Let G be a k-fixed graph of order n, then

() —k+1) < [E(D(@))]

Proof. Let z € V4(G) and A be a set of the vertices of S(G) which are not
adjacent to z. Since Np(g)(A) # Vi(G), A is a non-fixing set of G. Our
claim is degp(qy(z) > r — k + 1. Suppose degpay(z) < r — k, then |A] > F,
which contradicts that fzd(G) = k (A is non-fixing set with |A| > k). Thus,
degp(e)(z) > 7 — k4 1 and consequently,

(3.2) (g)(r—lﬁ—l) <s(r—k+1) < |[BE(D(Q))|.

Thus, on combining (3.1) and (3.2) we get
(3.3) () —k+1) < [E(D(@)]| < n<(;‘) —kt1).

Theorem 3.7. If G is a k-fized graph and |S(G)| = r, then either k < 3 or
k>r—1.

Proof. For each R C S(G), let N p(g)(R) = Vs(G)\Np(c)(R). We claim that,
it R, T C S(G) with |R| = |T| = k—1 and R # T, then N pc)(R)NN p(cy(T) =
0. Otherwise, there exists a pair {y,z} € Npz)(R) N Np)(T). Therefore,
{y,2} ¢ Np@)(RUT), and hence, RUT is not a fixing set of G. Since,
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R #T, |RUT| > |T| = k — 1, which contradicts that fxd(G) = k. Thus,
Npa)(R) N Np)(T) = 0.

Since fiz(G) = k, for each R C S(G) with |R| = k — 1, Np)(R) # 0.
Now, let 2 = {R C S(G) : |R| = k — 1}. Therefore,

U Noe®B) =D Npe(R) =D 1= (kil)

ReQ ReQ ReQ

On the other hand, Ugcq Np(e)(R) € Vi(G). Hence, |Ugeq Np(e)(R)| <
s < (g) Consequently, (kil) < (;) If r < 4, then & < 3. Now, let » > 5.
Thus, 2 < L. We know that for each a,b < 2L, (7) < (}) if and only if a < b.
Therefore, if k —1 < %, then £k —1 < 2, which implies £k < 3. If k—1 > %,
thenr —k+1< % Since, (T*£+1) = (kil), we have (r—£+1) < (;) and
consequently, r — k + 1 < 2, which yields & > r — 1. |

4. The distance-transitive graph

We now study the fixed number in a class of graphs known as the distance-
transitive graphs. A graph G is called distance-transitive, if u,v,z,y € V(G)
satisfying d(u,v) = d(z,y), then there exist an automorphism g € Aut(G) such
that v ~9 x and v ~9 y. For example, the complete graph K, the cyclic
graph C,,, the Petersen graph, the Johnson graph etc, are distance-transitive.
For more about distance-transitive graphs see [1]. In this section, we use the
terminology as described in Section 3 related to the fixing graph D(G) of a
graph G. The following proposition given in [1] tells that the distance transitive
graph does not have fixed vertices.

Proposition 4.1 ([1]). A distance-transitive graph is vertex transitive.

Thus, if G is a distance-transitive graph, then S(G) = V(G), r = n and

Vi(G) consists of all (3) pairs of vertices of G (i.e., s = (})).

Corollary 4.2. Let G be a distance-transitive graph of order n. If G is k-fixed,
then either k <3 ork>n—1.

Proof. Since r = n for a distance-transitive graph, the result follows from
Theorem 3.7. ]

Moreover, an expression for bounds on |E(D(G))| of a distance-transitive
and k-fixed graph G can be obtained by putting r = n and s = (}) in (3.2)
and use the result in (3.3), we get

n

(4.1) (Z)(n—k—&—l) < |E(D(Q))| < n(<2> —k+1).

The following two results given in [7] are useful in our later work.
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Observation 4.3 ([7]). Let ny,...,n, and n be positive integers, with
> yni =n. Then, >;_; () is minimum if and only if |n; —n;| < 1, for each
1<4,5<r.

Lemma 4.4 ([7]). Let n,p1,p2,q1,q2,71 and ro be positive integers, such that
n=pq+r; andr; <p;, for 1 <i<2. Ifpy < pa, then
(pr=r0)(5) +71("57) = (2 —2)(%) +72("7).

We define a partition of V(G) with respect to v € V(G), into the distance
classes ¥;(v) (1 < i < e(v)) defined as: ¥;(v) = {z € V(G)| d(v,z) =i} .

Proposition 4.5. Let G be a distance-transitive graph and v,z,y € V(QG).
Then z,y € ¥;(v) for some i (1 <14 <e(v)) if and only if v is non-adjacent to
the pair (z,y) € V5(G) in D(G).

Proof. Let z,y € ¥;(v) for some ¢ (1 < i < e(v)), then d(v,z) = d(v,y) =i
and by definition of distance-transitive graph, there exists an automorphism
g € Aut(G) such that v ~9 v and & ~9 y. Thus, x ~9 y by an automorphism
g € stab(v) and consequently, the pair (z,y) is not adjacent to v in D(G).
Conversely, suppose v is non-adjacent to pair (z,y) € Vi(G), then z ~9 y
by an arbitrary g € stab(v). Since g is an isometry, d(v,x) = d(g(v),g(z)) =
d(v,y) =i (say). Thus, z,y are in the same distance class ¥;(v). O

Proposition 4.6. Let G be a distance-transitive graph of order n. If G is
k-fiwed, then for each v € V(G), degp gy (v) = (3) — set) GERLY

Proof. By Propositon 4.5, the only pairs (z,y) € Vi(G) which are non-adjacent
to v € V(G) are those in which both z, y belong to the same distance class ¥, (v)
for each i (1 < ¢ < e(v)). So the number of such pairs in V,(G) which are not

adjacent to v is Zf(:vl) (l%z(v)‘)- Therefore, degp(q) (v) = (’2’) - Zf(vl) (Wiz(v)l)

Thus, an expression for |[E(D(G))| can be obtained using Proposition 4.6,
(4.2)

e(v) " e(v)
DN UE;G)[<2> - ; <|\IJZ2( )|>] ( ) e%(:c); ( )

From (4.1) and (4.2) we obtain

(4.3) < ¥ i ( ) (Z)(k ~1).

veV(G) i=1

Theorem 4.7. Let G be a distance-transitive graph of order n and diameter
d. If G is k-fized, then k > "771.
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Proof. Note that, for each v € V(G), |Ue(v) U;(v)] =n—1. For v € V(G),
let n — 1 = g(v)e(v) + r(v), where 0 < r(v) < e(v). Then, by Observation
4.3, Ze(v) (l‘Ij i)l ) is minimum if and only if | |¥;(v)| — [¥;(v)| | < 1, where
1 <4,j <e(v). This condition will be satisfied, if there are r(v) distance classes
having ¢(v) 4+ 1 vertices and e(v) — r(v) distance classes having g(v) vertices.
Thus, the number of the pairs of vertices in ¥;(v) having ¢(v) + 1 vertices
is r(v)(q(vz)ﬂ) and the number of the pairs of vertices in W¥;(v) having ¢(v)

vertices is (e(v) — r(v))(q(;)). Thus,

an e =) (")) () < Y ("4,

i=1
Let w € V(G) with e(w) = d, r(w) = r, and g(w) = ¢, then n — 1 = gd + r.
Since, for each v € V(G), e(v) < e(w), by Lemma 4.4,
(d—r) (g) + r(q—gl) < (e(v) - 7’(”))( (2U)) r(v )(Q(UQ)'H). Therefore,

a@-n(2)+r("3 N X tew - (") 1w ("))

veV(G)
Thus, by relation (4.3) and (4.4)

o)1= 3 5= (oo

Hence, g[(d—7)(¢—1)+7(g+1)] < (n—1)(k—1), which implies, ¢[(r —d)+ (d —
r)qg+r(g+1)] ISJ (n—1)(k—1). Therefore, g(r —d) +g(n—1) < (n—1)(k—1).
Since, ¢ = [ "7~ ], we have

r—d qr qd qr |2t ]d qr
-1> = — = ——d - > —1.
F _q+qn—1 q+n—1 n—1 q+n—1 n—1 _q+n—1
Thus, k > |21 + qu. Note that, > 0, then k > [21],
since k is an integer. If -5 =0, then r= 0 and consequently, d divides n — 1.
Thus, [271] = 2], Therefore,ka"qu”d . O
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