Bulletin of the

Iranian Mathematical Society

Vol. 43 (2017), No. 7, pp. 2281-2292

Title:

On the fixed number of graphs

Author(s):

I. Javaid, M. Murtaza, M. Asif and F. Iftikhar

Published by the Iranian Mathematical Society http://bims.ims.ir

ON THE FIXED NUMBER OF GRAPHS

I. JAVAID*, M. MURTAZA, M. ASIF AND F. IFTIKHAR
(Communicated by Ali Reza Ashrafi)

Abstract

A set of vertices S of a graph G is called a fixing set of G, if only the trivial automorphism of G fixes every vertex in S. The fixing number of a graph is the smallest cardinality of a fixing set. The fixed number of a graph G is the minimum k, such that every k-set of vertices of G is a fixing set of G. A graph G is called a k-fixed graph, if its fixing number and fixed number are both k. In this paper, we study the fixed number of a graph and give a construction of a graph of higher fixed number from a graph of lower fixed number. We find the bound on k in terms of the diameter d of a distance-transitive k-fixed graph. Keywords: Fixing set, stabilizer, fixing number, fixed number. MSC(2010): Primary: 05C25; Secondary: 05C60.

1. Introduction

Let $G=(V(G), E(G))$ be a connected graph of order n. The degree of a vertex v in G, denoted by $\operatorname{deg}_{G}(v)$, is the number of edges that are incident to v in G. The distance between two vertices x and y, denoted by $d(x, y)$, is the shortest length of a path between x and y in G. The eccentricity of a vertex $x \in V(G)$ is $e(x)=\max _{y \in V(G)} d(x, y)$ and the diameter of G is $\max _{x \in V(G)} e(x)$. For a vertex $v \in V(G)$, the neighborhood of v, denoted by $N_{G}(v)$, is the set of all vertices adjacent to v in G.

An automorphism of $G, g: V(G) \rightarrow V(G)$, is a permutation on $V(G)$ such that $g(u) g(v) \in E(G)$ if and only if $u v \in E(G)$, i.e., the adjacency is preserved under automorphism g. The set of all such permutations for a graph G forms a group under the operation of composition of permutations. It is called the automorphism group of G, denoted by $\operatorname{Aut}(G)$ which is a subgroup of symmetric group S_{n}, the group of all permutations on n vertices. A graph G with the trivial automorphism group is called a rigid or asymmetric graph and such a graph has no symmetries. In this paper, all graphs (unless stated otherwise)

[^0]have non-trivial automorphism group i.e., $\operatorname{Aut}(G) \neq\{i d\}$. Let $u, v \in V(G)$, we say u is similar to v, denoted by $u \sim v$ (or more specifically $u \sim^{g} v$) if there is an automorphism $g \in A u t(G)$ such that $g(u)=v$. It can be seen that the similarity is an equivalence relation on the vertices of G, and hence, it partitions the vertex set $V(G)$ into disjoint equivalence classes, called orbits of G. The orbit of a vertex v is defined as $\mathcal{O}(v)=\{u \in V(G) \mid u \sim v\}$. The idea of fixing sets was introduced by Erwin and Harary in [4]. They used the following terminology: The stabilizer of a vertex $v \in V(G)$ is defined as, $\operatorname{stab}(v)=\{f \in \operatorname{Aut}(G) \mid f(v)=v\}$. The stabilizer of a set of vertices $F \subseteq V(G)$ is defined as, $\operatorname{stab}(F)=\{f \in \operatorname{Aut}(G) \mid f(v)=v$ for all $v \in F\}=\cap_{v \in F} \operatorname{stab}(v)$. A vertex v is fixed by an automorphism $g \in \operatorname{Aut}(G)$, if $g \in \operatorname{stab}(v)$. A set of vertices F is a fixing set, if $\operatorname{stab}(F)$ is trivial, i.e., the only automorphism that fixes all vertices of F is the trivial automorphism. The smallest cardinality of a fixing set is called the fixing number of G and it is denoted by $\operatorname{fix}(G)$. We shall refer a set of vertices $A \subset V(G)$ for which $\operatorname{stab}(A) \backslash\{i d\} \neq \emptyset$ as a non-fixing set. A vertex $v \in V(G)$ is called a fixed vertex, if $\operatorname{stab}(v)=A u t(G)$. Every graph has a fixing set. Trivially, the set of vertices itself is a fixing set. It is also clear that a set containing all but one vertex is a fixing set. The following theorem gives a relation between orbits and stabilizers.

Theorem 1.1 (Orbit-Stabilizer Theorem). Let G be a connected graph and $v \in V(G)$,

$$
|A u t(G)|=|\mathcal{O}(v)|\left|s t a b_{\operatorname{Aut}(G)}(v)\right| .
$$

Boutin introduced determining set of a graph in [2]. A set $D \subseteq V(G)$ is said to be a determining set for G, if whenever $g, h \in \operatorname{Aut}(G)$ so that $g(x)=h(x)$ for all $x \in D$, then $g(v)=h(v)$ for all $v \in V(G)$. The minimum cardinality of a determining set of a graph G, denoted by $\operatorname{Det}(G)$, is called the determining number of G. The following lemma given in [5] shows the equivalence between definitions of fixing set and determining set.

Lemma 1.2 ([5]). A set of vertices is a fixing set if and only if it is a determining set.

Thus, notions of the fixing number and the determining number of a graph G are same.

Jannesari and Omoomi have discussed the properties of resolving graphs and randomly k-dimensional graphs in [7] and [6], which were based on the wellknown graph notions resolving number and metric dimension. In this paper, we define the fixed number of a graph, fixing graph and k-fixed graphs. We discuss the properties of these graphs in the context of fixing sets and the fixing number.

The fixed number of a graph $G, f x d(G)$, is the minimum k such that every k set of vertices is a fixing set of G. It may be noted that $0 \leq f i x(G) \leq f x d(G) \leq$ $n-1$. A graph is said to be a k-fixed graph, if $\operatorname{fix}(G)=f x d(G)=k$. In this
paper, the fixed number k, remains in the focus of our attention. A path graph of even order is a 1-fixed graph. Similarly, a cyclic graph of odd order is a 2-fixed graph. We give a construction of a graph with $\operatorname{fxd}(G)=r+1$ from a graph with $f x d(G)=r$ in Theorem 2.8. Also, a characterization of k-fixed graphs is given in Theorem 3.7.

2. The fixed number

Consider the graph G_{1} depicted in Figure 1. It is clear that $\operatorname{Aut}(G)=$ $\{e,(12)(34)(56)\}$. Also, $\operatorname{stab}(v)=\{i d\}$ for all $v \in V(G)$. Thus, $\{v\}$ for each

Figure 1.
$v \in V(G)$ forms a fixing set for G. Hence, $\operatorname{fix}(G)=f x d(G)=1$ and G is 1-fixed graph. Thus, we have the following proposition immediately from the definition of fixing set.

Proposition 2.1. Let G be a connected graph and $f x d(G)=1$, then
(i) $|\mathcal{O}(v)|=|A u t(G)|$ for all $v \in V(G)$.
(ii) G does not have fixed vertices.

Proof. (i) Since, $|\operatorname{stab}(v)|=1$ for all $v \in V(G)$, therefore the result follows from Theorem 1.1. (ii) As $\operatorname{stab}(v)=\operatorname{Aut}(G)$ for a fixed vertex $v \in V(G)$, therefore $\{v\}$ does not form a fixing set for G.

The problem of 'finding the minimum k such that every k-subset of vertices of G is a fixing set of G ' is equivalent to the problem of 'finding the maximum
r such that there exist an r-subset of vertices of G which is not a fixing set of G^{\prime}. Thus, the largest cardinality of a non-fixing set in a graph G helps in finding the fixed number of G. We can see $r=0$ and $r=5$ for the graphs G_{1} and G_{2} in Figure 1, respectively. Now, consider the graph G_{2} in Figure 1. Here, $A=\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right\}$ is a non-fixing set with the largest cardinality and $g=\left(v_{6} v_{7}\right) \in \operatorname{stab}(A)$ is the only non-trivial automorphism in $\operatorname{stab}(A)$. Thus, there exist a set $B=\left\{v_{6}, v_{7}\right\} \subset V(G) \backslash A$ such that $v_{6} \sim^{g} v_{7}$. In fact, for each non-fixing set A and each non-trivial automorphism $g \in \operatorname{stab}(A)$, there exist at least one set $B \subset V(G) \backslash A$ such that $u \sim^{g} v$ for all distinct $u, v \in B$. Thus, we have the following remark about non-fixing sets.

Remark 2.2. Let G be a graph of order n.
(i) If $r(0 \leq r \leq n-2)$ be the largest cardinality of a non-fixing subset of G, then $\operatorname{fxd}(G)=r+1$.
(ii) Let A be a non-fixing set of G. For each non-trivial $g \in \operatorname{stab}(A)$ there exist at least one set $B \subset V(G) \backslash A$ such that $u \sim^{g} v$ for all distinct $u, v \in B$.

Proposition 2.3. Let G be a graph and $u, v \in V(G)$ such that $N(v) \backslash\{u\}=$ $N(u) \backslash\{v\}$. Let F be a fixing set of G, then either u or v is in F.

Proof. Let $u, v \in V(G)$ such that $N(v) \backslash\{u\}=N(u) \backslash\{v\}$. Suppose on contrary, both u and v are not in F. As u and v have common neighbors and $u, v \notin F$, so there exists an automorphism $g \in A u t(G)$ such that $g \in \operatorname{stab}(F)$ and $g(u)=v$. Hence, $\operatorname{stab}(F)$ has a non-trivial automorphism, a contradiction.

Theorem 2.4. Let G be a connected graph of order n. Then,
$f x d(G)=n-1$ if and only if $N(v) \backslash\{u\}=N(u) \backslash\{v\}$ for some $u, v \in V(G)$.
Proof. Let $u, v \in V(G)$ such that $N(v) \backslash\{u\}=N(u) \backslash\{v\}$. Suppose on contrary that $f x d(G) \leq n-2$, then $V(G) \backslash\{u, v\}$ is a fixing set for G. But, by Proposition 2.3, every fixing set contains either u or v. This contradiction implies that, $f x d(G)=n-1$.

Conversely, let $f x d(G)=n-1$. Then, there exists a non-fixing subset T of $V(G)$ with $|T|=n-2$. Assume $T=V(G) \backslash\{u, v\}$ for some $u, v \in V(G)$. Our claim is that u, v are those vertices of G for which $N(u) \backslash\{v\}=N(v) \backslash\{u\}$. Suppose on contrary $N(u) \backslash\{v\} \neq N(v) \backslash\{u\}$, then there exists a vertex $w \in T$ such that w is adjacent to one of the vertices u or v. Without loss of generality, let w be adjacent to u but not adjacent to v. Let a non-trivial automorphism $g \in \operatorname{stab}(T)$ (such a non-trivial automorphism exists because T is not a fixing set). Since g is non-trivial and $V(G) \backslash T=\{u, v\}, g(u)=v$. But u cannot map to v under g, because $g \in \operatorname{stab}(w)$ and w is adjacent with u and not adjacent to v. Hence, g also fixes u and v, i.e., $g \in \operatorname{stab}\{u, v\}$ and consequently g becomes trivial. Hence, $\operatorname{stab}(T)$ is trivial, a contradiction. Thus, $N(u) \backslash\{v\}=N(v) \backslash\{u\}$.

The following theorem given in [3] is useful for the proof of Corollary 2.6.
Theorem 2.5 ([3]). Let G be a connected graph of order n. Then
fix $(G)=n-1$ if and only if $G=K_{n}$.
Corollary 2.6. Let G be a graph of order n and $G \neq K_{n}$. If G is $(n-1)$ fixed graph, then for each pair of distinct vertices $u, v \in V(G), N(u) \backslash\{v\} \neq$ $N(v) \backslash\{u\}$.

Proof. Let $N(u) \backslash\{v\}=N(v) \backslash\{u\}$ for some $u, v \in V(G)$. Then by Theorem 2.4, $f x d(G)=n-1$. Since $G \neq K_{n}$, therefore by Theorem 2.5, fix $(G) \neq$ $n-1=f x d(G)$. Hence, G is not $(n-1)$-fixed.

The fixing polynomial, $F(G, x)=\sum_{i=f i x(G)}^{n} \alpha_{i} x^{i}$, of a graph G of order n is a generating function of sequence $\left\{\alpha_{i}\right\}(\operatorname{fix}(G) \leq i \leq n)$, where α_{i} is the number of fixing subsets of G with the cardinality i. For more detail about fixing polynomial, see [9] where we discussed properties of fixing polynomial and found it for different families of graphs. For example $F\left(C_{3}, x\right)=x^{3}+3 x^{2}$, where C_{3} is the cyclic graph of order 3 .
Theorem 2.7. Let G be a k-fixed graph of order n. Then,

$$
F(G, x)=\sum_{i=k}^{n}\binom{n}{i} x^{i}
$$

Proof. Since $\operatorname{fix}(G)=f x d(G)=k$ and superset of a fixing set is also a fixing set, each subset of $V(G)$ with the cardinality $i(k \leq i \leq n)$ is a fixing set. Hence, $\alpha_{i}=\binom{n}{i}$ for each $i,(k \leq i \leq n)$.
Theorem 2.8. Let G be a graph of order n and $f x d(G)=r$. We can construct a graph G^{\prime} of order $n+1$, from G such that $f x d\left(G^{\prime}\right)=r+1$.
Proof. Since $f x d(G)=r, G$ has a non-fixing set A with the largest cardinality $|A|=r-1$. By Remark 2.2(ii), for each non-trivial $g \in \operatorname{stab}(A)$, there exist at least one set $B \subset V(G) \backslash A$ such that $u \sim^{g} v$ for all distinct $u, v \in B$. Consider $B=\left\{v_{1}, v_{2}, \ldots, v_{l}\right\}$. Take a $K_{1}=\{x\}$ and join x with $v_{1}, v_{2}, \ldots, v_{l}$ by edges $x v_{1}, x v_{2}, \ldots, x v_{l}$. We call the new graph G^{\prime}. This completes the construction of G^{\prime}. We shall now find a non-fixing subset of G^{\prime} with the largest cardinality. Since, $v_{i} \sim^{g} v_{j}(i \neq j, 1 \leq i, j \leq l)$ in G and x is adjacent to $v_{1}, v_{2}, \ldots, v_{l}$ in G^{\prime}. Therefore, we can find a $g^{\prime} \in \operatorname{Aut}\left(G^{\prime}\right)$ such that

$$
g^{\prime}(u)= \begin{cases}x & \text { if } u=x \\ g(u) & \text { if } u \neq x\end{cases}
$$

in G^{\prime}. Clearly, $g^{\prime} \in \operatorname{stab}(x) \cap \operatorname{stab}(A)=\operatorname{stab}(\{x\} \cup A)$ and $v_{i} \sim^{g^{\prime}} v_{j}(i \neq j, 1 \leq$ $i, j \leq l)$ in G^{\prime}. Since, g^{\prime} is non-trivial and A is a non-fixing set of G with the largest cardinality, $A \cup\{x\}$ is a non-fixing set of G^{\prime} with the largest cardinality. Hence, by Remark 2.2(i), fxd $\left(G^{\prime}\right)=|A \cup\{x\}|+1=r+1$.

The following lemma is useful for finding the fixing number of a tree.
Lemma 2.9 ([4]). Let T be a tree and $F \subset V(T)$, then F fixes T if and only if F fixes the end vertices of T.
Theorem 2.10. For every integers p and q with $2 \leq p \leq q$, there exists a graph G with $f i x(G)=p$ and $f x d(G)=q$.
Proof. For $p=q, G=K_{p+1}$ will have the desired property. So we consider $2 \leq p<q$. Consider a graph G obtained from a path $w_{1}, w_{2}, \ldots, w_{q-p}$. Add $p+1$ vertices $u_{1}, u_{2}, \ldots, u_{p+1}$ and $p+1$ edges $w_{1} u_{1}, w_{1} u_{2}, \ldots, w_{1} u_{p+1}$ with w_{1}. Thus, $|V(G)|=q+1$. Consider the set $F \subset V(G), F=\left\{u_{1}, u_{2}, \ldots, u_{p}\right\}$, then F fixes the set of end vertices $\left\{u_{1}, u_{2}, \ldots, u_{p}, u_{p+1}\right\}$ of G. As G is a tree and w_{p-q} is a fixed end vertex, therefore F fixes G by Lemma 2.9. Since F is a fixing set of G with the minimum cardinality, $f i x(G)=|F|=p$. Also, $f x d(G)=q$ because $U=\left\{w_{1}, w_{2}, \ldots, w_{q-p}, u_{1}, u_{2}, \ldots, u_{p-1}\right\}$ is the largest non-fixing set with the cardinality $q-1$.

3. The fixing graph

Let G be a connected graph. The set of fixed vertices of G has no contribution in constructing the fixing sets of G, therefore we define a vertex set $S(G)=\{v \in V(G): v \sim u$ for some $u(\neq v) \in V(G)\}$ (set of all vertices of G which are more than one vertex in their orbits). Also consider $V_{s}(G)=\{(u, v): u \sim v(u \neq v)$ and $u, v \in V(G)\}$. If G is an asymmetric graph, then assume that $V_{s}(G)=\emptyset$. Let $x \in V(G)$, an arbitrary automorphism $g \in \operatorname{stab}(x)$ is said to fix a pair $(u, v) \in V_{s}(G)$, if $u \not \chi^{g} v$. If $(u, v) \notin V_{s}(G)$, then $u \nsim v$, and hence, question of fixing pair (u, v) by a $g \in \operatorname{stab}(x)$, has no sense. In this section, we use r and s to denote $|S(G)|$ and $\left|V_{s}(G)\right|$ respectively. It is clear that $r \leq n$ and $\frac{r}{2} \leq s \leq\binom{ r}{2} \leq\binom{ n}{2}$ where s attains its lower bound in the later inequality in the case, when r is even and the pair (u, v) is only fixed by automorphisms in $\operatorname{stab}\{u, v\}$ for all $(u, v) \in V_{s}(G)$. Consider the graph G_{2} in Figure 1 where $r=6$ and $s=7$. $\quad G_{2}$ has a fixed vertex $v_{1}, S\left(G_{2}\right)=\left\{v_{2}, v_{3}, v_{4}, v_{5}, v_{6}, v_{7}\right\}$ and $V_{s}\left(G_{2}\right)=\left\{\left(v_{2}, v_{3}\right),\left(v_{4}, v_{5}\right),\left(v_{4}, v_{6}\right),\left(v_{4}, v_{7}\right),\left(v_{5}, v_{6}\right),\left(v_{5}, v_{7}\right),\left(v_{6}, v_{7}\right)\right\}$. Since superset of a fixing set is also a fixing set, we are interested in a fixing set with the minimum cardinality. The following remarks tell us the relation between a fixing set F and $S(G)$.
Remark 3.1. Let G be a graph. A set $F \subset V(G)$ is a fixing set of G with the minimum cardinality, if $F \subset S(G)$ and an arbitrary $g \in \operatorname{stab}(F)$ fixes $S(G)$.

The Fixing Graph, $D(G)$, of a graph G is a bipartite graph with bipartition $\left(S(G), V_{s}(G)\right)$. A vertex $x \in S(G)$ is adjacent to a pair $(u, v) \in V_{s}(G)$, if $u \chi^{g} v$ for $g \in \operatorname{stab}(x)$. Let $F \subseteq S(G)$, then $N_{D(G)}(F)=\left\{(x, y) \in V_{s}(G) \mid x \not \chi^{g} y\right.$ for $g \in \operatorname{stab}(F)\}$. In the fixing graph, $D(G)$, the minimum cardinality of a subset F

Figure 2. The fixing graph of G_{2}
of $S(G)$ such that $N_{D(G)}(F)=V_{s}(G)$ is the fixing number of G. Figure 2 shows the fixing graph of graph G_{2} given in Figure 1. Since, $N_{D\left(G_{2}\right)}(v) \neq V_{s}\left(G_{2}\right)$ for all $v \in V\left(G_{2}\right)$ and $N_{D\left(G_{2}\right)}\left\{v_{4}, v_{6}\right\}=V_{s}\left(G_{2}\right),\left\{v_{4}, v_{6}\right\}$ is a fixing set of G_{2} with the minimum cardinality, and hence, $\operatorname{fix}\left(G_{2}\right)=2$.
Remark 3.2. Let G be graph and $F \subset S(G)$ be a fixing set of G, then $N_{D(G)}(F)=V_{s}(G)$.

Also, $\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right\}$ is a non-fixing set of G_{2} with the largest cardinality. In fact, every non-fixing set with the largest cardinality must have fixed vertex v_{1}. Therefore, we have the following proposition.
Proposition 3.3. Let G be a graph and A be a non-fixing subset of G with the largest cardinality. Then, A contains all fixed vertices of G.

Proof. Let $x \in V(G)$ be an arbitrary fixed vertex of G. Suppose on contrary $x \notin A$. Then $\operatorname{stab}(A \cup\{x\})=\operatorname{stab}(A) \cap \operatorname{stab}(x)=\operatorname{stab}(A) \cap A u t(G)=\operatorname{stab}(A) \neq$ $\{i d\}$ (A is non-fixing set). Consequently, $A \cup\{x\}$ is a non-fixing set with the largest cardinality, a contradiction.

Let t be the minimum number such that $1 \leq t \leq r$ and every t-subset F of $S(G)$ has $N_{D(G)}(F)=V_{s}(G)$, then t is helpful in finding the fixed number of a graph G. The following theorem gives a way of finding the fixed number of a graph using its fixing graph.
Theorem 3.4. Let G be a graph of order n and $t(1 \leq t \leq r)$ be the minimum number such that every subset of $S(G)$ with the cardinality t, has neighborhood $V_{s}(G)$ in $D(G)$. Then,

$$
f x d(G)=t+|V(G) \backslash S(G)|
$$

Proof. We find a non-fixing subset T of $V(G)$ with the largest cardinality. By Proposition 3.3, T contains the set of fixed vertices $V(G) \backslash S(G)$. Moreover, by hypothesis, there is a subset U of $S(G)$ with the cardinality $t-1$, such that $N_{D(G)}(U) \neq V_{s}(G)$. Then, U is a non-fixing set of G, and hence, $\{V(G) \backslash$ $S(G)\} \cup U$ is a non-fixing set. Also, $\{V(G) \backslash S(G)\} \cup U$ is a non-fixing set of G with the largest cardinality, because by hypothesis, a subset of $S(G)$ with the cardinality t, forms a fixing set of G. Further $\{V(G) \backslash S(G)\} \cap U=\emptyset$. Hence, by Remark 2.2(i),

$$
f x d(G)=|V(G) \backslash S(G)|+|U|+1=|V(G) \backslash S(G)|+t
$$

In [8], we found an upper bound on the cardinality of the edge set $E(D(G))$ of the fixing graph $D(G)$ of a graph G.

Proposition 3.5 ([8]). Let G be a k-fixed graph of order n, then

$$
\begin{equation*}
|E(D(G))| \leq n\left(\binom{n}{2}-k+1\right) \tag{3.1}
\end{equation*}
$$

Now, we find a lower bound on $|E(D(G))|$.
Proposition 3.6. Let G be a k-fixed graph of order n, then

$$
\left(\frac{r}{2}\right)(r-k+1) \leq|E(D(G))|
$$

Proof. Let $z \in V_{s}(G)$ and A be a set of the vertices of $S(G)$ which are not adjacent to z. Since $N_{D(G)}(A) \neq V_{s}(G), A$ is a non-fixing set of G. Our claim is $\operatorname{deg}_{D(G)}(z) \geq r-k+1$. Suppose $\operatorname{deg}_{D(G)}(z) \leq r-k$, then $|A| \geq k$, which contradicts that $f x d(G)=k$ (A is non-fixing set with $|A| \geq k$). Thus, $\operatorname{deg}_{D(G)}(z) \geq r-k+1$ and consequently,

$$
\begin{equation*}
\left(\frac{r}{2}\right)(r-k+1) \leq s(r-k+1) \leq|E(D(G))| \tag{3.2}
\end{equation*}
$$

Thus, on combining (3.1) and (3.2) we get

$$
\begin{equation*}
\left(\frac{r}{2}\right)(r-k+1) \leq|E(D(G))| \leq n\left(\binom{n}{2}-k+1\right) \tag{3.3}
\end{equation*}
$$

Theorem 3.7. If G is a k-fixed graph and $|S(G)|=r$, then either $k \leq 3$ or $k \geq r-1$.

Proof. For each $R \subseteq S(G)$, let $\bar{N}_{D(G)}(R)=V_{s}(G) \backslash N_{D(G)}(R)$. We claim that, if $R, T \subseteq S(G)$ with $|R|=|T|=k-1$ and $R \neq T$, then $\bar{N}_{D(G)}(R) \cap \bar{N}_{D(G)}(T)=$ \emptyset. Otherwise, there exists a pair $\{y, z\} \in \bar{N}_{D(G)}(R) \cap \bar{N}_{D(G)}(T)$. Therefore, $\{y, z\} \notin N_{D(G)}(R \cup T)$, and hence, $R \cup T$ is not a fixing set of G. Since,
$\underline{R} \neq T,|R \cup T|>|T|=k-1$, which contradicts that $f x d(G)=k$. Thus, $\bar{N}_{D(G)}(R) \cap \bar{N}_{D(G)}(T)=\emptyset$.

Since $\operatorname{fix}(G)=k$, for each $R \subseteq S(G)$ with $|R|=k-1, \bar{N}_{D(G)}(R) \neq \emptyset$. Now, let $\Omega=\{R \subseteq S(G):|R|=k-1\}$. Therefore,

$$
\left|\bigcup_{R \in \Omega} \bar{N}_{D(G)}(R)\right|=\sum_{R \in \Omega}\left|\bar{N}_{D(G)}(R)\right| \geq \sum_{R \in \Omega} 1=\binom{r}{k-1}
$$

On the other hand, $\bigcup_{R \in \Omega} \bar{N}_{D(G)}(R) \subseteq V_{s}(G)$. Hence, $\left|\bigcup_{R \in \Omega} \bar{N}_{D(G)}(R)\right| \leq$ $s \leq\binom{ r}{2}$. Consequently, $\binom{r}{k-1} \leq\binom{ r}{2}$. If $r \leq 4$, then $k \leq 3$. Now, let $r \geq 5$. Thus, $2 \leq \frac{r+1}{2}$. We know that for each $a, b \leq \frac{n+1}{2},\binom{r}{a} \leq\binom{ r}{b}$ if and only if $a \leq b$. Therefore, if $k-1 \leq \frac{r+1}{2}$, then $k-1 \leq 2$, which implies $k \leq 3$. If $k-1 \geq \frac{r+1}{2}$, then $r-k+1 \leq \frac{r+1}{2}$. Since, $\binom{r}{r-k+1}=\binom{r}{k-1}$, we have $\binom{r}{r-k+1} \leq\binom{ r}{2}$ and consequently, $r-k+1 \leq 2$, which yields $k \geq r-1$.

4. The distance-transitive graph

We now study the fixed number in a class of graphs known as the distancetransitive graphs. A graph G is called distance-transitive, if $u, v, x, y \in V(G)$ satisfying $d(u, v)=d(x, y)$, then there exist an automorphism $g \in A u t(G)$ such that $u \sim^{g} x$ and $v \sim^{g} y$. For example, the complete graph K_{n}, the cyclic graph C_{n}, the Petersen graph, the Johnson graph etc, are distance-transitive. For more about distance-transitive graphs see [1]. In this section, we use the terminology as described in Section 3 related to the fixing graph $D(G)$ of a graph G. The following proposition given in [1] tells that the distance transitive graph does not have fixed vertices.

Proposition 4.1 ([1]). A distance-transitive graph is vertex transitive.
Thus, if G is a distance-transitive graph, then $S(G)=V(G), r=n$ and $V_{s}(G)$ consists of all $\binom{n}{2}$ pairs of vertices of G (i.e., $s=\binom{n}{2}$).

Corollary 4.2. Let G be a distance-transitive graph of order n. If G is k-fixed, then either $k \leq 3$ or $k \geq n-1$.

Proof. Since $r=n$ for a distance-transitive graph, the result follows from Theorem 3.7.

Moreover, an expression for bounds on $|E(D(G))|$ of a distance-transitive and k-fixed graph G can be obtained by putting $r=n$ and $s=\binom{n}{2}$ in (3.2) and use the result in (3.3), we get

$$
\begin{equation*}
\binom{n}{2}(n-k+1) \leq|E(D(G))| \leq n\left(\binom{n}{2}-k+1\right) . \tag{4.1}
\end{equation*}
$$

The following two results given in [7] are useful in our later work.

Observation 4.3 ([7]). Let n_{1}, \ldots, n_{r} and n be positive integers, with $\sum_{i=1}^{r} n_{i}=n$. Then, $\sum_{i=1}^{r}\binom{n_{i}}{2}$ is minimum if and only if $\left|n_{i}-n_{j}\right| \leq 1$, for each $1 \leq i, j \leq r$.

Lemma 4.4 ([7]). Let $n, p_{1}, p_{2}, q_{1}, q_{2}, r_{1}$ and r_{2} be positive integers, such that $n=p_{i} q_{i}+r_{i}$ and $r_{i}<p_{i}$, for $1 \leq i \leq 2$. If $p_{1}<p_{2}$, then $\left(p_{1}-r_{1}\right)\binom{q_{1}}{2}+r_{1}\binom{q_{1}+1}{2} \geq\left(p_{2}-r_{2}\right)\binom{q_{2}}{2}+r_{2}\binom{q_{2}+1}{2}$.

We define a partition of $V(G)$ with respect to $v \in V(G)$, into the distance classes $\Psi_{i}(v)(1 \leq i \leq e(v))$ defined as: $\Psi_{i}(v)=\{x \in V(G) \mid d(v, x)=i\}$.

Proposition 4.5. Let G be a distance-transitive graph and $v, x, y \in V(G)$. Then $x, y \in \Psi_{i}(v)$ for some $i(1 \leq i \leq e(v))$ if and only if v is non-adjacent to the pair $(x, y) \in V_{s}(G)$ in $D(G)$.

Proof. Let $x, y \in \Psi_{i}(v)$ for some $i(1 \leq i \leq e(v))$, then $d(v, x)=d(v, y)=i$ and by definition of distance-transitive graph, there exists an automorphism $g \in \operatorname{Aut}(G)$ such that $v \sim^{g} v$ and $x \sim^{g} y$. Thus, $x \sim^{g} y$ by an automorphism $g \in \operatorname{stab}(v)$ and consequently, the pair (x, y) is not adjacent to v in $D(G)$.

Conversely, suppose v is non-adjacent to pair $(x, y) \in V_{s}(G)$, then $x \sim^{g} y$ by an arbitrary $g \in \operatorname{stab}(v)$. Since g is an isometry, $d(v, x)=d(g(v), g(x))=$ $d(v, y)=i$ (say). Thus, x, y are in the same distance class $\Psi_{i}(v)$.

Proposition 4.6. Let G be a distance-transitive graph of order n. If G is k-fixed, then for each $v \in V(G), \operatorname{deg}_{D(G)}(v)=\binom{n}{2}-\sum_{i=1}^{e(v)}\binom{\left|\Psi_{i}(v)\right|}{2}$.

Proof. By Propositon 4.5, the only pairs $(x, y) \in V_{s}(G)$ which are non-adjacent to $v \in V(G)$ are those in which both x, y belong to the same distance class $\Psi_{i}(v)$ for each $i(1 \leq i \leq e(v))$. So the number of such pairs in $V_{s}(G)$ which are not adjacent to v is $\sum_{i=1}^{e(v)}\binom{\left|\Psi_{i}(v)\right|}{2}$. Therefore, $\operatorname{deg}_{D(G)}(v)=\binom{n}{2}-\sum_{i=1}^{e(v)}\binom{\left|\Psi_{i}(v)\right|}{2}$

Thus, an expression for $|E(D(G))|$ can be obtained using Proposition 4.6,

$$
\begin{equation*}
|E(D(G))|=\sum_{v \in V(G)}\left[\binom{n}{2}-\sum_{i=1}^{e(v)}\binom{\left|\Psi_{i}(v)\right|}{2}\right]=n\binom{n}{2}-\sum_{v \in V(G)} \sum_{i=1}^{e(v)}\binom{\left|\Psi_{i}(v)\right|}{2} \tag{4.2}
\end{equation*}
$$

From (4.1) and (4.2) we obtain

$$
\begin{equation*}
n(k-1) \leq \sum_{v \in V(G)} \sum_{i=1}^{e(v)}\binom{\left|\Psi_{i}(v)\right|}{2} \leq\binom{ n}{2}(k-1) \tag{4.3}
\end{equation*}
$$

Theorem 4.7. Let G be a distance-transitive graph of order n and diameter d. If G is k-fixed, then $k \geq \frac{n-1}{d}$.

Proof. Note that, for each $v \in V(G),\left|\bigcup_{i=1}^{e(v)} \Psi_{i}(v)\right|=n-1$. For $v \in V(G)$, let $n-1=q(v) e(v)+r(v)$, where $0 \leq r(v)<e(v)$. Then, by Observation 4.3, $\sum_{i=1}^{e(v)}\binom{\left|\Psi_{i}(v)\right|}{2}$ is minimum if and only if $\left|\left|\Psi_{i}(v)\right|-\left|\Psi_{j}(v)\right|\right| \leq 1$, where $1 \leq i, j \leq e(v)$. This condition will be satisfied, if there are $r(v)$ distance classes having $q(v)+1$ vertices and $e(v)-r(v)$ distance classes having $q(v)$ vertices. Thus, the number of the pairs of vertices in $\Psi_{i}(v)$ having $q(v)+1$ vertices is $r(v)\left(\begin{array}{c}q(v)+1\end{array}\right)$ and the number of the pairs of vertices in $\Psi_{i}(v)$ having $q(v)$ vertices is $(e(v)-r(v))\binom{q(v)}{2}$. Thus,

$$
\begin{equation*}
(e(v)-r(v))\binom{q(v)}{2}+r(v)\binom{q(v)+1}{2} \leq \sum_{i=1}^{e(v)}\binom{\left|\Psi_{i}(v)\right|}{2} \tag{4.4}
\end{equation*}
$$

Let $w \in V(G)$ with $e(w)=d, r(w)=r$, and $q(w)=q$, then $n-1=q d+r$. Since, for each $v \in V(G), e(v) \leq e(w)$, by Lemma 4.4, $(d-r)\binom{q}{2}+r\binom{q+1}{2} \leq(e(v)-r(v))\binom{q(v)}{2}+r(v)\binom{q(v)+1}{2}$. Therefore,

$$
n\left[(d-r)\binom{q}{2}+r\binom{q+1}{2}\right] \leq \sum_{v \in V(G)}\left[(e(v)-r(v))\binom{q(v)}{2}+r(v)\binom{q(v)+1}{2}\right]
$$

Thus, by relation (4.3) and (4.4)

$$
n\left[(d-r)\binom{q}{2}+r\binom{q+1}{2}\right] \leq \sum_{v \in V(G)} \sum_{i=1}^{e(v)}\binom{\left|\Psi_{i}(v)\right|}{2} \leq\binom{ n}{2}(k-1)
$$

Hence, $q[(d-r)(q-1)+r(q+1)] \leq(n-1)(k-1)$, which implies, $q[(r-d)+(d-$ $r) q+r(q+1)] \leq(n-1)(k-1)$. Therefore, $q(r-d)+q(n-1) \leq(n-1)(k-1)$. Since, $q=\left\lfloor\frac{n-1}{d}\right\rfloor$, we have
$k-1 \geq q+q \frac{r-d}{n-1}=q+\frac{q r}{n-1}-\frac{q d}{n-1}=q+\frac{q r}{n-1}-\frac{\left\lfloor\frac{n-1}{d}\right\rfloor d}{n-1} \geq q+\frac{q r}{n-1}-1$.
Thus, $k \geq\left\lfloor\frac{n-1}{d}\right\rfloor+\frac{q r}{n-1}$. Note that, $\frac{q r}{n-1} \geq 0$. If $\frac{q r}{n-1}>0$, then $k \geq\left\lceil\frac{n-1}{d}\right\rceil$, since k is an integer. If $\frac{q r}{n-1}=0$, then $r=0$ and consequently, d divides $n-1$. Thus, $\left\lfloor\frac{n-1}{d}\right\rfloor=\left\lceil\frac{n-1}{d}\right\rceil$. Therefore, $k \geq\left\lceil\frac{n-1}{d}\right\rceil \geq \frac{n-1}{d}$.

References

[1] N. Biggs, Algebraic Graph Theory, Cambridge Univ. Press, Cambridge, 1993.
[2] D.L. Boutin, Identifying graph automorphisms using determining sets, Electron. J. Combin. 13 (2006), no. 1, Research Paper 78, 12 pages.
[3] J. Cáceres, D. Garijo, M.L. Puertas and C. Seara, On the determining number and the metric dimension of graphs, Electron. J. Combin. 17 (2010), no. 1, Research Paper 63, 20 pages.
[4] D. Erwin and F. Harary, Destroying automorphisms by fixing nodes, Discrete Math. 306 (2006), no. 24, 3244-3252.
[5] C.R. Gibbons and J.D. Laison, Fixing numbers of graphs and groups, Electron. J. Combin. 16 (2009), no. 1, Research Paper 39, 13 pages.
[6] M. Jannesari and B. Omoomi, On randomly k-dimensional graphs, Appl. Math. Lett. 24 (2011), no. 10, 1625-1629.
[7] M. Jannesari and B. Omoomi, Characterization of randomly k-dimensional graphs, Arxiv:1103.3570 [math.CO].
[8] I. Javaid, H. Benish, U. Ali and M. Murtaza, On some automorphism related parameters in graphs, Arxiv:1411.4922 [math.CO].
[9] I. Javaid, M. Fazil, U. Ali and M. Salman, On some parameters related to fixing sets in graphs, submitted.
(Imran Javaid) Centre for advanced studies in Pure and Applied Mathematics, Bahauddin Zakariya University Multan, Pakistan.

E-mail address: ijavaidbzu@gmail.com
(Muhammad Murtaza) Centre for advanced studies in Pure and Applied Mathematics, Bahauddin Zakariya University Multan, Pakistan.

E-mail address: mahru830@gmail.com
(Muhammad Asif) Centre for advanced studies in Pure and Applied Mathematics, Bahauddin Zakariya University Multan, Pakistan.

E-mail address: asifmaths@yahoo.com
(Farheen Iftikhar) Centre for advanced studies in Pure and Applied Mathematics, Bahauddin Zakariya University Multan, Pakistan.

E-mail address: farah_sethi@yahoo.com

[^0]: Article electronically published on December 30, 2017.
 Received: 9 August 2016, Accepted: 3 March 2017.

 * Corresponding author.

