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Abstract. By observing the equivalence of assertions on determining the
jump of a function by its differentiated or integrated Fourier series, we
generalize a previous result of Kvernadze, Hagstrom and Shapiro to the

whole class of functions of harmonic bounded variation. This is achieved
without the finiteness assumption on the number of discontinuities. Two
results on determination of jump discontinuities by means of the tails of
integrated Fourier-Chebyshev series are also derived.
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1. Introduction

The problem of approximating the magnitudes of jumps of a function by
means of its truncated Fourier series arises naturally from the attempt to over-
come the Gibbs phenomenon which describes the characteristic oscillatory be-
haviour of the Fourier partial sums of a piecewise smooth function in the neigh-
bourhood of a point of discontinuity. It has been known for a long time that
the jumps of a function of bounded variation (BV ) can be expressed through

its differentiated Fourier series. Let S
′

n(f, x) denote the nth partial sum of the
differentiated Fourier series of a function f at a point x. The relation

(1.1) lim
n→∞

S
′

n(f, x)

n
=

1

π
[f (x+ 0)− f (x− 0)]

was proved by L. Fejér [8] for f satisfying the so-called Dirichlet-condition,
by P. Csillag [7] for functions of bounded variation and by B.I. Golubov [9,
Theorem 1, p. 20] for functions in Vp, 1 ≤ p < ∞, of Wiener’s bounded
variation. M. Avdispahić [3, Theorem 1, p. 268] has shown that equation (1.1)
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holds for any function f ∈ HBV and that HBV is the limiting case in the scale
of ΛBV spaces for validity of (1.1). The corresponding formula which involves
the partial sums of the conjugate Fourier series of f ∈ HBV is also derived
there. A number of results from [1, 2, 3, 4] related to the classes Vϕ, ΛBV and
V [ν] were later rediscovered and differently proved in [10]. G. Kvernadze [10]
extended [3, Theorem 1’(1)] to the setting of the generalized Fourier-Jacobi
series.

G. Kvernadze, T. Hagstrom and H. Shapiro [11] proved that the jumps of
a 2π−periodic function from Vp, 1 ≤ p < 2, can be also determined by means
of the tails of its integrated Fourier series. This was established under the
condition that the number of discontinuities of f is finite.

Our paper consists of two main parts. In the first part, we generalize a
result of [11] to the whole class of functions of harmonic bounded variation.
We remove the finiteness assumption on the number of discontinuities in the
trigonometric case. New results that express jump discontinuities of functions
from HBV or its subclass V2 through their integrated Fourier-Chebyshev series
are presented in the second part.

2. Jump of a HBV function and integrated Fourier series

2.1. Generalized bounded variation. A concept of bounded variation of a
higher order was firstly introduced by N. Wiener [16]. A function f is said to
be of bounded p−variation on [0, 2π], p ≥ 1, and belongs to the class Vp if

Vp(f) = sup

{∑
i

|f(Ii)|p
}1/p

< ∞,

where the supremum is taken over all finite collections of nonoverlapping subin-
tervals Ii of [0, 2π]. The quantity Vp(f) is called the p−variation of f on [0, 2π].

This concept has been generalized by L.C. Young [17]. Let ϕ be a continuous
function defined on [0,∞) and strictly increasing from 0 to ∞. A function f is
said to be of bounded ϕ−variation on [0, 2π] and belongs to the class Vϕ if

Vϕ(f) = sup

{∑
i

ϕ (|f(Ii)|)

}
< ∞,

where the supremum is taken over all finite collections of nonoverlapping subin-
tervals Ii of [0, 2π]. The quantity Vϕ(f) is called the ϕ−variation of f on [0, 2π].

By taking ϕ (u) = u we get Jordan’s class BV , while ϕ (u) = up gives
Wiener’s class Vp.

Another type of generalization of the class BV was introduced by D. Wa-
terman in [15]. It was influenced by Waterman’s joint work with C. Goffman
on everywhere convergence of Fourier series. Let Λ = {λn} be a nondecreasing
sequence of positive numbers tending to infinity, such that

∑
1/λn diverges. A
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function f is said to be of bounded Λ−variation on [0, 2π] and belongs to the
class ΛBV if

VΛ(f) = sup

{∑
i

|f(Ii)| /λi

}
< ∞,

where the supremum is taken over all finite collections of nonoverlapping subin-
tervals Ii of [0, 2π]. The quantity VΛ(f) is called the Λ−variation of f on
[0, 2π]. In the case when Λ = {n}, the sequence of positive integers, the func-
tion f is said to be of harmonic bounded variation and the corresponding class
is denoted by HBV .

By W we denote the class of regulated functions, i.e. functions possessing
the one-sided limits at each point. W is the union of all ΛBV spaces [12].

Z. Chanturiya [6] gave another interesting generalization using the modulus
of variation. The modulus of variation of a bounded function f is the function
νf whose domain is the set of positive integers, given by

νf (n) = sup
Πn

{
n∑

k=1

|f(Ik)|

}
,

where Πn = {Ik : k = 1, . . . , n} is an arbitrary finite collection of n nonoverlap-
ping subintervals of [0, 2π]. The modulus of variation of any bounded function
is nondecreasing and concave. Given a function ν with such properties, then
by V [ν] one denotes the class of functions f for which νf (n) = O (ν (n)) as
n → ∞.

We note that Vϕ ⊆ V
[
nϕ−1 (1/n)

]
and W = {f : νf (n) = o (n)} [6].

There exist the following inclusion relations between Wiener’s, Waterman’s
and Chanturiya’s classes.

Theorem 2.A (cf. [2, Theorem 4.4.]).

{nα}BV ⊂ V 1
1−α

⊂ V [nα] ⊂
{
nβ
}
BV,

for 0 < α < β < 1.

2.2. Cesàro summability and differentiated Fourier series. As well
known, a sequence {sn} is Cesàro or (C, 1) summable to s if the sequence
{σn} of its arithmetical means converges to s, i.e.

σn =
s0 + s1 + · · ·+ sn

n+ 1
→ s, n → ∞.

Analogously, a sequence {sn} is (C,α), α > −1, summable to s, if the
sequence

σ(α)
n =

1(
n+α
n

) n∑
i=0

(
n− i+ α− 1

n− i

)
si

converges to s.
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It is obvious that Fejér’s identity (1.1) is equivalent to Cesàro summability
of the sequence {kbk cos kx− kak sin kx}, where ak = ak (f) and bk = bk (f)
are the kth cosine and sine coefficient of the Fourier series of a function f ,
respectively. There exist numerous generalizations of Fejér’s theorem to more
general summability methods. We recall the relationship between the order of
Cesàro summability of the sequence {kbk cos kx− kak sin kx} and the ”order
of variation” of a function f .

Theorem 2.B ([3, 4, 5]). Let f be a function of generalized bounded variation.
The sequence {kbk cos kx− kak sin kx} of the terms of its differentiated Fourier
series is (C,α) summable to 1

π [f (x+ 0)− f (x− 0)] at every point x for

(1) α > 0, if f ∈ BV ,
(2) α > 1− 1

p , if f ∈ Vp, 1 < p < ∞,

(3) α > β, if f ∈ V
[
nβ
]
, 0 < β < 1,

(4) α = 1, if f ∈ HBV ,
(5) α > 1, if f ∈ W .

2.3. Jump of a function and integrated Fourier series. A method of
determining jumps of a function by means of the tails of its integrated Fourier
series was introduced in [11]. Special formulae were derived to determine the
jumps of a 2π−periodic function from Vp, 1 ≤ p < 2, with a finite number of
discontinuities.

For any function f , integrable on [−π, π], we define f (−r), r ∈ N0, as

f (−r−1) ≡
∫

f (−r),

where f (0) ≡ f and the constants of integration are successively determined by
the condition ∫ π

−π

f (−r)(t)dt = 0, r ∈ N0.

We generalize a result of Kvernadze, Hagstrom and Shapiro [11, Theorem
4, p. 32] to the whole class of HBV functions. In doing so, we also prove that
the finiteness assumption on the number of discontinuities is redundant here.
The result is presented in the following theorem.

Theorem 2.1. (a) Let g ∈ HBV and r = 0, 1, 2, . . .. Then, for any point
x0 one has

lim
n→∞

n2r+1R(−2r−1)
n (g, x0) =

(−1)
r+1

(2r + 1)π
[g (x0 + 0)− g (x0 − 0)] ,

where Rn (g, x) denotes the nth order tail of the Fourier series of g,
i.e.

Rn (g, x) =

∞∑
k=n

(ak (g) cos kx+ bk (g) sin kx) .
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(b) If Λ is such that ΛBV ⫌ HBV , the assertion (a) does not hold for
ΛBV \HBV .

Proof. (a) Let g ∈ HBV and S
′
n (g, x0) =

∑n
k=1 (−kak (g) sin kx0 + kbk (g) cos kx0).

For brevity, we denote by c ≡ c (g, x0) =
1
π [g (x0 + 0)− g (x0 − 0)] the jump of

the function g at x0 and put Ak ≡ Ak (g, x0) = ak (g) sin kx0 − bk (g) cos kx0.
According to [3, Theorem 1, p. 268], one has

lim
n→∞

S
′

n (g, x0)

n
=

1

π
[g (x0 + 0)− g (x0 − 0)] ,

or equivalently

(2.1) sn ≡ sn (g, x0) ≡ c+
1

n

n∑
k=1

kAk = o (1) , n → ∞.

Multiplying (2.1) by n and rearranging the terms, we get

(2.2) nsn =

n∑
k=1

(kAk + c) = o (n) , n → ∞.

Obviously,

(2.3) nsn − (n− 1) sn−1 = nAn + c

and

R(−2r−1)
n (g, x0) =

∞∑
k=n

(−1)
r
(ak (g) sin kx0 − bk (g) cos kx0)

k2r+1

= (−1)
r

∞∑
k=n

Ak

k2r+1
.

Now, it is enough to prove that

(2.4) n2r+1
∞∑

k=n

Ak

k2r+1
→ − c

2r + 1
, n → ∞.
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Using (2.1), (2.2), (2.3), Abel’s partial summation formula and the fact that
lim

n→∞
n2r+1

∑∞
k=n

1
k2r+2 = 1

2r+1 , we get

n2r+1
∞∑

k=n

Ak

k2r+1
= n2r+1

∞∑
k=n

kAk

k2r+2
= n2r+1

∞∑
k=n

ksk − (k − 1) sk−1 − c

k2r+2

= n2r+1
∞∑

k=n

ksk − (k − 1) sk−1

k2r+2
− cn2r+1

∞∑
k=n

1

k2r+2

= n2r+1

{
− (n− 1) sn−1

n2r+2
+

∞∑
k=n

[
1

k2r+2
− 1

(k + 1)
2r+2

]
ksk

}

−cn2r+1
∞∑

k=n

1

k2r+2
.

Notice that sk = o(1) and[
1

k2r+2
− 1

(k + 1)
2r+2

]
k =

(k + 1)2r+2 − k2r+2

k2r+1(k + 1)2r+2
=

(2r + 2)ξ2r+1
k

k2r+1(k + 1)2r+2
,

where ξk ∈ (k, k + 1). Thus,

n2r+1
∞∑

k=n

Ak

k2r+1
= − (n− 1)

n
sn−1 + o

(
n2r+1

∞∑
k=n

1

k2r+2

)

− cn2r+1
∞∑

k=n

1

k2r+2
→ − c

2r + 1
, n → ∞.

The proof of (a) is complete.
(b) If Λ is such that ΛBV ⫌ HBV , by [3, Remark 4, p. 269] there exists a
continuous function g ∈ ΛBV with the property

(2.5)

n∑
k=1

kAk ̸= O (n) .

Suppose (2.4) holds true for g and some nonnegative integer r. Then, denoting∑∞
k=n

Ak

k2r+1 by σn, we get

n∑
k=1

kAk =
n∑

k=1

k2r+2 (σk − σk+1)

= σ1 +

n∑
k=2

(
k2r+2 − (k − 1)2r+2

)
σk − n2r+2σn+1

= σ1 +
n∑

k=2

(
(2r + 2)k2r+1 +O

(
k2r
))

σk − n2r+2σn+1.
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Hence,

1

n

n∑
k=1

kAk =
σ1

n
+

1

n

n∑
k=2

(2r + 2)k2r+1σk +
1

n

n∑
k=2

O
(
k2r
)
σk − n2r+1σn+1.

Letting n → ∞ and having in mind that

σ1

n
→ 0,

1

n

n∑
k=2

(2r + 2)k2r+1σk ∼ (2r + 2)n2r+1σn → −2r + 2

2r + 1
c,

1

n

n∑
k=2

O
(
k2r
)
σk ∼ 1

n
O
(
n2r+1

)
σn → 0 and n2r+1σn+1 → − 1

2r + 1
c,

we get

1

n

n∑
k=1

kAk → −c.

This obviously contradicts (2.5). □

Making use of [3, Theorem 1’(2)] and following the same line of argumenta-
tion as in the proof of Theorem 2.1, one obtains

Theorem 2.2. (a) Let g ∈ HBV and r = 1, 2, . . . . Then, for any point x0

we have

lim
n→∞

n2rR̃(−2r)
n (g, x0) =

(−1)
r+1

2rπ
[g (x0 + 0)− g (x0 − 0)] ,

where R̃n (g, x) =
∑∞

k=n (ak (g) sin kx− bk (g) cos kx) is the tail of the con-
jugate Fourier series of g.

(b) If Λ is such that ΛBV ⫌ HBV , the assertion (a) does not hold for ΛBV \
HBV .

3. Generalized Fourier-Jacobi and Fourier-Chebyshev series

3.1. Notation. By Cp [−1, 1], p ∈ N0, we denote the space of p−times con-
tinuously differentiable functions on [−1, 1], where C0 [−1, 1] ≡ C [−1, 1] is the
space of continuous functions. Let C−1 [−1, 1] be the space of functions defined
on [−1, 1] which may have discontinuities only of the first kind. We normalize
these functions by imposing the condition f(x) = (f(x+ 0) + f (x− 0)) /2.
If f ∈ C−1 [−1, 1] has finitely many discontinuities, say M ≡ M(f), let
xm ≡ xm(f) and [f ]m ≡ f(xm + 0)− f(xm − 0), m = 1, . . . ,M , denote these
points of discontinuity and the associated jumps of the function f . The rth
derivative of a function f which piecewise belongs to Cp [−1, 1], p ≥ r, or which
belongs to Cr−1 [−1, 1], is defined as f (r)(x) =

(
f (r)(x+ 0) + f (r) (x− 0)

)
/2,

whenever f (r)(x± 0) exist.
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We say that w is a generalized Jacobi weight, i.e., w ∈ GJ , if

w(t) = h(t) (1− t)
α
(1 + t)

β |t− x̃1|δ1 · · · |t− x̃N |δN ,

h ∈ C [−1, 1] , h(t) > 0 (|t| ≤ 1) , ω (h; t; [−1, 1]) t−1 ∈ L1 [0, 1] ,

−1 < x̃1 < · · · < x̃N < 1, α, β, δ1, . . . , δN > −1,

where L1 [0, 1] is the space of Lebesgue integrable functions on [0, 1] and

ω (f ; t; [−1, 1]) = max {|f(x)− f(y)| : x, y ∈ [−1, 1] ∧ |x− y| ≤ t}
is the modulus of continuity of f ∈ C [−1, 1] on [−1, 1]. It is always assumed
that x̃0 = −1, and x̃N+1 = 1. In addition, for a fixed ε ∈ (0, (x̃ν+1 − x̃ν) /2),
ν = 0, 1, . . . , N , we set ∆ (ν; ε) = [x̃ν + ε, x̃ν+1 − ε].

Let σ (w) = (Pn (w;x))
∞
n=0 be the system of algebraic polynomials

Pn (w;x) = γn(w)xn + lower degree terms

with positive leading coefficients γn(w), which are orthonormal on [−1, 1] with
respect to the weight w ∈ GJ , i.e.,∫ 1

−1

Pn (w; t)Pm (w; t)w(t)dt = δnm.

Such polynomials are called the generalized Jacobi polynomials.
If fw ∈ L[−1, 1], w ∈ GJ , then f has the Fourier series with respect to

the system σ (w). This series is the generalized Fourier-Jacobi series of f .
Let Sn(w; f ;x) and Rn(w; f ;x) denote its nth partial sum and nth order tail,
respectively, i.e.,

Sn(w; f ;x) =
n−1∑
k=0

ak (w; f)Pk (w;x) =

∫ 1

−1

f (t)Kn (w;x; t)w(t)dt,

Rn(w; f ;x) =

∞∑
k=n

ak (w; f)Pk (w;x) ,

where

ak (w; f) =

∫ 1

−1

f (t)Pk (w; t)w(t)dt

is the kth Fourier coefficient of the function f , and

Kn (w;x; t) =

n−1∑
k=0

Pk (w;x)Pk (w; t)

is the Dirichlet kernel of the system σ (w).
When h(t) ≡ 1, |t| ≤ 1, and N = 0 (i.e., a weight does not have singularities

strictly inside the interval (−1, 1)), w ∈ GJ is called a Jacobi weight. In
this case, we use the commonly accepted notation ”(α, β)” instead of ”w”

throughout. We write S
(α,β)
n (f ;x) for Sn(w; f ;x). The corresponding series is
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called the Fourier-Jacobi series. If α = β = − 1
2 , Fourier-Jacobi series become

Fourier-Chebyshev series.

3.2. Equiconvergence. We shall start with a simple proposition on conver-
gence of generalized Fourier-Jacobi series for functions of harmonic bounded
variation.

Proposition 3.1. Let f ∈ HBV , fw ∈ L[−1, 1], w ∈ GJ . Then

lim
n→∞

Sn(w; f ;x) =
f(x+ 0) + f(x− 0)

2

for every x ∈ (−1, 1), x ̸= x̃1, . . . , x̃N .

Proof. Let S
(− 1

2 ,−
1
2 )

n (f ;x) be the nth partial sum of the Fourier-Chebyshev
series of f . By [10, proof of Theorem 7, p. 185] we have the uniform equicon-
vergence of the Fourier-Chebyshev and generalized Fourier-Jacobi series for an

arbitrary function f ∈ HBV and a fixed ε ∈
(
0, x̃ν+1−x̃ν

2

)
, ν = 0, 1, 2, . . . , N ,

that is

(3.1) ∥Sn(w; f ;x)− S
(− 1

2 ,−
1
2 )

n (f ;x)∥C[∆(ν;ε)] = o(1).

Putting x = cos θ, θ ∈ (0, π), and g(θ) = f(cos θ), and taking into account that
g (θ ∓ 0) = f (x± 0), we get

S
(− 1

2 ,−
1
2 )

n (f ;x) = Sn(g, θ) →
g(θ + 0) + g(θ − 0)

2
=

f(x+ 0) + f(x− 0)

2

as n → ∞, according to Waterman [15, Theorem 2, p. 112]. For x ̸=
x̃1, . . . , x̃N , there exist ν0 and ε such that x ∈ [x̃ν0 + ε, x̃ν0+1 − ε]. Now, we
have ∣∣∣∣Sn(w; f ;x)− f(x+ 0) + f(x− 0)

2

∣∣∣∣
≤
∣∣∣Sn(w; f ;x)− S

(− 1
2 ,−

1
2 )

n (f ;x)
∣∣∣+ ∣∣∣∣S(− 1

2 ,−
1
2 )

n (f ;x)− f(x+ 0) + f(x− 0)

2

∣∣∣∣
≤
∥∥∥Sn(w; f ;x)− S

(− 1
2 ,−

1
2 )

n (f ;x)
∥∥∥
C[∆(ν0;ε)]

+

∣∣∣∣S(− 1
2 ,−

1
2 )

n (f ;x)− f(x+ 0) + f(x− 0)

2

∣∣∣∣ = o (1) .

□

Corollary 3.2. Let f ∈ HBV and ∆(ν; ε) be as above. Then,

∥Rn(w; f ;x)−R
(− 1

2 ,−
1
2 )

n (f ;x)∥C[∆(ν;ε)] = o(1).
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Proof. For x ∈ (−1, 1), x ̸= x̃1, . . . , x̃N , Proposition 3.1 gives us

Sn(w; f ;x) =
f(x+ 0) + f(x− 0)

2
−Rn(w; f ;x),

S
(− 1

2 ,−
1
2 )

n (f ;x) =
f(x+ 0) + f(x− 0)

2
−R

(− 1
2 ,−

1
2 )

n (f ;x).

This and (3.1) yield the assertion. □

3.3. Determination of a jump. In order to prove an unconditional result on
determination of a jump discontinuity of a function f ∈ V2 by the tails of its
integrated Fourier-Chebyshev series, we shall need the following lemma (cf. [2,
Remark, p. 236]). For the sake of completeness of the argument, we include
also the proof of the Lemma.

Lemma 3.3. Let f ∈ V2 be a 2π−periodic function. Then, n
∑∞

k=n ρ
2
k(f) =

O (1), where ρ2k(f) = a2k(f) + b2k(f) is the magnitude of the kth Fourier coeffi-
cient.

Proof. If the Fourier series of f is given by

f(x) ∼ a0
2

+

∞∑
m=1

(am cosmx+ bm sinmx),

then the Fourier series of f(·+ t) reads

f(x+ t) ∼ a0
2

+
∞∑

m=1

(Am (t) cosmx+Bm (t) sinmx),

where Am (t) = am cosmt + bm sinmt and Bm (t) = bm cosmt − am sinmt.
Thus,

f(x+ t)− f(x) ∼
∞∑

m=1

(
(Am (t)− am) cosmx+ (Bm (t)− bm) sinmx

)
.

Simple calculations yield

Am (t)− am = 2Bm

(
t

2

)
sin

mt

2
and Bm (t)− bm = −2Am

(
t

2

)
sin

mt

2
.

Hence,

f(x+
π

n
)− f(x) ∼ 2

∞∑
m=1

[
Bm

( π

2n

)
cosmx−Am

( π

2n

)
sinmx

]
sin

mπ

2n
.

Parseval’s identity gives us

1

π

∫ 2π

0

[
f
(
x+

π

n

)
− f (x)

]2
dx = 4

∞∑
m=1

[
A2

m

( π

2n

)
+B2

m

( π

2n

)]
sin2

mπ

2n
.
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Since A2
m (t) +B2

m (t) = a2m + b2m = ρ2m, the last equation becomes

1

π

∫ 2π

0

[
f
(
x+

π

n

)
− f (x)

]2
dx = 4

∞∑
m=1

ρ2m sin2
mπ

2n
.

Due to periodicity of f , we have

1

π

∫ 2π

0

[
f
(
x+ k

π

n

)
− f

(
x+ (k − 1)

π

n

)]2
dx = 4

∞∑
m=1

ρ2m sin2
mπ

2n

for every positive integer k. Therefore,

2n∑
k=1

1

π

∫ 2π

0

[
f
(
x+ k

π

n

)
− f

(
x+ (k − 1)

π

n

)]2
dx = 8n

∞∑
m=1

ρ2m sin2
mπ

2n
.

Changing the order of summation and integration on the left-hand side in the
above equation and taking into account that f ∈ V2, we get

n
∞∑

m=1

ρ2m sin2
mπ

2n
= O(1).

Now,

n

∞∑
k=1

ρ2k sin
2 kπ

2n
≥ n

n∑
k=1

ρ2k sin
2 kπ

2n
≥ n

n∑
k=1

ρ2k

(
2

π
· kπ
2n

)2

=
1

n

n∑
k=1

k2ρ2k.

Thus,

1

n

n∑
k=1

k2ρ2k = O(1).

Using Abel’s partial summation formula, we get

m∑
k=n

ρ2k =
m∑

k=n

1

k2
(
k2ρ2k

)
=

1

m2

m∑
i=n

i2ρ2i +
m−1∑
k=n

(
1

k2
− 1

(k + 1)2

) k∑
i=n

i2ρ2i

= O(1)

[
1

m
· 1

m

m∑
i=n

i2ρ2i +

m−1∑
k=n

(
1

k
− 1

k + 1

)
1

k

k∑
i=n

i2ρ2i

]

= O(1)

[
1

m
+

m−1∑
k=n

(
1

k
− 1

k + 1

)]
= O

(
1

n

)
for arbitrary positive integer m > n. Hence,

n
∞∑

k=n

ρ2k = O(1).

□
Now, we turn our attention to determination of jump discontinuities by

means of the tails of integrated Fourier-Chebyshev series.
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Theorem 3.4. (a) If f ∈ HBV has finitely many discontinuities, then

(3.2) lim
n→∞

n
[
R

(− 1
2 ,−

1
2 )

n (f ;x)
](−1)

= − (1− x2)
1
2

π
(f(x+ 0)− f(x− 0))

is valid for each fixed x ∈ (−1, 1), where[
R

(− 1
2 ,−

1
2 )

n (f ;x)
](−1)

=

∫ x

−1

R
(− 1

2 ,−
1
2 )

n (f ; y)dy.

(b) If f ∈ V2, then the relation (3.2) holds true without restriction on the
number of discontinuities.

Proof. Integrating R
(− 1

2 ,−
1
2 )

n (f ; y) on [−1, x] and using the identity

R
(− 1

2 ,−
1
2 )

n (f ; y) = Rn(g, θ),

where y = cos θ, we get

[R
(− 1

2 ,−
1
2 )

n (f ;x)](−1) =

∫ π

arccos x

Rn(g, θ) sin θ dθ(3.3)

=
[
sin θR(−1)

n (g; θ)
]∣∣∣π

arccos x
−
∫ π

arccosx

R(−1)
n (g; θ) cos θ dθ

= − sin η R(−1)
n (g; η)−

∫ π

η

R(−1)
n (g; θ) cos θ dθ

= −(1− x2)
1
2R(−1)

n (g; η)−
∫ π

η

R(−1)
n (g; θ) cos θ dθ.

Here we put η = arccosx.
(a) Any g ∈ HBV with M points of discontinuity can be represented in the

following form

(3.4) g ≡ gc +
1

π

M∑
m=1

[g]mG(θm; ·),

where G(θ) =
π − θ

2
, θ ∈ (0, 2π), is a 2π−periodic sawtooth function, θm and

[g]m, m = 1, 2, . . . ,M , are the points of discontinuity and the associated jumps
of the function g, respectively, and G(θm; θ) = G(θ − θm). The function gc is
a 2π−periodic continuous function, which is piecewise smooth on [−π, π].

From G(θ) =
∑∞

n=1
sinnθ

n , we obviously have R
(−1)
n (G; θ) = O

(
1
n

)
and

(3.5) nR(−1)
n (G (θm; ·) ; θ) = O (1) uniformly, m = 1, . . . ,M.

Now, gc ∈ C ∩HBV . Fourier series of gc converges uniformly by a theorem
of Waterman [15, Theorem 2, p. 112]. Since

R(−1)
n (gc; θ) =

∫
Rn(gc; θ)dθ
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and Rn(gc; θ) converges uniformly on [−π, π], then

(3.6) nR(−1)
n (gc; θ) = o (1) uniformly

by a theorem of Tong [14, Theorem, p. 252]. Combining (3.4), (3.5) and (3.6),
we get

nR(−1)
n (g; θ) = O (1) uniformly.

If θ is a point of continuity of g, Theorem 2.1 implies nR
(−1)
n (g; θ) → 0 as

n → ∞. Therefore,

lim
n→∞

nR(−1)
n (g; θ) cos θ = 0

everywhere except on a finite set of discontinuities of g. Applying the Lebesgue
dominated convergence theorem [13, p. 267], we obtain

(3.7) lim
n→∞

∫ π

arccos x

nR(−1)
n (g; θ) cos θ dθ = 0.

Multiplying (3.3) by n, letting n → ∞, using (3.7) and Theorem 2.1 with r = 0
and taking into account that f (x± 0) = g (θ ∓ 0), we get

lim
n→∞

n
[
R

(− 1
2 ,−

1
2 )

n (f ;x)
](−1)

= − (1− x2)
1
2

π
(f(x+ 0)− f(x− 0)).

(b) For g ∈ V2, applying the Cauchy-Schwartz inequality and Lemma 3.3,
we get

n
∣∣∣R(−1)

n (g; θ)
∣∣∣ ≤ n

∞∑
k=n

|ak(g)|+ |bk(g)|
k

≤
√
2n

( ∞∑
k=n

(
a2k(g) + b2k(g)

))1/2( ∞∑
k=n

1

k2

)1/2

=
√
2nO

(
1√
n

)
O

(
1√
n

)
= O(1),

i.e., nR
(−1)
n (g; θ) = O (1) uniformly. The Lebesgue dominated convergence

theorem yields

lim
n→∞

∫ π

arccosx

nR(−1)
n (g; θ) cos θdθ =

∫ π

arccosx

lim
n→∞

nR(−1)
n (g; θ) cos θdθ.

As already noticed, if θ is a point of continuity of the function g, Theorem 2.1

implies nR
(−1)
n (g; θ) → 0 as n → ∞. Therefore, lim

n→∞
nR

(−1)
n (g; θ) cos θ = 0

everywhere except on a denumerable set of discontinuities of g. Thus, (3.7)
and consequently (3.2) hold true for g ∈ V2 without finiteness restriction on
the number of discontinuities of g. □
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Remark 3.5. Theorem 3.4 transfers a corresponding result by Kvernadze,
Hagstrom and Shapiro [11] from the trigonometric case to the setting of Fourier-
Chebyshev series. At the same time, it generalizes their result in two directions.
If the finiteness assumption on the number of discontinuities of a function is
kept, then we can deal with the whole class HBV , as demonstrated in part (a)
of the proof. On the other hand, if the attention is restricted to the subclass
V2, then part (b) shows that the finiteness assumption can be removed.

Remark 3.6. In view of Theorem 2.A above, the part (b) of Theorem 3.4 is

obviously valid for the Watermann class
{
n

1
2

}
BV and Chanturiya’s classes

V [nα], 0 < α < 1
2 .
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[17] L.C. Young, Sur une généralisation de la notion de variation de puissance p-ieme borneé
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