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Abstract. The aim of this paper is to generalize the comprehensive
structural model for defaultable fixed income bonds (considered in R.
Agliardi, A comprehensive structural model for defaultable fixed-income

bonds, Quant. Finance 11 (2011), no. 5, 749–762.) into a comprehensive
unified model of structural and reduced form models. In our model the
bond holders receive the deterministic coupon at predetermined coupon
dates and the face value (debt) and the coupon at the maturity as well

as the effect of government taxes which are paid on the proceeds of an
investment in bonds is considered. The expected default event occurs
when the equity value is not enough to pay coupon or debt at the coupon
dates or maturity and an unexpected default event can occur at any

time interval with the probability of given default intensity. We consider
the model and pricing formula for equity value and using it calculate
expected default barrier. Then we provide pricing model and formula

for defaultable corporate bonds with discrete coupons, and consider the
duration and the effect of the government taxes.
Keywords: Defaultable corporate bond, discrete coupon, tax, default
intensity, default barrier, duration.
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1. Introduction

The study on defaultable corporate bonds is recently one of the most inter-
esting areas of cutting edge in financial mathematics.

As well known, there are two main approaches to modeling credit risk and
pricing defaultable corporate bonds; one is the structural approach and the
other one is the reduced form approach. In the structural method, we think that
the default event occurs when the firm value is not enough to repay debt, that is,

Article electronically published on 30 June, 2017.

Received: 25 August 2014, Accepted: 9 December 2015.
∗Corresponding author.

c⃝2017 Iranian Mathematical Society

575



United model of structural and reduced type 576

the firm value reaches a certain lower threshold (default barrier) from the above.
Such a default is predictable and thus we call it expected default. In the reduced-
form approach, the default is treated as an unpredictable event governed by a
default intensity process. In this case, the default event can occur without any
correlation with the firm value and such a default is called unexpected default. In
the reduced-form approach, if the default probability in time interval [t, t+∆t]
is λ, then λ∆t is called default intensity or hazard rate [4, 8, 10, 19, 20]. The
third approach is to unify the structural and reduced form approaches [6,7,12,
13]. As for the history of the above three approaches and their advantages
and shortcomings, readers can refer to [20] and the introductions of [6, 19].
Combining the elements of the structural approach and reduced-form approach
is one of the recent trends [2, 3, 7].

On the other hand, many models related to coupon bonds approximate
actual coupon bearing debts with a continuous coupon stream or even zero
coupon contracts, but such approaches have restrictions [10].

There has been relatively little work on the most realistic payout structure
providing fixed discrete coupons [1]. Geske [9] (1977) is the first who study
this problem, where discrete interest payouts prior to maturity were modeled
as determinants of default risk. The introduction and the conclusions of [1]
include much useful information about corporate discrete coupon bonds. Re-
cently, Agliardi [1] (2011) generalized the Geskes formula for defaultable coupon
bonds, incorporated a stochastic risk free term structure and the effects of bank-
ruptcy cost and government taxes on bond interest and studied the duration
of defaultable bonds. Agliardi’s approach in [1] to corporate coupon bonds is
a kind of structural approaches as shown in its title. In [16, 17], the authors
tried to generalize the result of [1] into a comprehensive unified model of struc-
tural and reduced form models. Unlike [1], the authors of [16] calculated the
expected barrier from the bond price. In [17], the authors calculated the ex-
pected barrier from the equity price like [1]. The main different point of the
approach of [16] and [17] is that they assumed that the discrete coupons are
discounted values of those at the maturity in order to get analytical pricing
formulae, which is different from [1] and seems not compatible with financial
reality.

The aim of this paper is to generalize the comprehensive structural model for
defaultable fixed income bonds (considered in [1]) into a comprehensive unified
model of structural and reduced form models. In our model the bond holders
receive the deterministic coupon at predetermined coupon dates and the face
value (debt) and the coupon at the maturity like [1]. The effect of government
taxes which are paid on the proceeds of an investment in bonds is considered
under constant short rate while Agliardi [1] considered stochastic model of short
rate such as Vasicek model. The aim of this change is to get analytical pricing
formulae.
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The expected default event occurs when the equity value is not enough to pay
coupon or debt at the coupon dates or maturity, and unexpected default event
can occur at any time interval with the probability of given default intensity
(provided by a step function of time variable) multiplied by the length of the
time interval. We consider the model and pricing formula for equity value and
using it calculate expected default barrier. Then we provide pricing model and
formula for defaultable corporate bonds with discrete coupons, and consider
the duration and the effect of the government taxes.

In our case, the pricing model between every adjacent two coupon dates
becomes an inhomogeneous Black-Scholes equation with discontinuous terminal
value condition and can be solved by the method of higher order binaries with
constant coefficients which is used to price zero-coupon bond in [18].

The remainder of the article is organized as follows. In Section 2 we consider
the model and pricing formula for equity value and use it to calculate expected
default barrier. Then we provide pricing model and formula for defaultable
discrete coupon corporate bonds without consideration of taxes. In Section 3
we study the duration of our bond. In Section 4 we consider the effect of taxes.
Sections 5 is the appendix where we give the sketch of the proof of pricing
formulae for equity value and defaultable discrete coupon bond. The notions
and the pricing formulae of higher order binaries with constant coefficients and
some of their properties which are used in Sections 2, 3 and 4 will be referred
to [15] or [18].

2. Mathematical model and pricing formulae for discrete coupon
bond with both expected and unexpected defaults

2.1. Assumptions. (1) Short rate r is constant. Then the price of default free
zero coupon bond with maturity T and face value 1 is Z(t; T ) = e−r(T−t).

(2) The firm value V (t) follows a geometric Brownian motion

dV (t) = (r − b)V (t)dt+ sV · V (t)dW (t)

under the risk neutral martingale measure. Here the volatility sV of the firm
value is a constant and the firm continuously pays out dividend in rate b (con-
stant) for a unit of firm value.

(3) Let 0 = T0 < T1 < . . . < TN1 < TN = T and let T be the maturity of
our corporate bond with face value F (unit of currency). At time Ti (i =
1, . . . , N − 1) the bond holder receives the coupon of quantity Ci (unit of
currency) from the firm and at time TN = T the bond holder receives the
face value F and the last coupon CN (unit of currency). (That is, the coupons
are the same as in [1].)

(4) The expected default occurs only at time Ti when the equity of the firm
is not enough to pay debt and coupon. If the expected default occurs, the bond



United model of structural and reduced type 578

holder receives δ ·V as default recovery. Here δ (0 ≤ δ ≤ 1) is called a fractional
recovery rate of firm value at default.

(5) The unexpected default can occur at any time. For every i = 0, . . . , N−1
the unexpected default probability in the interval [t, t+∆t]∩ (Ti, Ti+1) is λi∆t.
Here the default intensity λi is a constant. If the unexpected default occurs at

time t ∈ (Ti, Ti+1), the bond holder receives min{δ · V,
∑N

k=i+1 CkZ(t;TK) +
FZ(t;TN )} as default recovery. Here the reason why the expected default re-
covery and unexpected recovery are given in different forms is to avoid the
possibility of paying more than the price of a default free discrete coupon
bond with the face value F and coupons Ck (at time Tk) as a default re-
covery when the unexpected default event occurs. In what follows we call
the unexpected default occurred at time t ∈ (Ti, Ti+1) with default recovery∑N

k=i+1 CkZ(t;TK) + FZ(t;TN ) as the unexpected default without loss.
(6) In the subinterval (Ti, Ti+1), the price of our corporate bond and the

equity of the firm are given by a sufficiently smooth function Bi(V, t) and
Ei(V, t) (i = 0, . . . , N − 1), respectively.

2.2. Mathematical model for equity and expected default barriers.
According to [17], we can derive a PDE for the equity E when the firm has
constant default intensity λ under the assumptions (1) and (2).

∂E

∂t
+

s2V
2
V 2 ∂

2E

∂V 2
+ (r − b)V

∂E

∂V
− (r + λ)E = 0.

From the above PDE of the equity and the above assumption (5) and (6) the
equity price Ei satisfies the following PDE in every subinterval (Ti, Ti+1) (i =
0, . . . , N − 1):

(2.1)
∂Ei

∂t
+

s2V
2
V 2 ∂

2Ei

∂V 2
+ (r − b)V

∂Ei

∂V
− (r + λi)Ei = 0.

From assumption (3) we have:

EN (V, TN ) = (V − F − CN ) · 1{V > F + CN},
(2.2)

Ei(V, Ti+1) = [Ei+1(V, Ti+1)− Ci+1] · 1{Ei(V, Ti+1) > Ci+1}, i = 0, . . . , N − 2.

We will use the following notation for simplicity.

KN = F + CN ; c̄N = F + CN ;(2.3)

c̄i = Ci, i = 1, . . . , N − 1;

∆Ti = Ti+1 − Ti, i = 0, . . . , N − 1.

Remark 2.1. c̄i is the payoff to bondholders at time Ti (i = 1, . . . , N) and KN

denotes the default barrier at time TN .
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Theorem 2.2. (Equity Price) The solutions of (2.1) and (2.2) are provided
as follows:

Ei(V, t) =e−λi(Ti+1−t)
{
e−

∑N−1
k=i+1

λk∆TkA+ ... +
Ki+1...KN

(V, t;Ti+1, . . . , TN ; r, b, sV )

(2.4)

−
N−1∑
m=i

c̄m+1e
−

∑m
k=i+1 λk∆TkB+ ... +

Ki+1...Km+1
(V, t;Ti+1, . . . , Tm+1; r, b, sV )

}
(Ti < t ≤ Ti+1, V > 0, i = 0, . . . , N − 1).

Here B+ ... +
K1...Km

(x, t; t1, . . . , tm; r, q, σ) and A+ ... +
K1...Km

(x, t; t1, . . . , tm; r, q, σ) are
respectively the prices of m-th order bond and asset binaries with risk free rate r,
dividend rate q and volatility σ (see [15, Theorem 1]) and Ki (i = 1, . . . , N −1)
is the unique root of the equation Ei(V, Ti) = Ci. Using multi-variate normal
distribution functions, (2.4) are represented in terms of the debt F , the coupons
Ci and the firm value V as follows:

Ei(V, t) = V e−(λi+b)(Ti+1−t)−
∑N−1

k=i+1
(λk+b)∆TkNN−i(d

+
i+1(t), . . . , d

+
N (t);Ai+1,N (t))−

(2.5)

e−λi(Ti+1−t)
{
(F + CN )Z(t;TN )e−

∑N−1
k=i+1

λk∆TkNN−i(d
−
i+1(t), . . . , d

−
N (t);Ai+1,N (t))

−
N−2∑
m=i

Cm+1Z(t;Tm+1)e
−

∑m
k=i+1 λk∆TkNm+1−i(d

−
i+1(t), . . . , d

−
N (t);Ai+1,m+1(t))

}
.

Here the cumulative distribution function Nm(a1, . . . , am;A) of m-variate nor-
mal distribution with zero mean vector and a covariance matrix A−1, d±i (t) and

A−1
k,m(t) = (rij(t))

m
i,j=k are given by:

Nm(a1, . . . , am;A) =

∫ a1

−∞
. . .

∫ am

−∞

1

(
√
2π)m

√
detA exp

(
−1

2
yTAy

)
dy,

(2.6)

d±i (t) =
ln V

Ki
+ (r − b± s2V

2 )(Ti − t)

sV
√
Ti − t

, i = 1, . . . , N − 1,

d±N (t) =
ln V

F+CN
+ (r − b± s2V

2 )(TN − t)

sV
√
TN − t

,

rij(t) =

√
Ti − t

Tj − t
, rji(t) = rij(t), i ≤ j (i, j = k, . . . ,m).

Remark 2.3. Theorem 1 gives us the expected default barrierKi at time Ti (i =
1, . . . , N − 1). That is, if V < Ki at time Ti, then the expected default occurs.
Note that the difference of (2.4) and (2.5) from [17, (2.13), (2.14), and (2.15)]
comes from the coupon structures’ difference. If b = 0 and λk = 0 (k =
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0, . . . , N−1), then our pricing formula (2.5) has the same type with the formula
(2) of [1] at page 751 but we should note that here short rate r is constant. If
b = 0, Ck = 0 and λk = 0 (k = 0, . . . , N − 1), then the formula (2.5) with
(2.6) includes the formula (12) of Merton (1974) [14].

In what follows, we provide a numerical example for the equity calculated
using Matlab. Here the basic data are as follows: N = 2, T1 = 3, T2 = 6
(annum), r = 0.02, b = 0.05, sV = 1.0, λ0 = 0.002, λ1 = 0.004, δ = 0.5, F =
10, C1 = C2 = 1.0, and in Figure 1 we give the graph (V - Equity price) when
V changes from 0 to 30 and the default barrier K1.

Figure 1. Plot (V - Equity) and the default barrier K1

In Figure 2 we give the graphs (t - Equity price) when V = 20 and C1 = C2 =
2, 1, 0.1. The jumps at T1 = 3 reflect the coupon payment.

2.3. Model and pricing formulae of the defaultable discrete coupon
bond. In this subsection we derive the representation of the price Bi(V, t) of
the defaultable discrete coupon bond in the interval (Ti, Ti+1] (i = 0, . . . , N−1).
In this subsection we neglect the effect of the taxation. We use the notation of
(2.3) and the following notation

(2.7) Φi(t) =
N∑

k=i+1

CkZ(t;TK) + FZ(t;TN ), t ∈ (Ti, Ti+1].

That is, Φi(t) is time t-value of default free discrete coupon bond with the
maturity TN - face value F and coupons Ci+1, . . . , CN at time Ti+1, . . . , TN ,
respectively.

Now we consider the defaultable discrete coupon bond under the assump-
tions (1)–(6) in Subsection 2.1. From assumptions (5) and (6), using the



581 O, Jo, Kim and Jon

Figure 2. Plot (t− Equity) when V = 20.

method of [20] we can know that our bond price Bi(V, t) satisfies the following
PDE in every subinterval (Ti, Ti+1) (i = 0, . . . , N − 1):

∂Bi

∂t
+

s2V
2
V 2 ∂

2Bi

∂V 2
+ (r − b)V

∂Bi

∂V
− (r + λi)Bi + λi min{δV,Φi(t)} = 0,

(2.8)

Ti < t < Ti+1, V > 0.

In Theorem 2.2, we have calculated the expected default barrier Ki (i =
1, . . . , N). (See Remark 2.3.) Thus from assumptions (3) and (4) we have the
following terminal value conditions:

BN−1(V, TN ) = c̄N · 1{V > KN}+ δV · 1{V ≤ KN}, V > 0,(2.9)

Bi(V, Ti+1) = [Bi+1(V, Ti+1) + c̄i+1] · 1{V > Ki+1}+ δV · 1{V ≤ Ki+1},
V > 0 and i = 0, . . . , N − 2.

The problem (2.8) and (2.9) is just the pricing model of our defaultable
discrete coupon bond.

Remark 2.4. In our model (2.8) and (2.9) the consideration of unexpected de-
fault risk and dividend of firm value is added to the model on defaultable
discrete coupon bond of [1]. Another difference from [1]’s approach is that
risk free rate r is constant (but not stochastic process). The difference from
the model [17, (2.18) and (2.19)] is the coupon structures. Our model (2.8)
and (2.9) has some difference in default barriers and default recovery from
the model [18, (21)] for defaultable zero coupon bond with discrete default
information and endogenous default recovery but it is very similar with the
fundamental problem [18, (32)] which is a terminal value problem for an inho-
mogeneous Black - Scholes equation with constant coefficients and binary type
terminal value.
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Theorem 2.5 (Discrete Coupon Bond Price). The solution to the problem
(2.8) and (2.9) is given as follows:

Bi(V, t)

(2.10)

=e−λi(Ti+1−t)

{
N−1∑
m=i

e−
∑m

k=i+1 λk∆Tk

[
c̄m+1B

+ ... +
Ki+1...Km+1

(V, t;Ti+1, . . . , Tm+1)

+ δ ·A+ ... + −
Ki+1...KmKm+1

(V, t;Ti+1, . . . , Tm, Tm+1)
]

+
N−1∑

m=i+1

λme−
∑m−1

k=i+1 λk∆Tk

·
∫ Tm+1

Tm

e−λm(τ−Tm)
[
Φm(τ) ·B+ ... + +

Ki+1...KmMm+1(τ)
(V, t;Ti+1, . . . , Tm, τ)

+ δ · A+ ... + −
Ki+1...KmMm+1(τ)

(V, t;Ti+1, . . . , Tm, τ)
]
dτ

}

+ λi

∫ Ti+1

t

e−λi(τ−t)
[
Φi(τ) ·B+

Mi+1(τ)
(V, t; τ) + δ ·A−

Mi+1(τ)
(V, t; τ)

]
dτ.

Here B+ ... +
K1...Km

and A+ ... + −
K1...Km−1Km

are respectively the prices of m-th order bond

and asset binaries with risk free rate r, dividend rate b and volatility sV (cf.
[15, Theorem 1]), c̄i and Ki (i = 1, . . . , N) are the same as in Theorem 2.2;
Mi+1(t) = δ−1Φi(t). In particular the initial price of the bond is given by

B0 = B0(V0, 0)

(2.11)

=

N−1∑
m=0

e−
∑m−1

k=0 λk∆Tk

{
e−λm∆Tm

[
c̄m+1B

+ ... +
K1...Km+1

(V0, 0;T1, . . . , Tm+1)

+ δ ·A+ ... + −
K1...KmKm+1

(V0, 0;T1, . . . , Tm, Tm+1)
]

+ λm

∫ Tm+1

Tm

e−λm(τ−Tm)
[
Φm(τ) ·B+ ... + +

K1...KmMm+1(τ)
(V0, 0;T1, . . . , Tm, τ)

+ δ · A+ ... + −
K1...KmMm+1(τ)

(V0, 0;T1, . . . , Tm, τ)
]
dτ
}
, V > 0.

Remark 2.6. (1) The proof of Theorem 2.5 is similar to the solution of [18, (32)]
and we give a sketch of the proof in the Appendix. (2) The problem (2.8) and
(2.9) is an inhomogeneous Black-Scholes equation with discontinuous terminal
value. Thus using the results of [16], we can investigate such properties of
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Figure 3. Plot (t-bond price). The jumps reflect coupon payment.

Bi(V, t) as monotonicity, boundedness or gradient estimate and so on.

In what follows, we provide a numerical example for the bond price calcu-
lated using Matlab. Here the basic data are the same as in Subsection 2.2 but
C1 and C2 are different.

Denote the leverage ratio by L = F/V0 and the k-th coupon rate by ck =
Ck/F (k = 1, . . . , N). Then we have the following representation of the initial
price of the our defaultable discrete coupon bond in terms of leverage ratio,
face value, coupon rates, default recovery rate and initial price of the default
free zero coupon bonds with maturity Tk (coupon dates).

Corollary 2.7. Under the assumption of Theorem 2.5, the initial price of the
bond can be represented as follows:

B0 =B0(L,F, c1, . . . , cN ; δ, λ0, . . . , λN−1; r, b)

(2.12)

=F
{
e−

∑N−1
k=0

λk∆TkZ(0;TN )NN (d−1 , . . . , d
−
N ;AN )

+

N−1∑
m=0

e−
∑m−1

k=0
λk∆Tk

[
e−λm∆Tmcm+1Z(0;Tm+1)Nm+1(d

−
1 , . . . , d

−
m+1;Am+1)

+ λmϕm(0)

∫ Tm+1

Tm

e−λm(τ−Tm) Nm+1(d
−
1 , . . . , d

−
m, d̃−m+1(τ, δ); Ãm+1(τ))dτ

]
+

δ

L

N−1∑
m=0

e−
∑m−1

k=0
(λk+b)∆Tk

[
e−(λm+b)∆TmNm+1(d

+
1 , . . . , d

+
m,−d+m+1;A

−
m+1)

+ λm

∫ Tm+1

Tm

e−(λm+b)(τ−Tm) Nm+1(d
+
1 , . . . , d

+
m,−d̃+m+1(τ, δ); Ã

−
m+1(τ))dτ

]}
.
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Here ϕm(0) = Φm(0)/F and Nm(a1, . . . , am;A), d±i (0) and A−1
m = A−1

1,m(0)

= (rij)
m
i,j=k are given by (2.6),

(2.13) d̃±i (τ, δ) =
ln V

Mi(τ)
+ (r − b± s2V

2 )τ

sV
√
τ

, Ti−1 ≤ τ < Ti; i = 1, . . . , N,

(Ãm(τ))−1 = (r̃ij(τ))
m
i,j=1 is the matrix whose m-th row and column are given

by

(2.14) r̃im(τ) =
√
Ti/τ , r̃mi(τ) = r̃im(τ), i < m ( i = 1, . . . ,m− 1),

and other elements coincide with those of (Am)−1. The matrices (A−
m)−1 =

(r−ij)
m
i,j=1 and (Ã−

m(τ))−1 = (r̃−ij(τ))
m
i,j=1 have such m-th rows and columns that

r−im = −rim, r−mi = r−im; r̃−im(τ) = −r̃im(τ), r̃−mi(τ) = r̃−im(τ),(2.15)

i < m ( i = 1, . . . ,m− 1),

and other elements coincide with those of (Am)−1 and (Ãm(τ))−1, respectively.

Remark 2.8. If b = 0 and λk = 0 (k = 0, . . . , N − 1), then our pricing for-
mula (2.12) nearly coincides with formula (5) of [1] at page 752 and the only
difference comes from the assumption of short rate. If b = 0, Ck = 0, and
λk = 0 (k = 0, . . . , N − 1), then the formula (2.12) includes the formula (13) of
Merton (1974) [14].

In what follows, we use the following notation for simplicity:

G+
N = G+

N (λ0, . . . , λN−1; b) = e−
∑N−1

k=0 (λk+b)∆TkNN (d+1 , . . . , d
+
N ;AN ),

(2.16)

G−
m+1 = G−

m+1(λ0, . . . , λm) = e−
∑m

k=0 λk∆TkNm+1(d
−
1 , . . . , d

−
m+1;Am+1),

g−m+1(τ) = g−m+1(τ, δ, λ0, . . . , λm)

= e−λm(τ−Tm)−
∑m−1

k=0 λk∆TkNm+1(d
−
1 , . . . , d

−
m, d̃−m+1(τ, δ); Ãm+1(τ)),

G̃m+1 = G̃m+1(λ0, . . . , λm; b)

= e−
∑m

k=0(λk+b)∆TkNm+1(d
+
1 , . . . , d

+
m,−d+m+1;A

−
m+1),

gm+1(τ) = g̃m+1(τ, δ, λ0, . . . , λm; b)

=e−(λm+b)(τ−Tm)−
∑m−1

k=0 (λk+b)∆Tk

·Nm+1(d
+
1 , . . . , d

+
m,−d̃+m+1(τ, δ); Ã

−
m+1(τ)),

m = 0, . . . , N − 1.
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Then from (2.5) and (2.12) we can write as follows:

E0(V0, r, 0) = V0G
+
N − (F + CN )Z(0, TN )G−

N −
N−1∑
m=1

CmZ(0;Tm)G−
m,(2.17)

B0(V0, r, 0) = (F + CN )Z(0, TN )G−
N +

N−1∑
m=1

CmZ(0;Tm)G−
m

+
N−1∑
m=0

λmΦm(0)

∫ Tm+1

Tm

g−m+1(τ)dτ

+ δ · V0

N−1∑
m=0

(
G̃m+1 + λm

∫ Tm+1

Tm

g̃m+1(τ)dτ

)
.

If we take the sum of the above expressions, we have

E0 +B0 =V0G
+
N + δ · V0

N−1∑
m=0

(
G̃m+1 + λm

∫ Tm+1

Tm

g̃m+1(τ)dτ

)

+
N−1∑
m=0

λmΦm(0)

∫ Tm+1

Tm

g−m+1(τ)dτ.

Therefore, we have

V0 =E0 +B0 + V0

[
1−G+

N − δ

N−1∑
m=0

(
G̃m+1 + λm

∫ Tm+1

Tm

g̃m+1(τ)dτ

)]

−
N−1∑
m=0

λmΦm(0)

∫ Tm+1

Tm

g−m+1(τ)dτ.

This shows that the Modigliani-Miller theorem holds (that is, V = Equity +
Debt) when δ = 1 and λk = b = 0. Here we considered the following fact [1]:

1−NN (d+1 , . . . , d
+
N ;AN ) =

N−1∑
m=0

Nm+1(d
+
1 , . . . , d

+
m,−d+m+1;A

−
m+1).

In the case with possibility of default, it is modified as follows [1]:

V = Equity +Debt+Default Costs (bankruptcy costs).

From this fact, we have the representation of bankruptcy costs.

Corollary 2.9. (Bankruptcy Cost) The current value of bankruptcy cost is as
follows:

V0 − V0G
+
N −

N−1∑
m=0

{
δV0G̃m+1 + λm

∫ Tm+1

Tm

[δV0g̃m+1(τ) + Φm(0)g−m+1(τ)]dτ

}
.

(2.18)
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Remark 2.10. In the formula (2.18), let λk = b = 0, then we have the formula
(6) of [1] at page 752.

3. Duration

In this section we study the problem of duration for defaultable discrete
coupon bond under the united model of structural and reduced form approaches
we developed in the previous section. According to [1], when B(V, t; r) is bond
price, we use the following definition for duration with respect to the short
rate:

D(V, t) = − 1

B(V, t; r)
∂rB(V, t; r).(3.1)

Now we calculate the duration of our defaultable discrete coupon bond. We
use the notation of (2.3). In (2.17) the third term can be rewritten as follows:

N−1∑
m=0

λmΦm(0)

∫ Tm+1

Tm

g−m+1(τ)dτ =

N∑
n=1

c̄nZ(0, Tn)

n−1∑
m=0

λm

∫ Tm+1

Tm

g−m+1(τ)dτ.

Then we have another more intuitional initial price representation:

B0(V0, r, 0) =
N∑

n=1

c̄nZ(0, Tn)

[
G−

n +
n−1∑
m=0

λm

∫ Tm+1

Tm

g−m+1(τ)dτ

]
(3.2)

+ δ · V0

N−1∑
m=0

(
G̃m+1 + λm

∫ Tm+1

Tm

g̃m+1(τ)dτ

)
.

Here we let

fn(r) = G−
n +

n−1∑
m=0

λm

∫ Tm+1

Tm

g−m+1(τ)dτ, n = 1, . . . , N ;(3.3)

h(r) =
N−1∑
m=0

(
G̃m+1 + λm

∫ Tm+1

Tm

g̃m+1(τ)dτ

)
.

Remark 3.1. fn(r) may be considered as the probability of no default (or un-
expected default without loss) prior to or at Tn and h(r) the probability of
expected default or unexpected default with recovery δV0 .

Then fn, h > 0 and the initial price of our bond is written as follows:

B0 = B0(V0, r, 0) =

N∑
n=1

c̄nZ(0, Tn)fn(r) + δ · V0h(r).(3.4)

Thus we have

−∂rB0 =

N∑
n=1

c̄nZ(0, Tn)[Tnfn(r)− ∂rfn(r)]− δ · V0∂rh(r).(3.5)
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We use the lemma on derivatives of multi-variate normal distribution functions
([17, Lemma 3, p. 331]), and

∂

∂r
d±i (0) = (sV

√
Ti)

−1Ti;
∂

∂r
d̃±i (τ, δ) = (sV

√
τ)−1τ, i = 1, . . . , N

(see [11]) to get

∂rNm+1(d
−
1 , . . . , d

−
m+1;Am+1)

=

m+1∑
i=1

N̆m+1,i(d
−
1 , . . . , d

−
m+1;Am+1)(sV

√
Ti)

−1Ti ≥ 0,

∂rNm+1(d
+
1 , . . . , d

+
m,−d+m+1;A

−
m+1)

=
m∑
i=1

N̆m+1,i(d
+
1 , . . . , d

+
m,−d+m+1;A

−
m+1)(sV

√
Ti)

−1Ti

− N̆m+1,m+1(d
+
1 , . . . , d

+
m,−d+m+1;A

−
m+1)(sV

√
Tm+1)

−1Tm+1,

∂rNm+1(d
−
1 , . . . , d

−
m, d̃−m+1(τ.δ); Ãm+1(τ))

=

m∑
i=1

N̆m+1,i(d
−
1 , . . . , d

−
m, d̃−m+1(τ.δ); Ãm+1(τ))(sV

√
Ti)

−1Ti

+ N̆m+1,m+1(d
−
1 , . . . , d

−
m, d̃−m+1(τ.δ); Ãm+1(τ))(sV

√
τ)−1τ ≥ 0,

∂rNm+1(d
+
1 , . . . , d

+
m,−d̃+m+1(τ.δ); Ã

−
m+1(τ))

=
m∑
i=1

N̆m+1,i(d
+
1 , . . . , d

+
m,−d̃+m+1(τ.δ); Ã

−
m+1(τ))(sV

√
Ti)

−1Ti

− N̆m+1,m+1(d
+
1 , . . . , d

+
m,−d̃+m+1(τ.δ); Ã

−
m+1(τ))(sV

√
τ)−1τ.

Here N̆m+1,i is given in (A.14) at page 331 of [17]. From (3.3) and (2.16), we
have

∂rfn(r) = ∂rG
−
n +

n−1∑
m=0

λm

∫ Tm+1

Tm

∂rg
−
m+1(τ)dτ(3.6)

=

n∑
i=1

Ti(D
−
n,i + J̃−

i−1), n = 1, . . . , N ;

∂rh(r) =

N−1∑
m=0

(
∂rG̃m+1 + λm

∫ Tm+1

Tm

∂r g̃m+1(τ)dτ

)
(3.7)

=
N∑
i=1

Ti(D
+
N,i − J̃+

i−1) .
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Here

D−
n,i =(sV

√
Ti)

−1

[
e−

∑n−1
k=0

λk∆TkN̆n,i(d
−
1 , . . . , d

−
n ;An)(3.8)

+

n−1∑
m=i

λm

∫ Tm+1

Tm

e−λm(τ−Tm)−
∑m−1

k=0
λk∆Tk

·N̆m+1,i(d
−
1 , . . . , d

−
m, d̃−m+1(τ, δ); Ãm+1(τ))dτ

]
≥ 0,

i = 1, . . . , n;

J̃−
m=λm

∫ Tm+1

Tm

e−λm(τ−Tm)−
∑m−1

k=0
λk∆Tk

·
N̆m+1,m+1(d

−
1 ,. . ., d

−
m, d̃−m+1(τ, δ); Ãm+1(τ))

sV Tm+1

√
τdτ ≥ 0

m = 0, . . . , n− 1;

D+
N,i =(sV

√
Ti)

−1

[
N−1∑
m=i

(
e−

∑m
k=0(λk+b)∆Tk

· N̆m+1,i(d
+
1 , . . . , d

+
m,−d+m+1;A

−
m+1)

+ λm

∫ Tm+1

Tm

e−(λm+b)(τ−Tm)−
∑m−1

k=0
(λk+b)∆Tk

· N̆m+1,i(d
+
1 , . . . , d

+
m,−d̃+m+1(τ, δ); Ã

−
m+1(τ))dτ

)
− e−

∑i−1
k=0

(λk+b)∆TkN̆i,i(d
+
1 , . . . , d

+
i−1,−d+i ;A

−
i )

]
,

i = 1, . . . , N − 1;

D+
N,N =− (sV

√
TN )−1e−

∑N−1
k=0

(λk+b)∆TkN̆N,N (d+1 , . . . , d
+
N−1,−d+N ;A−

N ) ≤ 0,

J̃+
m =λm

∫ Tm+1

Tm

e−(λm+b)(τ−Tm)−
∑m−1

k=0
(λk+b)∆Tk

·
N̆m+1,m+1(d

+
1 , . . . d

+
m,−d̃+m+1(τ, δ); Ã

−
m+1(τ))

(sV
√
Tm+1)−1

√
τdτ ≥ 0.

Using the notations (3.3) and (3.8), if we substitute (3.6) and (3.7) into (3.5) we have
the representation of the duration of our defaultable discrete coupon bond:

D̃ =
−∂rB0

B0
=

1

B0

{
N∑
i=1

Ti

[
c̄iZ(0;Ti)(fi −D−

i,i − J̃−
i−1)− δV0(D

+
N,i − J̃+

i−1)
]

(3.9)

−
N−1∑
i=1

Ti

N∑
n=i+1

c̄nZ(0;Tn)(D
−
n,i + J̃−

i−1)

}
.
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4. Taxes on the coupons

In this section we extend the result of Section 2 along the line of the study of [1] on
the effect of government taxes that paid on the proceeds of an investment in corporate
bonds.

State income taxes are only paid on the proceeds of an investment and not on the
principal. In this case the payoff to the bond holders is reduced but the equity is not
changed. Thus the expected default condition is not changed and default barrier at
time Ti is still Ki (i = 1, . . . , N) as calculated in Theorem 2.2. It means that when
the tax rate is Λ (> 0), the payoff to bondholders at coupon dates is as follows:

i) At the maturity date TN , F + (1−Λ)CN if VTN ≥ KN (= F +CN ) (firm value
is large enough to pay debt principal F and coupon CN ); F + (1 − Λ)(δVTN − F ) if
F/δ ≤ VTN < KN (firm value is large enough to pay debt principal but not enough
to pay coupon); δVTN if VTN < F/δ (firm value is not large enough to pay even the
principal, let alone the coupon). Here we should note that this structure of the payoff
comes from the implicit assumption that F/δ < F + CN (equally δ > (1 + cN )−1 or
cN > δ−1−1 ; we call it the case II which is possible but generally unlikely because the
recovery rate δ might not be able to be so large provided a coupon rate cN = CN/F
or the coupon rate cN might not be able to be so large provided a recovery rate δ.
For example, if δ = 1/2, then we must have cN > 1 which seems impossible. When
F/δ ≥ F + CN (equally δ ≤ (1 + cN )−1 or cN ≤ δ−1 − 1 ; we call it the case I, the
payoff to bondholders at the maturity date TN is F + (1 − Λ)CN if VTN ≥ KN and
δVTN if VTN < KN . Here we only consider the case I as in [1].

ii) At the k-th coupon date Ti (i = 1, . . . , N − 1), (1 − Λ)Ci if VTi ≥ Ki ; δVTi if
VTi < Ki . (Note that it is possible to consider the case II as at time TN but we do
not consider it since it is generally unlikely.)

Let modify our pricing model (2.8) and (2.9) under consideration of taxes on the
coupons provided in the above. We introduce the following notation for simplicity of
pricing formulae as the previous subsections.

c̃N = F + (1− Λ)CN ;(4.1)

c̃i = (1− Λ)Ci, Φ̃i(t) =

N∑
k=i+1

c̃kZ(t;Tk), i = 1, . . . , N − 1.

That is, c̃i is the time TN -value of the payoff to bondholders at time Ti(i = 1, . . . , N)

and Φ̃i(t) is time t-value of default free discrete coupon bond with the maturity TN -
face value F and coupons Ci+1, . . . , CN at time Ti+1, . . . , TN under consideration of
the tax rate Λ.

Under the above assumption and the notation (4.1), our bond price B̃i satisfies
the following PDE in every subinterval (Ti, Ti+1) (i = 0, . . . , N − 1):

∂B̃i

∂t
+

s2V
2
V 2 ∂

2B̃i

∂V 2
+ (r − b)V

∂B̃i

∂V
− (r + λi)B̃i + λi min{δV, Φ̃i(t)} = 0,(4.2)

Ti < t < Ti+1, V > 0.
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If we consider the payoff to bondholders at coupon dates, we can derive the following
terminal value conditions:

B̃N−1(V, TN ) = c̃N · 1{V > KN}+ δV · 1{V ≤ KN}, V > 0;(4.3)

B̃i(V, Ti+1) = [B̃i+1(V, Ti+1) + c̃i+1] · 1{V > Ki+1}+ δV · 1{V ≤ Ki+1},
V > 0, i = 0, · · · , N − 2.

The problem (4.2) and (4.3) with the notation (4.1) is just the pricing model of our
defaultable discrete coupon bond under consideration of taxes on coupons and it is the
same problem with (2.8) and (2.9). Thus we have the solution representation of it
just as in Theorem 2.5 or Corollary 2.7.

Theorem 4.1. Unless the coupon rates are large relative to 1/δ, under State tax
rate Λ, we have the following representation of the initial price of the our defaultable
discrete coupon bond in terms of debt, coupon rates, default recovery rate, default
intensity, and initial price of the default free zero coupon bond and initial firm value:

B̃0 =B̃0(V0, F, c1, . . . , cN ; δ, λ0, . . . , λN−1; r, b,Λ)

(4.4)

=F
{
e−

∑N−1
k=0

λk∆TkZ(0;TN )NN (d−1 , . . . , d
−
N ;AN )

+

N−1∑
m=0

e−
∑m−1

k=0
λk∆Tk

[
e−λm∆Tm(1− Λ)cm+1Z(0;Tm+1)

·Nm+1(d
−
1 , . . . , d

−
m+1;Am+1)

+ λmϕ̃m(0)

∫ Tm+1

Tm

e−λm(τ−Tm) Nm+1(d
−
1 , . . . , d

−
m, d̃−m+1(τ, δ); Ãm+1(τ))dτ

]}
+ δV0

N−1∑
m=0

e−
∑m−1

k=0
(λk+b)∆Tk

[
e−(λm+b)∆TmNm+1(d

+
1 , . . . , d

+
m,−d+m+1;A

−
m+1)

+ λm

∫ Tm+1

Tm

e−(λm+b)(τ−Tm) Nm+1(d
+
1 , . . . , d

+
m,−d̃+m+1(τ, δ); Ã

−
m+1(τ))dτ

]
.

Here

ϕ̃m(0) = Φ̃m(0)/F = Z(0;TN ) +

N∑
k=m+1

(1− Λ)ckZ(0;Tk),

and Nm(a1, . . . , am;A), d±i (0), Am, A−
m, Ãm(τ), Ã−

m(τ) and d±i are the same as in
Theorem 2.5 and,

d̃±i (τ, δ,Λ) =
ln V

M̃i(τ)
+ (r − b± s2V

2
)τ

sV
√
τ

, Ti−1 ≤ τ < Ti; i = 1, . . . , N,(4.5)

M̃i(t) = δ−1Φ̃i(t).

Remark 4.2. If b = 0 and λk = 0 (k = 0, . . . , N − 1), then our pricing formula (4.4)
nearly coincides with the formula (10) of [1] at page 756 and the only difference comes
from the fact that the short rate is constant in our model.
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Remark 4.3. As in the Section 2, the equation of the problem (4.2) and (4.3) is
an inhomogeneous Black-Scholes equation with discontinuous terminal value. Thus
using the results of [17], we can investigate such properties of B̃i(V, t) as monotonicity,
boundedness or gradient estimate and so on.

Remark 4.4. In formulaes (2.5), (2.12) and (4.4), multivariate normal probability
functions can easily be computed using standard functions on computers. (For ex-
ample, we used the standard function “mvncdf” in Matlab to obtain our numerical
results. Representations of covariance matrices including (2.6), (2.14) and (2.15)
make convenient to use the standard function “mvncdf”.

Example 4.5 (Numerical example). Basic data for numerical experiments are
the same as in Subsection 2.3 but coupons are given by C1 = C2 = 2 2

3
when Λ = 0.1;

C1 = C2 = 2 when Λ = 0.2 and C1 = C2 = 1 1
7
when Λ = 0.3. Then we exactly get

Figure 3.

5. Appendix: proofs of theorems

The proof of Theorem 1. Now we solve problems (2.1) and (2.2). Under the no-
tation (2.3), when i = N − 1, we have in the interval (TN−1, TN )

(5.1)
∂EN−1

∂t
+

s2V
2
V 2 ∂

2EN−1

∂V 2
+ (r − b)V

∂EN−1

∂V
− (r + λN−1)EN−1 = 0.

EN−1(V, TN ) = (V − c̄N ) · 1{V > KN}, V > 0.(5.2)

The equation (5.1) is the Black-Scholes equation with the short rate r + λN−1 , the
dividend rate λN−1 + b and the volatility sV . The terminal value condition (5.2) can
be written as

EN−1(V, TN ) = V · 1{V > KN} − c̄N · 1{V > KN}.

This is the terminal value of binary option ([5, 15]) and thus we have the solution –
representation in terms of binary options:

EN−1(V, t) =A+
KN

(V, t;TN ; r + λN−1, λN−1 + b, sV )

(5.3)

− c̄NB+
KN

(V, t;TN ; r + λN−1, λN−1 + b, sV )

=e−λN−1(TN−t)[A+
KN

(V, t;TN ; r, b, sV )− c̄NB+
KN

(V, t;TN ; r, b, sV )
]
,

TN−1 ≤ t < TN .

Here A+
KN

(V, t;TN ; r, q, σ), and B+
KN

(V, t;TN ; r, q, σ) are the prices of the asset and
bond binary options with risk free rate r, the dividend rate q and the volatility σ
(given by [18, Lemma 1]), and we used [18, (11)]. In particular for the next step of
study we rewrite EN−1(V, TN−1) as

EN−1(V, TN−1)(5.4)

= e−(λN−1−λN−2)(TN−TN−1)
[
A+

KN
(V, TN−1;TN ; r+λN−2, λN−2 + b, sV )

− c̄NB+
KN

(V, TN−1;TN ; r + λN−2, λN−2 + b, sV )
]
.
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By (5.2) and [15, Lemma 1, p. 253 ] we have

0 <
∂EN−1

∂V
(V, TN−1) < e−(λN−1+b)∆TN−1 ≤ 1, V > 0.(5.5)

Now consider the case when i = N − 2. In this case, in the interval (TN−2, TN−1),
the problem (2.1) and (2.2) becomes

(5.6)
∂EN−2

∂t
+

s2V
2
V 2 ∂

2EN−2

∂V 2
+ (r − b)V

∂EN−2

∂V
− (r + λN−2)EN−2 = 0.

EN−2(V, TN−1) = (EN−1(V, TN−1)− c̄N−1) · 1{EN−1(V, TN−1) > c̄N−1}.(5.7)

The equation (5.6) is the Black-Scholes equation with the short rate r+λN−2, the div-
idend rate λN−2+ b and the volatility sV . From (5.7) the equation EN−1(V, TN−1) =
c̄N−1 has unique root KN−1 and EN−1(V, TN−1) ≥ c̄N−1 ⇔ V ≥ KN−1. (Note that
c̄N−1 = 0 ⇐⇒ KN−1 = 0.) Thus by (5.4) the terminal value condition (5.7) can be
written as follows:

EN−2(V, TN−1)

=EN−1(V, TN−1) · 1{V ≥ KN−1} − c̄N−1 · 1{V ≥ KN−1}

=e−(λN−1−λN−2)(TN−TN−1)

·
[
A+

KN
(V, TN−1;TN ; r + λN−2, λN−2 + b, sV )·1{V ≥KN−1}

− c̄NB+
KN

(V, TN−1;TN ; r + λN−2, λN−2 + b, sV ) · 1{V ≥ KN−1}
]

− c̄N−1 · 1{V ≥ KN−1}.

This is the terminal value of combination of the second order binaries and bond binary
([5, 15]) with the short rate r + λN−2 , the dividend rate λN−2 + b and the volatility
sV . Thus we have the following representation:

EN−2(V, t)(5.8)

=e−(λN−1−λN−2)∆TN−1 [A+ +
KN−1KN

(V, t;TN−1, TN ; r + λN−2, λN−2 + b, sV)

− c̄NB+ +
KN−1KN

(V, t;TN−1, TN ; r + λN−2, λN−2 + b, sV )]

− c̄N−1B
+
KN−1

(V, t;TN−1; r + λN−2, λN−2 + b, sV )

=e−λN−2(TN−1−t)−λN−1∆TN−1 [A+ +
KN−1KN

(V, t;TN−1, TN ; r, b, sV )

− c̄NB+ +
KN−1KN

(V, t;TN−1, TN ; r, b, sV )]

− e−λN−2(TN−1−t)c̄N−1B
+
KN−1

(V, t;TN−1; r, b, sV ), TN−2 ≤ t < TN−1.

Here A+ +
K1K2

(V, t;TN−1, TN ; r, q, σ), and B+ +
K1K2

(V, t;TN−1, TN ; r, q, σ) are the prices
of the second order asset and bond binary options with risk free rate r, the dividend
rate q and the volatility σ (see [18, Lemma 1]), and we used [18, (11)]. In particular
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for the next step of study we rewrite EN−2(V, TN−2) as

EN−2(V, TN−2) =e−λN−1∆TN−1−λN−2∆TN−2+λN−3(TN−TN−2)

(5.9)

· [A+ +
KN−1KN

(V, TN−2;TN−1, TN ; r + λN−3, λN−3 + b, sV )

− c̄NB+ +
KN−1KN

(V, TN−2;TN−1, TN ; r + λN−3, λN−3 + b, sV )]

− e−(λN−2−λN−3)∆TN−2

· c̄N−1B
+
KN−1

(V, TN−2;TN−1; r + λN−3, λN−3 + b, sV ).

By (5.5), (5.7) and [15, Lemma 1], we have

0 <
∂EN−2

∂V
(V, TN−2) < e−(λN−2+b)∆TN−2−(λN−1+b)∆TN−1 ≤ 1, V > 0.(5.10)

Now consider the case when i = N − 3. In this case, in the interval (TN−3, TN−2),
(2.1) and (2.2) become

(5.11)
∂EN−3

∂t
+

s2V
2
V 2 ∂

2EN−3

∂V 2
+ (r − b)V

∂EN−3

∂V
− (r + λN−3)EN−3 = 0.

EN−3(V, TN−2) = [EN−2(V, TN−2)− c̄N−2] · 1{EN−2(V, TN−2) > c̄N−2}.(5.12)

The equation (5.11) is the Black-Scholes equation with the short rate r + λN−3, the
dividend rate λN−3+b and the volatility sV . From (5.10) the equation EN−2(V, TN−2)
= c̄N−2 has unique root KN−2 and EN−2(V, TN−2) ≥ c̄N−2 ⇐⇒ V ≥ KN−2. (Note
that c̄N−2 = 0 ⇐⇒ KN−2 = 0.) Thus by (5.9) the terminal value condition (5.12)
can be written as follows:

EN−3(V, TN−3)

=EN−2(V, TN−2) · 1{V ≥ KN−2} − c̄N−2 · 1{V ≥ KN−2}

=e−λN−1∆TN−1−λN−2∆TN−2+λN−3(TN−TN−2)

· [A+ +
KN−1KN

(V, TN−2;TN−1, TN ; r + λN−3, λN−3 + b, sV ) · 1{V ≥ KN−2}

− c̄NB+ +
KN−1KN

(V, TN−2;TN−1, TN ; r + λN−3, λN−3 + b, sV ) · 1{V ≥ KN−2}]

− e−(λN−2−λN−3)∆TN−2 c̄N−1B
+
KN−1

(V, TN−2;TN−1; r + λN−3, λN−3 + b, sV )·
· 1{V ≥ KN−2} − c̄N−2 · 1{V ≥ KN−2}.

This is a linear combination of the terminal values of third or lower order binary
options with the short rate r + λN−3, the dividend rate λN−3 + b and the volatility
sV in the meaning of [15] and the solution EN−3(V, t) is given by the third or lower
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order binary options:

EN−3(V, t)(5.13)

=e−λN−1∆TN−1−λN−2∆TN−2+λN−3(TN−TN−2)·

· [A + + +
KN−2KN−1KN

(V, t;TN−2, TN−1, TN ; r + λN−3, λN−3 + b, sV )

− c̄NB + + +
KN−2KN−1KN

(V, t;TN−2, TN−1, TN ; r + λN−3, λN−3 + b, sV )]

− e−(λN−2−λN−3)∆TN−2

· c̄N−1B
+ +

KN−2KN−1
(V, t;TN−2, TN−1; r + λN−3, λN−3 + b, sV )

− c̄N−2B
+

KN−2
(V, t;TN−2; r + λN−3, λN−3 + b, sV )

=e−λN−1∆TN−1−λN−2∆TN−2−λN−3(TN−2−t)·

· [A + + +
KN−2KN−1KN

(V, t;TN−2, TN−1, TN ; r, b, sV )

− c̄NB + + +
KN−2KN−1KN

(V, t;TN−2, TN−1, TN ; r, b, sV )]

− e−λN−2∆TN−2−λN−3(TN−2−t)c̄N−1B
+ +

KN−2KN−1
(V, t;TN−2, TN−1; r, b, sV )

− e−λN−3(TN−2−t)c̄N−2B
+

KN−2
(V, t;TN−2; r, b, sV ), TN−3 ≤ t < TN−2.

Here A + + +
KN−2KN−1KN

, and B + + +
KN−2KN−1KN

are the prices of the third order asset and

bond binary options (see [15, Theorem 1] or [18, Lemma 1]) and we used [18, (11)].
By induction the formulae (2.4) are proved. □

The proof of Theorem 2. Now we solve problem (2.8) and (2.9). The equation
(2.8) is an inhomogeneous Black-Scholes equation with the short rate r + λi, the
dividend rate b+ λi, the volatility sV , and the inhomogeneous term

gi(V, t)=λi min{δV,Φi(t)} = λi[Φi(t) · 1{V ≥ Mi+1(t) + δV } · 1{V < Mi+1(t)}],
(5.14)

i = 0, . . . , N − 1.

Here

(5.15) Mi+1(t) = δ−1Φi(t) = δ−1

[
N∑

k=i+1

Cke
−r(Tk−t) + Fe−r(TN−t)

]
.

When i = N − 1, we have

∂BN−1

∂t
+

s2V
2
V 2 ∂

2BN−1

∂V 2
+ (r − b)V

∂BN−1

∂V
− (r + λN−1)BN−1(5.16)

+ λN−1 min{δV,ΦN−1(t)} = 0, TN−1 < t < TN , V > 0,

BN−1(V, TN ) = c̄N · 1{V ≥ KN}+ δV · 1{V < KN}, V > 0.(5.17)

The solution of (5.16) and (5.17) is given by the sum of the following two problems:

∂X

∂t
+

s2V
2
V 2 ∂

2X

∂V 2
+ (r − b)V

∂X

∂V
− (r + λN−1)X = 0,(5.18)

TN−1 < t < TN , V > 0,
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X(V, TN ) = c̄N · 1{V ≥ KN}+ δV · 1{V < KN}, V > 0.(5.19)

∂Y

∂t
+

s2V
2
V 2 ∂

2Y

∂V 2
+ (r − b)V

∂Y

∂V
− (r + λN−1)Y + gN−1(t) = 0,(5.20)

TN−1 < t < TN , V > 0,

Y (V, TN ) = 0, V > 0.(5.21)

The problem (5.18) and (5.19) is a binary option pricing problem with the short rate
r+ λN−1, the dividend rate b+ λN−1 and the volatility sV . Thus using the notation
and binary option pricing formulae of [5, 15] we have

X = c̄NB+
KN

(V, t;TN ; r + λN−1, λN−1 + b, sV )

+ δA−
KN

(V, t;TN ; r + λN−1, λN−1 + b, sV ), TN−1 ≤ t < TN , V > 0.

The problem (5.20) and (5.21) is a 0-terminal value problem of an inhomogeneous
equation and thus we use the Duhamel’s principle to solve it. (See [18]). Fix τ ∈
(TN−1, TN ] and let W (V, t; τ) be the solution to the following terminal value problem:

∂W

∂t
+

s2V
2
V 2 ∂

2W

∂V 2
+ (r − b)V

∂W

∂V
− (r + λN−1)W = 0, TN−1 < t < τ, V > 0,

W (V, τ ; τ) = gN−1(V, τ), V > 0.

Consider (5.14) with i = N − 1 and use again the notation and binary option pricing
formulae of [5, 15]. We have

W (V, t; τ) =λN−1

[
ΦN−1(τ)B

+
MN (τ)(V, t; τ ; r + λN−1, λN−1 + b, sV )

+ δA−
MN (τ)(V, t; τ ; r + λN−1, λN−1 + b, sV ), TN−1 ≤ t < τ, V > 0.

Then the solution Y to the problem (5.20) and (5.21) is given as follows:

Y (V, t) =λN−1

∫ TN

t

[
ΦN−1(τ)B

+
MN (τ)(V, t; τ ; r + λN−1, λN−1 + b, sV )

+δA−
MN (τ)(V, t; τ ; r + λN−1, λN−1 + b, sV )]dτ,

TN−1 ≤ t < TN , V > 0.

Therefore BN−1(V, t), TN−1 ≤ t < TN is provided as follows:

BN−1(V, t) =c̄NB+
KN

(V, t;TN ; r + λN−1, λN−1 + b, sV )

(5.22)

+ δA−
KN

(V, t;TN ; r + λN−1, λN−1 + b, sV )

+ λN−1

∫ TN

t

[
ΦN−1(τ)B

+
MN (τ)(V, t; τ ; r + λN−1, λN−1 + b, sV )

+ δA−
MN (τ)(V, t; τ ; r + λN−1, λN−1 + b, sV )

]
dτ

=e−λN−1(TN−t)[c̄NB+
KN

(V, t;TN ; r, b, sV ) + δA−
KN

(V, t;TN ; r, b, sV )
]

+ λN−1

∫ TN

t

e−λN−1(τ−t)[ΦN−1(τ)B
+
MN (τ)(V, t; τ ; r, b, sV )

+ δA−
MN (τ)(V, t; τ ; r, b, sV )

]
dτ, TN−1 ≤ t < TN , V > 0.
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Here the last equality comes from (11) of [18].
Now we consider the case when i = N − 2. Then the problem (2.8) and (2.9)

becomes

∂BN−2

∂t
+

s2V
2
V 2 ∂

2BN−2

∂V 2
+ (r − b)V

∂BN−2

∂V
− (r + λN−2)BN−2 + gN−2(t) = 0,

(5.23)

TN−2 < t < TN−1, V > 0,

BN−2(V, TN−1) = [BN−1(V, TN−1) + c̄N−1] · 1{V ≥ KN−1}+ δV · 1{V < KN−1},
(5.24)

V > 0.

The solution to (5.23) and (5.24) is provided by the sum of the following two problems:

∂X

∂t
+

s2V
2
V 2 ∂

2X

∂V 2
+ (r − b)V

∂X

∂V
− (r + λN−2)X = 0,(5.25)

TN−2 < t < TN−1, V > 0,

X(V, TN−1) = [BN−1(V, TN−1)+c̄N−1] · 1{V ≥ KN−1}+ δV · 1{V < KN−1},
(5.26)

V > 0.

∂Y

∂t
+

s2V
2
V 2 ∂

2Y

∂V 2
+ (r − b)V

∂Y

∂V
− (r + λN−2)Y + gN−2(t) = 0,(5.27)

TN−2 < t < TN−1, V > 0,

Y (V, TN−1) = 0, V > 0.(5.28)

The problem (5.27) and (5.28) is the same type as the problem (5.20) and (5.21) and
thus the solution to (5.27) and (5.28) is provided as follows:

Y (V, t) = λN−2

∫ TN−1

t

[
ΦN−2(τ)B

+
MN−1(τ)

(V, t; τ ; r + λN−2, λN−2 + b, sV )

+ δA−
MN−1(τ)

(V, t; τ ; r + λN−2, λN−2 + b, sV )]dτ, TN−2 ≤ t < TN−1, V > 0.

Since (5.25) is a homogeneous Black-Scholes equation with the short rate r + λN−2,
the dividend rate λN−2 + b and the volatility sV , we use (11) of [18] to rewrite
BN−1(V, TN−1) given by (5.22) as

BN−1(V, TN−1)

=e−(λN−1−λN−2)∆TN−1
[
c̄NB+

KN
(V, TN−1;TN ; r + λN−2, λN−2 + b, sV )

+ δA−
KN

(V, TN−1;TN ; r + λN−2, λN−2 + b, sV )
]

+ λN−1

∫ TN

TN−1

e−(λN−1−λN−2)(τ−TN−1)
[
ΦN−1(τ)B

+
MN (τ)(V, TN−1; τ ; r + λN−2,

λN−2 + b, sV ) + δA−
MN (τ)(V, TN−1; τ ; r + λN−2, λN−2 + b, sV )

]
dτ.
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Thus (5.26) can be written as

X(V, TN−1)

=e−(λN−1−λN−2)∆TN−1
[
c̄NB+

KN
(V, TN−1;TN ; r + λN−2, λN−2 + b, sV )·1{V ≥KN−1}

+ δA−
KN

(V, TN−1;TN ; r + λN−2, λN−2 + b, sV ) · 1{V ≥KN−1}
]

+ λN−1

∫ TN

TN−1

e−(λN−1−λN−2)(τ−TN−1)
[
ΦN−1(τ)B

+
MN (τ)(V, TN−1; τ ; r + λN−2,

λN−2 + b, sV )·1{V ≥ KN−1}+ δA−
MN (τ)(V, TN−1; τ ; r + λN−2, λN−2 + b, sV )

· 1{V ≥ KN−1}
]
dτ + c̄N−1 · 1{V ≥ KN−1}+ δV · 1{V < KN−1}, V > 0.

This is a linear combination of second or lower order binaries and therefore using
the notation and second order binary option pricing formulae of [5, 15] we get the
solution to problem (5.25) and (5.26) as follows:

X(V, t)

=e−(λN−1−λN−2)∆TN−1
[
c̄NB + +

KN−1KN
(V, t;TN−1, TN ; r + λN−2, λN−2 + b, sV )

+ δA + −
KN−1KN

(V, t;TN−1, TN ; r + λN−2, λN−2 + b, sV )
]

+ λN−1

∫ TN

TN−1

e−(λN−1−λN−2)(τ−TN−1)

[
ΦN−1(τ)B

+ +
KN−1MN (τ)(V, t;TN−1, τ ; r + λN−2, λN−2 + b, sV )

+ δA + −
KN−1MN (τ)(V, t;TN−1, τ ; r + λN−2, λN−2 + b, sV )

]
dτ

+ c̄N−1B
+

KN−1
(V, t;TN−1; r + λN−2, λN−2 + b, sV )

+ δA −
KN−1

(V, t;TN−1; r + λN−2, λN−2 + b, sV ), TN−2 ≤ t < TN−1, V > 0.

Thus we have the representation of BN−2(V, t), TN−2 ≤ t < TN−1 as follows:

BN−2(V, t)

=e−(λN−1−λN−2)∆TN−1
[
c̄NB + +

KN−1KN
(V, t;TN−1, TN ; r + λN−2, λN−2 + b, sV )

+ δA + −
KN−1KN

(V, t;TN−1, TN ; r + λN−2, λN−2 + b, sV )
]

+ c̄N−1B
+

KN−1
(V, t;TN−1; r + λN−2, λN−2 + b, sV )

+ δA −
KN−1

(V, t;TN−1; r + λN−2, λN−2 + b, sV )

+ λN−1

∫ TN

TN−1

e−(λN−1−λN−2)(τ−TN−1)
[
ΦN−1(τ)B

+ +
KN−1MN (τ)(V, t;TN−1, τ ; r + λN−2,

λN−2 + b, sV ) + δA + −
KN−1MN (τ)(V, t;TN−1, τ ; r + λN−2, λN−2 + b, sV )

]
dτ
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+ λN−2

∫ TN−1

t

[ΦN−2(τ)B
+
MN−1(τ)

(V, t; τ ; r + λN−2, λN−2 + b, sV )

+ δA−
MN−1(τ)

(V, t; τ ; r + λN−2, λN−2 + b, sV )]dτ

= e−λN−2(TN−1−t)
{
e−λN−1∆TN−1

[
c̄NB + +

KN−1KN
(V, t;TN−1, TN ; r, b, sV )

+ δA + −
KN−1KN

(V, t;TN−1, TN ; r, b, sV )
]

+ c̄N−1B
+

KN−1
(V, t;TN−1; r, b, sV ) + δA −

KN−1
(V, t;TN−1; r, b, sV )

+ λN−1

∫ TN

TN−1

e−λN−1(τ−TN−1)
[
ΦN−1(τ)B

+ +
KN−1MN (τ)(V, t;TN−1, τ ; r, b, sV )

+δA + −
KN−1MN (τ)(V, t;TN−1, τ ; r, b, sV )

]
dτ

}
+ λN−2

∫ TN−1

t

e−λN−2(τ−t)[ΦN−2(τ)B
+
MN−1(τ)

(V, t; τ ; r, b, sV )

+ δA−
MN−1(τ)

(V, t; τ ; r, b, sV )
]
dτ.

By induction we have the rest of the proof. □
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