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LIFTING PROBLEM IN CODIMENSION 2 AND
INITIAL IDEALS†

MARGHERITA ROGGERO

Communicated by Teo Mora

Abstract. Let X be a codimension 2, locally Cohen-Macaulay,
integral, projective variety of degree d in PN . We consider the
problem of finding conditions on d, N and s such that any de-
gree s hypersurface in PN−1 containing a general hyperplane
section of X lifts to a hypersurface in PN containing X.

We prove general and sharp bounds on the degree of X
depending on both N and s and also on the number of in-
dependent hypersurfaces of degree s containing X, especially
under the additional condition that the general plane section
of X does not lie on any degree s− 1 curve.

1. Introduction

LetX be an integral, projective variety of dimension n and degree
d in PN , defined over an algebraically closed field k of characteristic
zero. Consider the hyperplane section Y = X ∩ K of X, where
K ∼= PN−1 is a general hyperplane in PN . The “lifting problem”
is the problem of finding conditions on d, N , n and s such that
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any degree s hypersurface in PN−1 containing Y can be lifted to a
hypersurface in PN containing X.

For an integral curve C in P3, Laudal’s “generalized trisecant
lemma” states that the set of points Z = C ∩ K can lie on some
non-liftable degree s curve inK ∼= P2 only if d ≤ s2+s (see [8]). Dif-
ferent proofs and improvements of this result have been afterwords
obtained by several authors, using different tools of commutative
algebra and algebraic geometry: we want to mention in particular
the papers by Gruson-Peskine ([7]), Strano ([18]) and Green ([6]),
where the main techniques were first introduced. Strano showed
that the presence of a non-liftable hypersurface for an integral, lo-
cally Cohen-Macaulay subvariety X in PN is a property which the
general hyperplane section of X inherits; this result is the natural
starting point for generalizations of Laudal’s Lemma to codimen-
sion 2 subvarieties in projective spaces of higher dimension. Green
combined Strano’s method with the theory of generic initial ideals
and sets of points in P2 in a uniform position.

Using these and other tools, like foci, liaisons, linear series etc.,
Laudal’s Lemma has been generalized in (at least) two directions.

First of all, there are extensions to codimension 2 subvarieties in
some projective spaces PN of higher dimension. The leading idea
is to bound the degree through a function f(s,N) depending on a
non-lifting level s and also on the dimension N of projective space
(see for instance Re [13], Chiantini-Ciliberto [4], Mezzetti, Raspanti
[10], [11], [12], Valenzano [20], Roggero [15], [16]); here we mention
the bound deg(X) ≤ s2 − s+ 2 for a surface X in P4.

On the other hand, Tortora ([19]) found improvements of Lau-
dal’s Lemma also for curves C in P3 by introducing into the bound-
ing function a new parameter, the number a of independent degree s
surfaces containing C: under a few additional hypotheses he proved

that the degree of C cannot exceed
(

s+1
2

)
+
(

s−a−1
2

)
+ 1.

All these bounds are sharp, in the sense that there are subvari-
eties which satisfy the required conditions and whose degrees are
the maximum allowed (see Example 3.8 and also [10], [19] and [20]);
it is worth noting that all the examples in bibliography are given by
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arithmetically Buchsbaum subvarieties with very narrow deficiency
modules.

Such a list of results could possibly suggest a general conjecture
of the type:

if X is a codimension 2 subvariety in PN , s is a non-lifting level
and there are at least a independent degree s hypersurfaces contain-
ing X, then:

deg(X) ≤
(
s+ 1

2

)
+

(
s− a−N + 2

2

)
+ 1

and equality holds if X is an arithmetically Buchsbaum subvariety.

Unfortunately, the situation is far more complicated. In the
present paper we only deal with the first part of the above con-
jecture, while border cases are considered in a following one. For
what concerns this topic, we can give explicit counter examples
even in the case of curves in P3; more precisely we show that for
every whole number m and function G(a) there are curves in P3

with non lifting level s and contained in a independent degree s

surfaces, whose degree exceeds
(

s+1
2

)
+
(

s−a+m
2

)
+ G(a) (see Ex-

ample 4.4). Nevertheless, we prove that the conjectured bound on
the degree (or some bound close to it) holds under some additional
condition which often concerns the number of curves containing the
general plane section of the variety X. For instance, Theorem 4.8,
shows that the bound holds for every a ≤ 2 if the general plane
section of X is not contained in curves of degree s − 1, even if
it does not hold in general when a ≥ 3: Example 4.9. However,
for curves C in P3 in Theorem 4.10 we are able to obtain general
statements, proving, without any additional condition on the plane
section, bounds on the degree strictly including Laudal’s Lemma.

We obtain upper bounds on the degree of a codimension 2, locally
Cohen-Macaulay, integral subvariety X in PN depending on a non
lifting level s (or a socle level s), just using a reduction to a set
of points, Strano’s exact sequence (2.3) and computations on both
generic initial ideals and Castelnuovo functions.
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In §2 we introduce notation and recall some known results that
we will most often use in the following sections.

In §3 we focus on the structure of the Rao-module of a subvariety
V in PN of every codimension (that is on the first deficiency module
of the ideal sheaf IV ) in connection with a non lifting level or socle
level s and introduce the more general notion of ”generalized socle”
(Notation (5)); we also show that some non-zero generalized socle
involves the existence of hypersurfaces containing V (or its linear
sections) in degrees close to s.

In §4, using generic initial ideals and results obtained in §3, we
prove the main theorems, which states upper bounds on the degree
of a codimension 2 subvariety X in PN depending on non-lifting
levels.

2. Notation, definitions and useful results

Unless otherwise stated:
(1) A =

⊕
Ai is the graded ring in N + 1 variables k[x0, . . . , xN ]

over an algebraically closed field k of characteristic 0: without any
further notice, elements and ideals of A are always supposed to be
homogeneous. PN is the projective space of dimension N over k;
we often denote by the same symbol an element a ∈ A and the
hypersurface Sa in PN defined by the equation a = 0; Ua will be
the open subset PN − Sa and Ui = Uxi

.
(2) In the ring A = k[x0, x1, . . . , xN ] we consider the reverse lex-

icographic order on the monomials induced by x0 > x1 > · · · > xN

and denote by gin(G) and gin(I) the initial term of the polynomial
G ∈A and the initial ideal of the ideal I ⊂ A respectively; we will al-
ways assume that we have chosen general coordinates, so that gin(I)
is indeed the generic initial ideal of I (for generalities on generic
initial ideals see for example [6]). We will sometimes perform a
change of coordinates of the type: x′i = xi + ai+1xi+1 + · · ·+ aNxN ;
we want to underline that it does not alter any initial term.

If H = Pr is the linear space in PN given by xN = · · · =
xr+1 = 0 and F ∈ A, (F )H denotes the equivalence class of F
in A/IH ∼= k[x0, . . . , xr]. If L is the (general) line defined by
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x2 = · · · = xN = 0, and B ⊆ A is a k-vector space, we will
denote by dimL(B) the dimension of B ∩ k[x0, x1]. If B = Is, then
dimL(Is) = dimL((I/(x2, . . . , xN))s) = dim(gin(I) ∩ k[x0, x1]s).

(3) For any coherent sheaf F on PN we will use the standard
notation F(n) = F ⊗ OPN (n), H i

∗F = ⊕n∈ZH
iF(n) and (for a

general hyperplane K) the standard exact sequence:

0 → F(−1) → F → FK → 0 (2.1)

as well as its twists and cohomology exact sequences; hiF is the
k−vector space dimension of H iF .

(4) ”Subvariety” means a closed subscheme of the projective
space PN . IV ⊂ A and IV ⊂ OPN are the ideal and the ideal
sheaf of the subvariety V , so that IV =

⊕
iH

0IV (i); if Pr is a lin-
ear subspace of PN and W = V ∩ Pr, we usually denote by IW

the ideal sheaf of W as a subvariety of Pr, that is IW ⊆ OPr . The
ideal sheaf IV of V in PN is m−regular if HqIV (m − q) = 0 for
every q > 0; the ideal IV of V is m−regular if the ideal sheaf IV

is m−regular; the regularity of IV (or IV ) is the smallest integer
ρ such that IV is ρ-regular.

(5) N s
s−i(V,B) is the set of elements σ ∈ H1IV (s − i) which

vanish if multiplied by each element of the vector space B ⊆ Ai;
ns

s−i(V,B) is the dimension of N s
s−i(V,B) as a k−vector space. If

B = Ai, we write N
s
s−i(V ) instead of N s

s−i(V,Ai); observe that

N
s
s−1(V ) is the degree s−1 component of the socle of H1

∗IV and so
we will call generalized socle any vector space N s

s−i(V,B). We
write N s

s−i(V ) instead of N s
s−i(V,B) when B is generated by xi, x

being a general linear form (we generally suppose x = xN).
If dim(V ) ≥ 1 and W is its general hyperplane section, then by

(2.1) it follows:

N s
s−1(V ) = Ker(H1IV (s− 1) → H1IV (s))

= Coker(H0IV (s) → H0IW (s)). (2.2)

The integer s is a non-lifting level for V if N s
s−1(V ) 6= 0 and any

non-zero element of N s
s−1(V ) is a non-liftable section for V in

degree s; s is a socle level for V if N
s
s−1(V ) 6= 0. The following

result is one of the main tools in this paper. It was first proved
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by Strano (see [18]) and by Re (see [13] Lemma 1) and restated by
Green in [6], where a particular case of the sequence (2.3) was also
introduced (see [6] Proposition 4.31 and 4.37). For proofs in the
most general cases, see also [19], Proposition 1.8.

Theorem 2.1. (Strano) Let V be an equidimensional, locally Cohen-
Macaulay, non-degenerate subvariety in PN of dimension ≥ 1 and
let W be its general hyperplane section. Then, the following se-
quence is exact:

0→Nm−i
m−i−1(V )→Nm

m−i−1(V )
·x→ Nm

m−i(V )
π→ N

m

m−i(W ).
(2.3)

Moreover, if Nm
m−1(V ) 6= 0, then N

m′

m′−1(W ) 6= 0, for some m′ ≤ m,
so that a non lifting level m for V induces some non lifting level
(on fact a socle level) m′ ≤ m for W .

Proof. We only prove the latter part of the statement.
Suppose Nm

m−1(V ) 6= 0 and consider the exact sequence (2.3) with

i = 1; if the map π is injective, then also N
m
m−1(W ) 6= 0.

On the other hand, if π is not injective, then Nm
m−i(V ) 6= 0,

for some i > 1: let i0 be the greatest i (it exists because V is
equidimensional and locally Cohen-Macaulay, so that H1IV (t) = 0
if t� 0).

Thus, by (2.3), N
m
m−i0

(W ) 6= 0 and then, again, N
m′

m′−1(W ) 6= 0
for some m′ ≤ m. In any case, thanks to the obvious inclusion
N

m
m−1(W ) ⊂ Nm

m−1(W ), we can see that a non-liftable section for
X induces a non-liftable section for W , in the same or in a lower
degree, depending on the injectivity of π. 2

(6) If Z is a set of points in P2, the Hilbert function of Z is the
integral valued function given by hZ(m) = h0OP2(m) − h0IZ(m)
and the Castelnuovo function is its first difference ∆hZ(m) = m+
1 − h0IZ(m) + h0IZ(m − 1). Observe that we have h0IZ(m) −
h0IZ(m−1) = dimLH

0IZ(m) ≤ m+1 (see Notation (2)) so that
∆hZ(m) = m+ 1− dimLH

0IZ(m) ≥ 0.
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A set of points Z ⊂ P2 is in a uniform position (U.P. for
short) or has the uniform position property (U.P.P. for short)
if every subset of d′ points Z ′ ⊂ Z has the same Hilbert function:
hZ′(t) = min{hZ(t), d′}.

If I is any ideal in k[x0, x1, x2] (for instance I = IZ), gm(I) and
sm(I) denote the numbers of degree m generators and first syzygies
in its minimal free resolution.

Lemma 2.2. Let Z be a set of d points in a uniform position in
P2. If α, β and ρ are the degrees of the first and second minimal
generator of IZ and its regularity, then:

(i) The Castelnuovo function of Z has decreasing type, that is
∆hZ(m) = m+ 1 if 0 ≤ m < α, ∆hZ(α) = α + 1− gα(IZ),
∆hZ(m) = α if α ≤ m < β, ∆hZ(m + 1) ≤ ∆hZ(m)− 1 if
β ≤ m < ρ (and equality holds if and only if gm+1(IZ) = 0),
∆hZ(m) = 0 if m ≥ ρ.

(ii) d =
∑∞

m=0 ∆hZ(m) =
∑ρ−1

m=0 ∆hZ(m).
(iii) nm

m−1(Z) = sm+2(IZ).

(iv) If N
m
m−1(Z) 6= 0, then either ∆hZ(m+ 1) = 0 or

∆hZ(m+ 1)−∆hZ(m) ≤ −2.

Proof. For (i), (ii), (iii) (and also for other results used below)
see for example [6] (Theorem 2.30, Proposition 4.12, 4.14 and 4.32
etc.). We only prove (iv).

Let us consider the (saturated) ideals I = IZ and J = gin(IZ).
For every integer m we have dimIm = dimJm so that gm(J) =

dimJm−2dimJm−1+dimJm−2 = −∆hZ(m)+∆hZ(m−1); moreover
gm(J) = sm+1(J) and by the Cancellation Principle gm(I)−sm(I) =
gm(J) − sm(J). If sm+2(J) = sm+2(I) then gm+2(J) = gm+2(I) so
that by Crystallization Principle I is m+ 1−regular and ∆hZ(m+
1) = 0.

If, in our hypothesis, we suppose IZ not m + 1-regular, then
sm+2(J) > sm+2(I) ≥ 1 and so ∆hZ(m+1)−∆hZ(m) = −gm+1(J) ≤
−2 as requested. 2
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(7) If σ ∈ Nm
m−i(V,B), B ⊆ Ai, then in the cohomology exact

sequence of

0 → IV (m− i) → OPN (m− i) → OV (m− i) → 0 (2.4)

σ is the image of some τ ∈ H0OV (m− i) and for every ξ ∈ B, ξτ
is cut on V by a hypersurface F ∈ H0OPN (m); so σ is a function
on V given by F

ξ
on the open subset V ∩ Uξ: by abuse of notation,

we will say that F
ξ

is a local equation for σ on Uξ. We will

denote any such polynomial F by Fξ(σ), or Fξ for short, and any
homogeneous degreem+i polynomial ξFη−ηFξ by Fξη(σ) or Fξη, for
every ξ, η ∈ B. Note that both Fξ(σ) and Fξη(σ) are not uniquely
defined by σ, ξ and η. For instance if Fξ is a local equation for σ on
Uξ, also Fξ+G is so for every G ∈ H0IV (m); moreover ”σ = σ+G′ ”
for every G′ ∈ Am−i, so that (Fξ + ξG′,Uξ) is a local equation for
σ.

If B ⊆ A1 and ξ = xh, η = xk, then we will write Fh instead of
Fxh

and Fhk instead of Fxhxk
.

(8) In this paper X will always denote a codimension 2, lo-
cally Cohen-Macaulay, integral subvariety in PN ; for every i =
0, . . . , N − 3, Xi is the section of X with a general linear space
Hi+2 = Pi+2 in PN defined by xN = · · · = xi+3 = 0 (having chosen
general coordinates with respect to X). In particular:
HN−1 = K and XN−3 = Y denote the general hyperplane and

hyperplane section of X;
X1 = C denotes the integral curve section of X with a general

3-space H3 = M ∼= P3;
X0 = Z denotes the set of points in U.P. section of X with the

general plane H2 = H ∼= P2;
L = H1

∼= P1 denotes a general line in PN .
Henceforth, we will suppose that Z is not a complete intersection;

this assumption excludes only the following, few subvarieties X:
complete intersections, curves of even degree on a smooth quadric
surface in P3 and degree 4 arithmetically Buchsbaum surfaces in
P4 with H1

∗IX
∼= k and H i

∗IX = 0 for i = 2, . . . , N − 2 that is
the Veronese surface in P4 and some degeneration of it (see [16]
Theorem 4.6).
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3. Generalized socles and hypersurfaces

In this section we show some further relations between gener-
alized socles for a subvariety V in PN and hypersurfaces in PN

containing V or hypersurfaces in a general linear space H ⊂ PN

containing V ∩H.
Let σ be any non-zero element in Nm

m−i(V,B) (see Notation

(7)); for every ξ, η ∈ B, local equations
Fξ

ξ
and Fη

η
for σ must

coincide on V ∩Uξ∩Uη. So Fξη = ξFη−ηFξ defines the zero function
on the open subset V ∩Uξ∩Uη of V . If we suppose that V is integral
and not contained in any degree i hypersurface, V ∩ Uξ ∩ Uη is a
dense subset of V and then Fξη ∈ H0IV (m+ i).

If V is reduced, but possibly reducible, ξηFξη ∈ H0IV (m + 3i);
for a non reduced V , we can only say that ξaηbFξη(σ) ∈ H0IV (m+
i(1 + a+ b)), for some positive integers a, b.

Let V be a subvariety in PN of dimension ≥ 1 and let W be its
general hyperplane section. By definition, a degree m non-liftable
section σ for V corresponds to some hypersurface in K = PN−1

containing W , which does not come from any hypersurface con-
taining V in PN : the degree m polynomial FN(σ) is indeed “the
non-liftable section” for V . To be explicit, we can use the coho-
mology exact sequences of (2.1)⊗OPN (m − 1) and (2.1)⊗OPN (m)
and we see that (FN)K = (the equivalence class of FN modulo xN)
is a global section of IW (m) which does not belong to the image of
H0IV (m).

The following two results, proved in [16], state close relations
between non-zero generalized socle of V in degreem and the number
of independent hypersurfaces or minimal generators in IV in degrees
close to m.

Theorem 3.1. Let V be an integral subvariety of PN and let B ⊆
A1 be a vector space of dimension r ≥ 2, such that Nm

m−1(V,B) 6= 0.
Then h0IV (m+ 1) ≥ 2r − 3.
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Lemma 3.2. Let Z be a set of d points in P2 in U.P. Suppose that
m is a socle level for Z and denote by ν the number of minimal
generators of IZ in degrees ≤ m+ 1. Then:

(i) ν ≥ 3 or Z is a complete intersection (p, q), p + q = m + 2.
Thus, all curves in H0IZ(m+1) cannot have a common component.

(ii) d ≤ m2 +m+ 1.

Lemma 3.3. Let V be an integral subvariety in PN and let σ be
any non zero element in N

s
s−1(V ). Then the ideal I generated by

{Fxy(σ) , x, y ∈ A1} has height at least 2.

Proof. Let us suppose, on the contrary, that I is contained in
a principal ideal (G) = GA for some G ∈ Ar: then, by the way,
Fi0(σ) = xiF0−x0Fi ∈ (G) for every i = 1, . . . , N and, in particular,
x1F0 − x0F1 = GM . As x0, . . . , xN are general coordinates, G /∈
(x0, x1) and so M = x1M

′ + x0M
′′.

Then x0 divides F0−M ′G, that is F0−x0P = M ′G for a suitable
P ∈ As−1. Since (Fi−xiP

xi
, Ui) are also local equations for σ, we may

suppose that P is 0 and G divides F0, that is F0 = Q0G. Then, for
every i = 1, . . . , N , x0Fi ∈ (G) so that Fi = QiG . If V is contained
in the hypersurface G, then σ = 0 against our hypothesis. If, on
the contrary, V is not contained in G, then xiQj−xjQi ∈ IV (recall
that IV is a prime ideal) and then Qi

xi
are local equations for a non

zero element of N
s−r
s−r−1(V ) and σ = Gτ = 0, against the hypothe-

sis. 2

Lemma 3.4. Let V be an integral subvariety in PN (of dimension
at least 1) and let σ be any non zero element in N

s

s−i(V ). If H is the
general linear space given by xN = · · · = xN ′+1 = 0, N ′ ≥ codimV ,
and m is a degree i monomial of the type xjm

′, for some i ≥ 1 and
j > N ′, then (Fm(σ))H belongs to H0IV ∩H(s).

Proof. Take the monomial m′ = xi
N ′ ; as m′Fm−mFm′ ∈ H0IV (s+

i), its image belongs to H0IV ∩H(s + i). But (m′Fm − mFm′)H =
(xi

N ′Fm)H and IV ∩H is saturated so that also (Fm)H belongs to
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IV ∩H . 2

Lemma 3.5. Let V be an integral subvariety in PN (of dimension
at least 1) and σ be any non zero element of N

s
s−1(V ), such that

σK = 0 for the general hyperplane K = PN−1 given by xN = 0.
Then for a suitable choice of local equations Fi

xi
for σ, (Fi)K belongs

to H0IV ∩K(s) for every i = 0, . . . , N .

Proof. Thanks to Theorem 2.1, the hypothesis σK = 0 implies
σ = xNτ , for some τ ∈ N

s

s−2(V ). We can chose local equations Fi

xi

for σ so that τ is given on UN ∩ Ui by Fi

xixN
; on the other hand for

every monomialm of a sufficiently high degree h, τ is also defined by
a local equation Gm

m
on the open subset Um, where mFi−xixNGm ∈

H0IV (s+ h).
For m = xh

N−1 this means xh
N−1Fi − xixNG ∈ H0IV (s + h)

and so (xh
N−1Fi)K ∈ H0IV ∩K(s + h); IV ∩K being saturated, we

get (Fi)K ∈ H0IV ∩K(s), as required. Note that the hyperplane
xN−1 = 0 in K = PN−1 does not contain any component of V ∩K,
even if V ∩K is a set of points, due to the choice of general coor-
dinates. 2

From now on we consider only codimension 2 subvarieties: see
Notation (8)).

Lemma 3.6. Let s = s0(X) the minimal non lifting level for
X. If s is also the minimal non lifting level s0(C) for C, then
dimLH

0IZ(s) ≥ dimLH
0IX(s) +N − 2.

Proof. We will just prove dimLH
0IY (s) ≥ dimLH

0IX(s) + 1; the
complete statement easily follows by induction on N .

Let σ be a non-zero element of N s
s−1(X) defined on UN by a

local equation FN

xN
; by construction (FN)K belongs to H0IY (s). We

can choose FN such that its initial term is as small as possible
and, in particular, not contained in gin(H0IX(s)): thus to get the
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conclusion it is enough to prove that only x0 and x1 could explicitly
appear in gin(FN).

On the contrary, let i be the greatest index such that xi+2 ap-
pears; the image of FN in H0IXi

(s) contains xi+2 as a factor that is
(FN)H = xi+2(G)Hi+2

for some G ∈ A; IXi
being saturated, G must

belong to H0IXi
(s− 1).

As s = s0(X) = s0(C), every restriction map H0IXj
(s − 1) →

H0IXj−1
(s−1) is surjective and then we can chooseG ∈ H0IX(s−1)

so that FN − xNG ∈ (xi+1, . . . , xN); but FN−xNG
xN

also defines σ on

UN and gin(FN −xNG) is lower than gin(FN), against its minimal-
ity. 2

The following result will be a key point in §4. Note that it is sharp
for what concerns both a = h0IX(s) and the bound on h0IZ(s+1).
If the general plane section Z of X is not contained in curves of
degree lower than s (s being a socle level), then h0IZ(s + 1) ≥
2h0IZ(s) + 2 ≥ 2(h0IX(s) + N − 2) + 2 = 2(a + N − 2) + 2;
Proposition 3.7 shows that this is in fact a strict inequality provided
a = h0IX(s) ≤ 2. On the contrary, for every a ≥ 3, and s > a
there are curves in P3 with socle level s and a = h0IC(s) such that
equality h0IZ(s + 1) = 2h0IZ(s) + 2 = 2(a + 1) + 2 holds : see
Example 4.9. Moreover, there are codimension 2 subvarieties X in
PN for every possibleN , a and s as in the hypotheses of Proposition
3.7 for which the minimum allowed 2(a+N −2)+3 for h0IZ(s+1)
holds: see Example 3.8.

Proposition 3.7. Let σ be any non zero element in N
s
s−1(X) with

local equations Fi

xi
. Suppose that s > a + N − 2, h0IX(s) = a ≤ 2,

h0IZ(s) = a + N − 2 and h0IZ(s − 1) = 0. Then the subspace of
H0IZ(s+ 1) generated by

{xiH
0IX(s)H , i = 0, 1, 2} ∪ {Fij(σ)H , i = 0, 1, 2, j = 0, . . . , N}

has dimension ≥ 2(a+N − 2) + 3.
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Proof. We may suppose a = 2 (if a < 2 we consider the general
hyperplane section of X: see Lemma 3.4). So, let us fix generators
FN+2, FN+1 for H0IX(s).

First of all, observe that in our hypotheses, (FN+2)H , (FN+1)H ,
(FN)H , . . . , (F3)H are free generators for H0IZ(s); thus we can
choose the Fi’s such that gin(FN+2) > gin(FN+1) > gin(FN) >
· · · > gin(F3) and, more precisely:

xs
0 = gin(FN+2) , x

s−1
0 x1 = gin(FN+1) ,

xs−2
0 x2

1 = gin(FN) . . . , xs−N+1
0 xN−1

1 = gin(F3).

Let us denote by Fij the degree s + 1 polynomials Fij(σ) for
0 ≤ i < j ≤ N (see Notation (7)); for sake of simplicity, we also
use Fij meaning xiFj if 0 ≤ i ≤ N and N + 1 ≤ j ≤ N + 2.

Let I ′X be the ideal in k[X0, . . . , XN ] generated by {FN+2, FN+1}∪
{Fij, 1 ≤ i.j ≤ N} and let J ′X be its generic initial ideal. Moreover
let I ′Z and J ′Z be respectively the ideal in k[X0, X1, X2] generated by
{(FN+2)H , . . . (F3)H , (F01)H , (F02)H , (F12)H} and its generic initial
ideal.

If the dimension of the vector space (I ′Z)s is 2N + 1, then J ′Z
would not have any new generator in degree s+ 1 and I would be
s-regular (see [6] Proposition 2.28) against the hypothesis N < s.

Moreover if σH 6= 0, then the dimension is at least 2N + 3.
So, suppose that the dimension is 2N + 2 and σH = 0.

As σH = 0, we can assume that F0, F1, F2 belong to the ideal
generated by x3, . . . , xN .

In degree s+ 1, J ′Z is generated by the 2N + 2 monomials:

xs+1
0 , x1(x

s
0 , . . . , x

s−N+1
0 xN−1

1 ) , x2(x
s
0 , . . . , x

s−N+1
0 xN−1

1 ) , xs−N
0 xN+1

1 .

Then, in degree s+ 1, I ′Z is generated by the 2N + 2 polynomials:

(F0N+2)H , (F1N+2)H , (F1N+1)H . . . , (F13)H , (F2N+2)H ,

(F2N+1)H . . . , (F23)H , (F0t)H ,

where t is the smallest integer k, 3 ≤ k ≤ N + 1 such that
xs−N

0 xN+1
1 = gin(F0k −

∑k+1
j=3 bkjF1j), bkj being suitable constant

coefficients.
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Such an integer t does in fact exist: first of all, for every k we can
find coefficients bkj such that gin(F0k −

∑k+1
j=3 bkjF1j) ≤ xs−N

0 xN+1
1 ;

if strict inequality holds, then (F0k−
∑k+1

j=3 bkjF1j)H = x2G for some

G ∈ H0IZ(s) and so (F0k −
∑k+1

j=3 bkjF1j −
∑
βkjF2j)H = 0. If this

would happen for every k = 3, . . . N +1, then there would be N −1
independent syzygies in degree s + 1 both for I ′Z and for J ′Z , then
I ′Z would be s-regular (see [1] Theorem 2.4).

Easy calculations show that the dimension of I ′X in degree s+1 is
(N+2)(N+1)

2
. Thus the following monomials are a bases for (J ′X)s+1:

(1) xs
0xi = gin(FiN+2) , 0 ≤ i ≤ N

(2) xs−1
0 x1xi = gin(FiN+1) , 1 ≤ i ≤ N

(3) xs−N+j−2
0 xN−j+2

1 xi = gin(Fij) , 1 ≤ i < j ≤ N , j ≥ 3
(4) xs−N

0 xN+1
1 = gin(F0t −

∑t+1
j=3 btjF1j),

because they are (N+2)(N+1)
2

linearly independent monomials in
(J ′X)s+1.

The corresponding polynomials Fij form a basis for (I ′X)s+1 as a
k-vector space and

B = {FN+2, FN+1} ∪ {Fij, 1 ≤ i < j ≤ N, j ≥ 3} ∪ {F0t}

is a set of minimal generators for I ′X in degrees ≤ s+ 1.
Let Sijk be the degree s+ 2-relation between elements of B cor-

responding to the identity:

xiFjk − xjFik + xkFij = 0.

Claim: the N3−N
6

relations Sijk are linearly independent.
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We can write the Fij which don’t belong to B as linear combina-
tions of elements in B as follows:

F0k = (
∑k+1

j=3 bkjF1j) + dk(F0t −
∑t+1

j=3 btjF1j) + (.)
for t− 1 ≤ k ≤ N + 1,

F0k = (
∑k+1

j=3 bkjF1j) + (.) for 3 ≤ k ≤ t− 1,

F01 =
∑

jk p2jkFjk for 3 ≤ j ≤ N, 3 ≤ k ≤ N + 2,

F02 =
∑

jk p1jkFjk for 3 ≤ j ≤ N 3 ≤ k ≤ N + 2,

F12 =
∑

jk p0jkFjk for 3 ≤ j ≤ N, 3 ≤ k ≤ N + 2,

(3.1)

where the (.) contain combinations of Fij with i ≥ 2.
Suppose that

∑
ijk αijkSijk = 0, αijk ∈ k, is a relation among the

Sijk. Then, 0 = ψ(
∑

ijk αijkSijk) =
∑

ijk αijkψ(Sijk) =
∑

ij Hijeij +
QeN+2 + Q′eN+1 and all the Hij’s, which are linear forms Hij =∑N

k=0 hijkxk, and also Q and Q′, which are degree 2 forms, must be
zero.

We will compute a few coefficients hijk in terms of the αijk and
of the constant coefficients that appear in (3.1). To the aim of
uniforming our notation, we extend the definition of αijk to every
set of three integers i, j, k ∈ {0, 1, . . . , N + 2} by: αijk = αjik =
· · · = αkji and also αijk = 0 if at least two of the indices are equal
or one of them is greater than N .

If j is either 1 or 2, and k ≥ 3, then hjk0 = α0jk: thus α01k =
α02k = 0 for every k ≥ 3.

Moreover h2k1 = α12k and so α12k = 0 for every k ≥ 3.
Let us now consider indices i, j, k such that Fij ∈ B and k ≥ 3

(we do not suppose j < k); by what just proved, hijk is sum of αijk

and a linear combination of some α0lk’s; if we prove that α0lk = 0
for every l, we also obtain that αijk = 0. Let us use descent on k.

If k = N + 2 , then αijk = 0 by definition. Now, let k be any
integer 3 ≤ k ≤ N + 1; we suppose that αijl = 0 for every i, j, l so
that Fij ∈ B and l ≥ k + 1 and we show that also αijk = 0.

If k = t, for every l we have 0 = h0tl = α0tl +
∑

m≥t+1 dmα0ml =
α0tl and from this αijt = 0 for every i, j such that Fij ∈ B.
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If k 6= t, for every l we have 0 = h1k+1l = α1lk+1 + α0lk = α0lk;
then α0lk = 0 for every l and so αijk = 0 for every ij such that
Fij ∈ B.

We have just proved that all the αijk are zero, unless possibly
α012.

Let us suppose α012 6= 0. For every i, j such that Fij ∈ B, we
have 0 = hij0 = α012p0ij; so p0ij must be zero for every i, j such
that Fij ∈ B.

F01 = (
∑N

j=3 xjp2jN+1)FN+1 + (
∑N

j=3 xjp2jN+2)FN+2

= y2FN+1 + z2FN+2

F02 = (
∑N

j=3 xjp1jN+1)FN+1 + (
∑N

j=3 xjp1jN+2)FN+2

= y1FN+1 + z1FN+2

F12 = (
∑N

j=3 xjp0jN+1)FN+1 + (
∑N

j=3 xjp0jN+2)FN+2

= y0FN+1 + z0FN+2

(3.2)

Thus S012 leads to the identity: (y2x2− y1x1 + y0x0)FN+1 +(z2x2−
z1x1 + z0x0)FN+2 = 0. But FN+1 and FN+2 are irreducible polyno-
mials of degree s > 2 and then also p2jN+2 = p1jN+2 = p0jN+2 =
p2jN+1 = p1jN+1 = p0jN+1 = 0 and so F01 = F02 = F12 = 0, which
is not allowed (on the contrary σ should vanish).

Then I ′X has at least (N + 1)N(N − 1)/6 syzygies in degree s+2.
On the other hand, by direct computations, we can see that J ′X has
exactly this number of independent syzygies in degree s + 2: then
by Crystallization Principle (see [6] Proposition 2.28) I ′X is s + 1-
regular and s = N , against the assumption. 2

Example 3.8. (see also [2] and [3]) For every three integers N , a,
s such that N ≥ 3, 0 ≤ a ≤ 2 and s > a+N − 2, let φ be a general
map :

φ : OPN (a+N − 2− s)⊕Oa+N−2
PN −→ ΩPN (2)⊕OPN (1)a.

As (ΩPN (2) ⊕ OPN (1)a) ⊗ (OPN (a + N − 2 − s) ⊕ Oa+N−2
PN )∨ is

generated by global sections, φ is injective and degenerates on an
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integral, codimension 2 subvariety X (see [5]):

0→OPN (a+N − 2− s)⊕Oa+N−2
PN

φ−→ ΩPN (2)⊕OPN (1)a

−→ IX(s+ 1)→0.

Thus the ideal sheaf of the general plane section Z of X has reso-
lution:

0 −→ OP2(a+N − 2− s)⊕Oa+N−2
P2 −→ ΩP2(2)⊕OP2(1)a+N−2

−→ IZ(s+ 1) −→ 0

so that h0IZ(s) = a+N−2 and h0IZ(s+1) = (a+N−2)(h0OP2(1)−
h0OP2) + h0ΩP2(2) = 2(a+N − 2) + 3.

4. Bounds on the degree

In this section, X, Y , C, Z K, M , H and L will be as in Nota-
tion (8).

The main goal of the paper is to give upper bounds on the degree
of an integral subvariety X depending on a pair of suitable integers
(s, k) (s being either a non-lifting level or a socle level for X and
k a non negative integer connected to the number of independent,
degree s hypersurfaces containing X and/or its sections). Accord-
ing to this aim, we introduce the function D(s, k), defined on every
pair of positive integers (s, k), k ≤ s+ 1 by:

D(s, k) =

(
s+ 1

2

)
+

(
s− k + 1

2

)
+ 1,

that is:

D(s, k) = s2 − s(k − 1) +

(
k
2

)
+ 1.

Lemma 4.1. Let Z a set of d points in U.P. in P2.
(i) If h0IZ(s)− h0IZ(s− 1) ≥ k + 1, then d ≤ D(s, k)− 1.
(ii) If h0IZ(s)−h0IZ(s−1) = k and h0IZ(s+1)−h0IZ(s) ≥ k+3,

then d ≤ D(s, k).
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Proof. To prove (i) we use Lemma 2.2 and observe that in any
case the Castelnuovo function ∆hZ(m) is at most m+ 1; moreover
in our hypothesis, ∆hZ(s) ≤ s − k and, having decreasing type,
∆hZ(s+ t) ≤ max{s− k − t , 0} for every t ≥ 1. An easy compu-
tation gives the desired inequality. The proof of (ii) is quite similar
to the previous one. 2

Lemma 4.2. Let Z be a set of d points in P2 in a U.P.

(i) If Nm
m−1(Z,B) ∩ N

m+t+1
m−1 (Z) 6= 0 with dim(B) = 2 and

t ≥ 0 then either Z lies on a degree m + 1 curve or d ≤
(m+t+3)(m+t+2)

2
.

(ii) If nm+1
m (Z) = 1 and nm+1

m−1(Z) ≥ 2, then either Z lies on two

degree m+ 1 curves or d ≤ (m+3)(m+2)
2

.

Proof. (i) Let us choose a general basis x, y for the vector space
B, so that Z ∩ {x = 0} = Z ∩ {y = 0} contains at most the
point P := (x = y = 0). Let us take any non-zero element σ ∈
Nm

m−1(Z,B): it has local equations Fx

x
and Fy

y
on the open sets Ux

and Uy respectively and Fz

z2+t on the open set Uz for a general linear
form z (see Notation (7)). Then, yFx − xFy ∈ H0IZ′(m + 1),
where Z ′ = Z − {P} contains at least d− 1 points of Z.

If x divides Fx, let Fx = xF , then σ is (the isomorphic image of)
the class modulo H0OP2(m) of some global section τ ∈ H0OZ(m)
which is defined on Z ′ by F (however, τ 6= F on Z, since σ 6= 0).
But in this case we can also consider σ as the class of τ −F , which
is the 0-function on Z ′. Thus, Fz−zt+2F ∈ H0IZ′(m+ t+1), while
Fz−zt+2F /∈ H0IZ(m+t+1) and, by the U.P.P., we get the desired

bound d− 1 = hZ′(m+ t+ 1) < hZ(m+ t+ 1) ≤ (m+t+3)(m+t+2)
2

.
If on the contrary x does not divide Fx, then either yFx − xFy

defines a curve containing Z or H0IZ(m + 1) 6= H0IZ′(m + 1);
again by the U.P.P., we get the bound d − 1 ≤ d′ = hZ′(m + 1) <

hZ(m+ 1) = (m+3)(m+2)
2

.

(ii) If N
m

m−1(Z) 6= 0, then h0IZ(m+ 1) ≥ 3.
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IfN
m

m−1(Z) = 0, every σ inN
m+1

m−1(Z) also belongs toNm
m−1(Z,Bσ)

for some 2-dimensional vector space Bσ, where Bσ 6= Bσ′ when σ
and σ′ are linearly independent. As shown in the proof of the pre-
vious point, either the bound on the degree holds or every σ ∈
N

m+1

m−1(Z) corresponds to some non-zero Fσ ∈ H0IZ(m+ 1)∩BσA.
If h0IX(m + 1) = 1 then every Fσ belongs to ∩σBσA which is
at most a principal ideal generated by a linear form x so that
H0IZ(m+ 1) = kxG: this is not allowed by the U.P.P. 2

In [19] (Theorem 0.1) Tortora proved the following result:

Theorem 4.3. Let d and s be the degree and a non lifting level for
X ⊂ PN and let a = h0IX(s). If the following two conditions hold:

(1) H0IZ(s− 1) = 0
(2) N s

s−1(X)→N
s
s−1(Z) is not the zero map

then d ≤ D(s,N + a− 2).

The two conditions (1) and (2) are crucial points in Tortora’s
proof: (2) implies N

s
s−1(Z) 6= 0 which means that there is at least

a double down step of the Castelnuovo function ∆hZ(s + 1) (see
Lemma 2.2 (iv) ) beyond (at least) a+N − 3 down steps in degree
s which are consequence of (1). (To be precise, in [19] Condition
(2) is written in the slightly different manner: ”N s

s−1C)→N
s
s−1(Z)

not zero”, but, in that contest, the two conditions are equivalent.)
Though in the proof of Theorem 4.3 conditions (1) and (2) look

both necessary and their outcomes completely independent, they
are strictly related so that assuming both turns out to be in some
sense redundant.

Namely condition (2) says something stronger than N
s
s−1(Z) 6= 0

allowing a more general statement, not requiring (1) (see Theorem
4.5) and in the last part of the paper we obtain bounds on the degree
assuming that only (1) holds (see Corollary 4.6 and Proposition
4.7).

However, we cannot completely avoid both conditions (1) and
(2), as the following example shows.
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Example 4.4. Curves with non lifting-level s and degree
d > D(s, a−m) for every m and a = h0IC(s) ≥ 3.

Let Y be the union of a pair of skew lines in P3 and consider, for
every positive integer l, the reflexive sheaf F defined as an extension
by:

0 → OP3 → F(−l) → IY (−2l) → 0.

Easy computations on Chern classes give c1(F) = 0 and c2(F) =
2− l2. If t is any whole number (t ≥ l + 2), then a general section
of F(t) degenerates on an integral curve C of degree 2− l2 + t2 and
for which s = t + l + 1 is a socle level. Moreover a = h0IC(s) =
h0F(l+1) = h0OP3(2l+1) does not depend on t and exceeds l3, so
that for t� l� 0 the degree d = s2 − 2s(l + 1) + 2l + 3 is greater
than s2 − s(a−m) +G(a) for every fixed m and function G(a).

Theorem 4.5. Let X be a codimension 2, locally Cohen-Macaulay,
integral subvariety in PN , N ≥ 3, and let d be the degree of X, s a
non-lifting level for X, a = dimLH

0IX(s) and b = dimLH
0IY (s).

(i) If s is also the minimal non-lifting level = s0(C) for C, then

d ≤ D(s, a+N − 3)− 1 = s2 − s(a+N − 4) +

(
a+N − 3

2

)

and equality holds if and only if h0IZ(s− 1) = 0, h0IZ(s) =
a + N − 2 and moreover, for every t ≥ s, ∆hZ(t + 1) is
either ∆hZ(t)− 1 or 0.

(ii) If both s = s0(C) and N
s
s−1(Z) 6= 0 hold, then

d ≤ D(s, a+N − 2) = s2 − s(a+N − 3) +

(
a+N − 2

2

)
+ 1

and equality holds if and only if h0IZ(s− 1) = 0, h0IZ(s) =
a + N − 2, h0IZ(s + 1) = 2(a + N − 2) + 3 and moreover,
for every t ≥ s+ 1, ∆hZ(t+ 1) is either ∆hZ(t)− 1 or 0.

(iii) If N ≥ 4 and N
s
s−1(Y )→N

s
s−1(Z) is not the zero map, then

d ≤ D(s, b+N − 3) = s2 − s(b+N − 4) +

(
a+N − 3

2

)
+ 1.
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Proof. A proof of (i) immediately follows from Lemma 3.6 and
Lemma 4.1 (i), while for (ii) we need Lemma 3.6, Lemma 2.2 (iv)
and Lemma 4.1 (ii).

So we just have to prove (iii).
Let us take an element σ ∈ N

s

s−1(Y ) such that σH 6= 0. If Fi

xi

are local equations for σ on K ∩ Ui, then (Fi)H ∈ H0IZ(s) for
every i = N − 1, . . . , 3 (Lemma 3.4). We can choose the Fi’s such
that their initial terms are as small as possible, and in particular not
contained in gin(H0IY (s)). Furthermore, under a suitable change of
coordinates (which does not alter K, H and L and initial terms: see
Notation (2)) ), we may also suppose gin(FN−1) > · · · > gin(F2).

Claim: the initial terms of FN−1, . . . , F3 are of the type x•0x
•
1.

If not, some xi, i ≥ 2, would certainly appear in the initial term of
F3 and then consequently in the initial term of F2 which is smaller:
so, in k[x0, x1, x2], (F2)H = x2G. But (F2)H−x2G

x2
is also a local equa-

tion for σH on U2 ∩H. Moreover, by the generality of coordinates,
no points of Z lies on the line L = {x2 = 0} and so σH would be
zero, against the hypothesis.

Thus, dimL(H0IZ(s)) = h0IZ(s)−h0IZ(s−1) ≥ dimL(H0IY (s))+
N −3 = b+N −3; moreover ∆hZ(s+1) ≤ −2 as N

s
s−1(Z) 6= 0 (see

Lemma 2.2 (iv)) and we can conclude thanks to Lemma 4.1 (ii). 2

Now we assume that the general plane section Z of the variety
X is not contained in curves of degree lower than s (s a non-lifting
level).

First of all observe that in this assumption, s is also the min-
imal non-lifting level for C and a = h0IX(s) = dimLH

0IX(s) ≤
h0IY (s) − 1 = b − 1; thus the bounds on the degree that we have
obtained in Theorem 4.5 (i) and (ii) (for (ii) see also [19]) can be
reformulated in the following way:

Corollary 4.6. Let X be a codimension 2, integral subvariety of
degree d in PN , N ≥ 3. Suppose that s is a non-lifting level for X
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and that no degree s− 1 plane curve contains Z. Put a := h0IX(s)
and r := a+N − 2.

(i) If either N ≥ 4 or N = 3 and N
s
s−1(C) 6= 0, then

d ≤ D(s, r − 1)− 1 = s2 − s(r − 2) +

(
r − 1

2

)
.

(ii) If N
s

s−1(Z) 6= 0, then

d ≤ D(s, r) = s2 − s(r − 1) +

(
r
2

)
+ 1.

But the assumption h0IZ(s− 1) = 0 allows further and stronger
bounds on the degree. Let us first consider two special cases: as in
our hypothesis h0IZ(s) = ∆hZ(s) and ∆hZ(s) ≤ s+1, then h0IZ(s)
is at most s+1. Thus, if s is a non-lifting level for X ⊂ PN , the two
higher (and special) values for h0IX(s) are s−N +3 and s−N +2.

Proposition 4.7. Let X be a codimension 2, locally Cohen-Macaulay,
integral subvariety in PN of degree d. Suppose that s is a non-lifting
level for X and h0IZ(s− 1) = 0.

(i) If h0IX(s) = s−N + 3 then s ≥ 3, d = s2+s
2

= D(s, s)− 1

and N
s
s−1(Z) = 0.

(ii) If h0IX(s) = s−N +2, then either one of the following two
cases happens:
• d = s2+s

2
(when s ≥ 3 and either h0IZ(s) = s + 1 or

h0IZ(s) = s and h0IZ(s+ 1) = 2s+ 3);

• d = s2+s
2

+ 1 = D(s, s) (when h0IZ(s) = s, h0IZ(s +
1) = 2s+ 2).

Proof. (i) As h0IZ(s− 1) = 0, then s is also a non-lifting level for
Xi, i = N − 2, . . . , 1 and h0IZ(s) ≥ (s−N + 3) + (N − 2) = s+ 1;
on the other hand h0IZ(s) = ∆hZ(s) ≤ s+1: then h0IZ(s) = s+1.

Computations on Castelnuovo function give d = s2+s
2

= D(s, s) −
1; moreover IZ(s) is globally generated and then H1IZ(s − 1) =
N

s

s−1(Z) = 0.
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Finally, note that the socle-level s cannot be 2 because a curve
of degree 3 in P3 is contained in at least 3 independent quadrics.

(ii) As above, s is also a non-lifting level for every Xi so that
a ≤ h0IZ(s) ≤ s + 1; computations on Castelnuovo function give
s2+s

2
+ 1 ≥ d ≥ s2+s

2
.

The higher value d = s2+s
2

+1 happens if and only if h0IZ(s) = s
and h0IZ(s+ 1) = 2s+ 2. 2

The following theorem, which is the main result of this paper,
shows that, for every N , if a = h0IX(s) ≤ 2, then the bound
d ≤ D(s,N + a − 2) holds also without assuming condition (2)
of Theorem 4.3. Conversely, if a ≥ 3, then in general the bound
does not hold either for curves in P3, not even under the stronger
hypothesis that s is a socle level: see Example 4.9.

Theorem 4.8. Let X be a codimension 2, integral subvariety of
degree d in PN with a socle level s. Suppose that no plane curve of
degree s− 1 contains the general plane section Z of X. Then:

(i) d ≤ s2 − s(N − 3) +

(
N − 2

2

)
+ 1.

(ii) If X is contained in some hypersurface of degree s then:

d ≤ s2 − s(N − 2) +

(
N − 1

2

)
+ 1.

(iii) If moreover s is a socle level for X and X is contained in a
complete intersection (s, s), then:

d ≤ s2 − s(N − 1) +

(
N
2

)
+ 1.

Proof. Put a = h0IX(s) and r = min{N, a+N−2}. Computations
on the Castelnuovo function ∆hZ(t) easily leads to stronger upper
bounds when either H0IZ(s) ≥ r + 1 or both H0IZ(s) = r and
H0IZ(s+ 1) ≥ 2r + 4.
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If the restriction map N
s
s−1(C) → N

s
s−1(Z) is not zero, the state-

ment has been already proved in Theorem 4.6.

So suppose H0IZ(s) = r, H0IZ(s+1) ≤ 2r+3 and N
s

s−1(C)H =
0.

In these hypotheses we have h0IX(s) ≤ 2, h0IXi−1
(s) = h0IXi

(s)+

1 and N s
s−1(Xi) = N

s
s−1(Xi) ∼= k for every i = N − 2, . . . , 1.

This can not happen when N = 3; in fact as N
s
s−2(C) 6= 0, then

N s
s−2(C,B) 6= 0, for a 3-dimensional k-vector space B ⊂ A1, and

h0IC(s) ≥ 3 (see Theorem 2.1 and Theorem 3.1).

If N ≥ 4 we can suppose that s is a socle level for X and
h0IX(s) = 2 , so that r = N : if h0IX(s) ≤ 1, we consider in-
stead of X its general hyperplane section Y of X and prove the
bounds on the degree deg(Y ) = deg(X) depending on a(Y ) and s,
because a(Y ) = a(X) + 1 and s is a socle level for Y .

In this situation, we can apply Lemma 3.7 and get the opposite
inequality H0IZ(s + 1) ≥ 2r + 3. Again, computations on Castel-
nuovo function show that the wanted upper bound on the degree
holds; moreover the degree reaches the higher value if the ideal
sheaf of X is globally generated in degree s + 1 by the global sec-
tions Fij(σ), σ being a fixed non zero element in N

s
s−1(X). 2

Example 4.9. Curves C with h0IZ(s − 1) = 0, socle level s,
a = h0IC(s) and d > D(s, a + 1) for every pair of integers
s > a ≥ 3. We use induction on a.

Case a = 3. Let Y be the disjoint union of a line and a conic
in P3 and let F be a rank 2 normalized reflexive sheaf on P3 such
that Y is the zero scheme of a global section in H0F(1): IY and F
are connected by the following standard exact sequence:

0 → OP3 → F(1) → IY (2) → 0.

Through this exact sequence we can compute Chern polynomials
ct(F) = ct(IY (2)) and Rao modules H1

∗F = H∗IY (2) so that espe-
cially c1(F) = 0, c2(F) = 2 and H1

∗F = H1F(−1)⊕H1F ∼= k⊕k.
Let us consider an integral curve C zero scheme of a general section
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of F(t), for some t� 0 (more precisely for t ≥ 3, F being 2-regular:
see [14] Teorema 3.9).

ThenH1
∗IC = H1IC(t−1)⊕H1IC(t) ∼= k⊕k, so that s = t+1 is a

socle level for C; moreover a = h0IC(s) = h0F(1) = h0IY (2)+1 = 3
and h0IC(s − 1) = h0F = 0 (actually: h0IZ(s − 1) = h0FH = 0,
because a general plane section of a stable reflexive sheaf, which is
not a null-correlation bundle, is still stable). The degree of C is
d = c2(F(t)) = t2 + c1t+ c2 = s2 − 2s+ 3 > D(s, a+ 1).

Suppose that there are an integral curve C0 in P3 and whole
numbers a0 = a(C0) and s0 = s(C0) which satisfy the following
conditions:

(1) h0IC0(s0 − 1) = 0, h0IC0(s0) = a0;
(2) C0 is s0-regular;
(3) h0ωC0(4− s0) 6= 0.

Then there is also an integral curve C which satisfies (1), (2) and
(3) for a = a(C) = a0 + 1, s = s(C) = s0 + 1. To see this it
is sufficient to consider the exact sequence defined by a non-zero
section of ωC0(4− s0):

0 → OP3 → F(k0) → IC0(s0) → 0,

where F is a reflexive sheaf, c1 = c1(F) is either 0 or −1 and
2k0 + c1 = s. As F is k0-regular (thanks to (2)), we obtain an
integral curve C satisfying the required conditions through a general
global section of F(k0 + 1).

If, moreover, C0 has degree D(s0, a0)− 1, then deg(C) = D(s0 +
1, a0 + 1)− 1 = D(s, a)− 1.

Finally, when X is a curve C, then we can extend the previ-
ous results to the most general case, without any assumption on
h0IZ(s − 1). The first item of Theorem 4.10 is the well known
Laudal’s Lemma.

Theorem 4.10. Let C be a degree d integral curve in P3. Suppose
that s is a non-lifting level for C and put a := h0IC(s). Then:

(i) d ≤ d0 := s2 + 1.
(ii) d ≤ d1 := s2 − s+ 2 when a ≥ 1.
(iii) d ≤ s2 − 2s+ 5 when a ≥ 2.
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(iv) d ≤ d2 := s2 − 2s + 4 when a ≥ 2 and s is a socle level for
C.

Proof. First of all, let us consider a curve C such that Z is a
complete intersection (p, q): then p = 2, q = s (see either [17] or
[13] or [16]) and d = 2s ≤ d2 ≤ d1 < d0 (more precisely d = 2s < d2

except for s = 2).
So, suppose that Z is not a complete intersection.

Proof of (i) and (ii). Since s is a non-lifting level for C (we may
suppose it is the lowest one), then some s′ ≤ s is a socle level for
Z (see Theorem 2.1).

If N
s

s−1(Z) = 0 (so that s′ < s), we find d ≤ s2 − s + 1 (see
Lemma 3.2 (ii)), which is a strictly lower bound than both d ≤ d0

and d ≤ d1.
On the other hand, if s itself is a socle level for Z, all the bounds

follow from Theorem 4.5 (ii): note that we have dimLH
0IC(s) =

h0IC(s) if h0IC(s) ≤ 2, dimLH
0IC(s) ≥ 2 otherwise.

Proof of items (iii) and (iv): let h0IC(s) ≥ 2.
If s = 2, then either C is a plane curve (not possible because plane

curves have no non-lifting levels) or it is contained in a complete
intersection (2, 2) so that d ≤ 4 ≤ d2. So, assume s ≥ 3.

If s is a socle level for Z, then d ≤ d2 (see Theorem 4.5 (ii)); if
h0IZ(s− 1) 6= 0 then d ≤ s2 − 2s+ 2. Thus, suppose N

s
s−1(Z) = 0

and h0IZ(s − 1) = 0. If s is a socle level for C, then h0IZ(s) ≥ 4
and d < d2; we have in fact either ns

s−1(C) ≥ 2 ( so that h0IZ(s) ≥
h0IC(s) + 2 ) or ns

s−1(C) = ns
s−2(C) = 1 so that N

s
s−2(C,B) 6= 0,

where B ⊂ A1 is a 3-dimensional k-vector space (see Theorem 2.1)
which implies h0IC(s) ≥ 3 (see Theorem 3.1).

Computations on Castelnuovo functions and what just proved,
show that d ≤ s2−2s+5 except when s ≥ 4 (for s ≤ 3, see Lemma
4.7), s is not a socle level neither for C nor for Z and IZ has 3
minimal generators in degree s and none in degrees s+1, s+2 and

< s, so that N
s−1
s−2(Z) ∼= k and N

s
s−1(Z) = N

s+1
s (Z) = 0.

We claim that the above situation cannot happen. In fact, as
N

s
s−1(C) 6= N s

s−1(C), then N s+1
s (C) 6= 0, so that, by the exact se-

quence (2.3), we find N s+1
s−2 (C) ≥ 2 and from this, using again (2.3),
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we get N
s−1

s−3(Z) 6= 0 . But any non-zero element of N
s−1

s−3(Z) 6= 0
also belongs to N s−2

s−3 (Z,B), for some 2-dimensional vector space
B ⊂ A1, and this is not allowed by Lemma 4.2. 2
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