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ABSTRACT. A finite group G is called rational if all its irreducible complex
characters are rational valued. In this paper we discuss about rational
groups with Sylow 2-subgroups of nilpotency class at most 2 by imposing
the solvability and non-solvability assumption on G and also via nilpo-
tency and non-nilpotency assumption of G’.
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1. Introduction and preliminaries

Let G be a finite group such that for all x € Irr(G), and every g € G,
the value of x(g) is a rational number, where Irr(G) is the set of all ordinary
irreducible complex characters of G. Such a group G is called a rational group or
a Q-group. The structure of a finite group G, deeply depends on the structure
of its Sylow subgroups and since for every non-trivial rational group G, the
order of G is divisible by 2, analyzing rational groups through their Sylow
2-subgroups is important.

Let m be a set of prime numbers; by a m-group, we mean a group G, for
which the set of prime divisors of the order of G is a subset of . In 1976
Gow, [6] showed that every finite rational solvable group is a {2, 3,5}-group.
A long standing conjecture about Sylow 2-subgroups of rational groups, was
that they are rational too, but Isaacs and Navarro in [11], showed that this
conjecture is false. However in the same paper the authors proved that if P is
a Sylow 2-subgroup of a solvable rational group, with nilpotency class 2, then
P is rational. Our goal is to find some information about the structure of a
rational group G, for which the Sylow 2-subgroups have nilpotency class at
most 2.
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Throughout this paper we consider only finite groups and employ the follow-
ing notations and terminologies. By M we mean the Markel group of order 200,
i.e., the semidirect product of Zs x Zs and the Sylow 2-subgroup of SL(2,5)
(which is isomorphic to Qs, the quaternion group of order 8) via the natural
action. This group is indexed as SmallGroup(200, 44) in the GAP-system [5].
For Q = {1,...,n} and the group G, the notation G* is used for the set of all
functions from Q to G. If K < §,, (the symmetric group on ) then G g K
is the wreath product of G and K, i.e., the set of all (f;o), where f € G%
and ¢ € K and (f;0)(g;0) = (fgo;00), in which for every i € Q we have
9o (i) = g(671(7)) and fg(i) = f(i)g(i). By G o H we mean the central product
of the groups G and H, and F(2*) denotes the elementary abelian 2-group of
order 2* and the notation Es(n, p) is for the extra-special group of order p?*+1.
We denote the dihedral group of order n by D,,. By O,(G) we mean the largest
normal p-subgroup of G. For a nilpotent group P, we denote the nilpotency
class of P by cl(P).

In the following results, we state some well-known properties of rational
groups from [12], which we need for our reasoning.

Result 1.1. A Group G is rational if and only if for each x € G we have
Ne((x))/Ca({x)) = Aut((x)).

Result 1.2. Let G be a rational group and P € Syla(G). Then the following
hold

If G is non-trivial, then 2 | |G]|.

Every quotient of G is rational.

If G is abelian, then G is an elementary abelian 2-group.

Z(@) is an elementary abelian 2-group.

If G is nilpotent, then G is a 2-group.

If P is abelian, then P is elementary abelian, G’ is a 3-group and G
splits over G’ with P as complement.

Ca(P) = Z(P).

If G is solvable, then Ng(P) = P.

9. G/G' is an elementary abelian 2-group. In particular every element of
G having odd order lies in G’.

S ok

® N

In this paper we discuss about the groups G, satisfying the condition men-
tioned in the title, depending on they are solvable or not, and if they are
solvable their derived subgroup is nilpotent or not. Besides some properties in
special cases, we will prove the following results.

Theorem 1.3. Let G be a solvable rational group and P € Syly(G) with
c(P) < 2 and K € Syl3(G). If G' is nilpotent, then G is a {2,3}-group
and G = K x P and we have the following
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(a) If G’ is abelian, then G = E(3%) x P for some k, and G contains a
normal elementary abelian 2-subgroup H such that G/H = E(3™) %
E(2m™), for somem >0 and n > 0.

(b) G’ is non-abelian if and only if K is non-abelian.

If 5| |G|, then by [7, Theorem 1.1], G has a normal elementary abelian
Sylow 5-subgroup T', and so T' can be thought as a component of a semidirect
product, more precisely, G splits over T. So by Result 1.2(2), the {2, 3}-group
G/T is rational. Therefore, in a sense, the studying solvable rational groups
reduces to the studying the rational {2, 3}-groups.

Theorem 1.4. Let G be a solvable rational group and P € Syla(G) with
cl(P) < 2. If G’ is not nilpotent, then we have the following
(a) If G is a {2,5}-group, then G/O5(G) = Hle M;, in which, for every
1€{l,...,k}, M; is a copy of Markel group M.
(b) If G is a {2,3}-group, K € Syls(G') and H € Syla(G') with H < P,
then K <G’ if and only if P' = H.

Theorem 1.5. Let G be a non-solvable rational group and P € Syls(G) with

cl(P) < 2. Then every non-cyclic composition factor of G is isomorphic to Ay,
forn € {5,6,7}.

2. Solvable rational groups
Throughout this section we assume that G is a solvable rational group.

2.1. Rational 2-groups. By Result 1.2(5), every nilpotent rational group is
a 2-group. In this subsection we state some properties of rational 2-groups.

Lemma 2.1. Let G be a rational 2-group. Then the Frattini subgroup of G,
coincides with its derived subgroup.

Proof. Since G/G’ is an abelian rational 2-group, it is elementary abelian by
Result 1.2(3). Now by [8, Theorem 3.3.14], we have ®(G) < G’. But for every
nilpotent group G, we know that G’ < ®(G), and the proof is complete. |

Lemma 2.2. Let G be a rational 2-group. If G has nilpotency class 2, then
exp(G) =4 and exp(G') = 2.

Proof. Since G/®(G) is elementary abelian and ®(G) = G’ < Z(G) in view of
Lemma 2.1, we have 22 € Z(G) for every x € G. But by Result 1.2(4), Z(G)
is elementary abelian, so we have z* = 1. Now as G is non-abelian we have
exp(G) =4 and as G' < Z(G) and G’ # 1, we have exp(G’) = 2. O

Lemma 2.3. Suppose that G is a rational 2-group. Then G' = Zsy if and only
if G is isomorphic to one of the following groups

1. D80D80-~-OD8XE(2k),'
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2. QgODSO "'OD8 X E(Zk)
In other words G = Es(n,2) x E(2F) for some n and k.

Proof. Suppose that G’ 2 Zy. As Z(G) is elementary abelian, we have Z(G) =
E(2k+1) for some k and so by [2, Lemma 4.2], G has one of the above mentioned
forms. The converse is obvious. O

Theorem 2.4. Suppose that G is a rational 2-group and cl(G) = 2. Then G
is isomorphic to a subgroup of ([, Es(ni,2)) x E(2%), for some n, n; and
k.

Proof. We know that Z(G) is elementary abelian. As G’ < Z(G), we have
G’ = E(2") for some n. So there are subgroups K, K, ... K, of G’ such that
|G’ : K;| = 2, for every i € {1,...,n}, and (;_, K; = 1. Therefore every K; is
normal in G and the homomorphism ¢ : G — G/K; x --- x G/K,, for which
wlg) = (gK1,...,9K,), is injective. But (G/K;) = G'/K; = Zy for every
i €{1,...,n}, so by Lemma 2.3, the proof is complete. O

Definition 2.5. Let H and K be subgroups of G such that K is a normal
subgroup of H. We call the group L = (H/K), a section of the group G. In
other words L is a section of G if it is a homomorphic image of a subgroup of

G.

Since the minimal non-abelian rational 2-groups are Qs and Dg, one may
think that they should appear in the structure of every non-abelian rational
2-group. Our first conjecture was that every non-abelian rational 2-group has
a subgroup isomorphic to quaternion or dihedral group of order 8. But we
found a group of order 64 which is indexed by SmallGroup(64,245) in GAP
system [5], as the first counterexample. This group which has 60 element
of order 4 and the nilpotency class 2, has no non-abelian subgroup of order
8. One may think that every non-abelian rational 2-group has a non-abelian
factor group of order 8; but for the extra-special groups, SmallGroup(32,49)
and SmallGroup (32,50), in GAP system, all the factor groups with order 8,
are elementary abelian. However we can state the following theorem.

Theorem 2.6. If G is a non-abelian rational 2-group, then it has a section
isomorphic to Qg or Dg.

Proof. We prove the claim using induction on the order of G. If |G| = 8, the
claim is clearly valid. So we suppose that |G| = 2™, n > 3, and the assertion
holds for every non-abelian rational 2-group with the order 2%, k < n. Now
let x # 1 be an involution belonging the center of G and H = (x). Then G/H
is a rational group of order 2"~!. If G/H is non-abelian, then by induction
hypothesis it has subgroups K/H and L/H such that (K/H)/(L/H) is a non-
abelian group of order 8, so the section K/L of G is isomorphic to Qs or Dsg.
Now we assume that G/H is abelian. But in this case we have G’ = H < Z(G),
i.e., G’ @ Zs and by Lemma 2.3, the proof is complete. O
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2.2. Groups with nilpotent derived subgroup. In the next lemma we
show that, 5 does not appear as a prime divisor of |G|, when G’ is nilpotent.

Lemma 2.7. Let G be a rational group for which G’ is nilpotent. Then G is
a {2,3}-group.

Proof. Suppose that H, T and K are 2-, 3- and 5-Sylow subgroups of G’
respectively. Then G’ = H x T x K. Now T is characteristic in G’, so it
is normal in G and G/T is a rational {2,5}-group. Now by [7, Theorem 1.2 |,
G/T has a quotient with a subgroup isomorphic to the Markel group M. But
M’ is a non-nilpotent group of order 50; This violates that G’ is nilpotent and
the proof is complete. O

In the sequel we discuss about the case that G’ is abelian; In other words
we suppose that G is metabelian.

2.2.1. Groups with abelian derived subgroups. At first we describe the structure
of an special case of metabelian rational groups, i.e., the metacyclic Q-groups.

Theorem 2.8. Let G be a rational group. Then G is metacyclic if and only
if G is isomorphic to one of the following groups: The cyclic group Zs, Qg or
D, forn € {4,6,8,12}.

Proof. As G is metacyclic, there exists an element « € G such that G/(z) & Z,.
If G is abelian, then by Result 1.2(3), it is elementary abelian and so obviously
G is isomorphic to Zs or Dy. Now we assume that G is non-abelian. In this case
since |G| > 4, we have o(z) > 2. Since by Result 1.2(4), Z(G) is elementary
abelian, © ¢ Z(G) and hence Cg({z)) = (z). By Result 1.1 we have

~ G o Nel(@) o
(2.1) Zo @ = Colla) Aut({(z)).

By Lemma 2.7, G is a {2,3}-group. Suppose that o(x) = 2°3°. If 8 = 0,
then « > 2 and we have Aut((z)) & Zy X Za-2 and then by (2.1) we conclude
that & = 2. So o(z) = 4 and |G| = 8. But all the non-abelian rational groups
of order 8 are Dg and (s which are also metacyclic. Now suppose that 8 # 0;
then as Aut(Zzp) = Zgyzs-1, by (2.1) we conclude that (o, 8) € {(0,1), (1,1)},
i.e., o(x) = 3 or o(z) = 6, which the first case implies that G = Dg and the last
one leads to G = Dqs. O

By previous theorem every metacyclic rational group has a Sylow 2-subgroup
of nilpotency class at most 2.

In the following we have some description for general case of metabelian
rational groups.

Lemma 2.9. Let G be a metabelian rational group. Then G is a {2,3}-group
and for K € Syl3(G), K is elementary abelian and normal in G.
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Proof. The first claim is a corollary of Lemma 2.7. Suppose that T' € Syl3(Q).
As G/G is a 2-group, we have T' < G’ and so T is abelian. Since Sylow
subgroups of an abelian group are characteristic, T is characteristic in G’ and
so is normal in G. Suppose that 1 # € T and o(z) = 3%. By rationality

Ne((x))
> Aut((x)) = Zy 3a-1.
CG(<1’>) (< >) 2.3
Since G’ < Cg({x)), the order of left hand side is not divisible by 3. So o =1
and we are done. 0

Now we apply our condition on Sylow 2-subgroups of GG in the next two
results, in a special and general case respectively.

Theorem 2.10. Let G be a rational group with a cyclic derived subgroup and
a Sylow 2-subgroup P with cl(P) < 2. Then one of the following holds

(i) |G'| =1 and G is an elementary abelian 2-group;
(ii) |G'| =2, G is a 2-group and G = Es(2,n) x E(2%);
(iii) |G’| =3 and G = Sz x E(2%);
(iv) |G'| =6 and G = Z3 x (Es(2,n) x E(2F)).
for somen >1 and k > 0.

Proof. By the last corollary of [1, page 180], the order of G’ divides 12. If
|G'| = 1, obviously (i) is the case. Since G/G’ is an elementary abelian 2-
group by rationality, if |G| = 2, then G is a 2-group and by Lemma 2.3,
G = Es(2,n) x E(2F), for some n > 1 and k > 0, and the case (ii) holds. Now
if |G'| = 4, with a similar reason, G is a 2-group and since cl(G) = 2, by Lemma
2.2, we have exp(G') = 2; but this violates the assumption that G’ is cyclic.
Now let 3| |G'| and « € G’ be an element of order 3. Then as G’ is cyclic, (z)
is a characteristic subgroup of G’ and so is normal in G and G/(z) is a rational
2-group which is isomorphic to P by Schur-Zassenhaus theorem. If |G'| = 3,
then since G/G’ is elementary abelian, the Sylow 2-subgroup P of G is abelian
and hence by Result 1.2(1,6), G = Z3 x E(2F*+1) for some k > 0. Now G’ = (x),
and since |Aut({x))| = 2, by Result 1.1 we have (|G|/|Cq({x))]) = 2; that is,
|Ca((x))] = 3 x 2%, So (iii) is the case. If |G'| = 6, then (G/(z)) = P' = 7,
and G = Z3 x P where P = Es(2,n) x E(2¥) by Lemma 2.3 and we have the
case (iv). Finally if |G| = 12, then (G/(x))’ is cyclic of order 4, but this is
against the fact that exp((G/(z))") = 2. O

Obviously in Theorem 2.10, the direct prouduct of a group of type (ii) and a
group of type (iii) is a group of type (iv); also our conjecture is that every group
of type (iv) can be constructed in this way; in other words, by the assumption
of previous theorem we surmise that if |G’| = 6, then G = S3 x Es(2,n) x E(2F).
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Theorem 2.11. Let G be a rational metabelian group and P € Syls(G), with
cl(P) < 2. Then G contains a normal elementary abelian 2-subgroup H, such
that G/H = E(3™) x E(2"), for some m >0 and n > 0.

Proof. Since G’ is an abelian {2, 3}-group, G’ = H x K, where H € Syly(G’)
and K € Syl3(G). By Lemma 2.9, K = E(3™) for some m and it is normal
in G. So G/K = P is a rational 2-group and P’ = (G/K) = G'/K =
H. Now by Lemma 2.2, exp(P’) < 2; so H is elementary abelian. As H
is characteristic in G’ it is normal in G and G/H is a rational group. But
(G/H)' is a 3-group isomorphic to K, and G/H splits over it and we have
G/H = E(3™) x E(2"). O

2.2.2. Groups with non-abelian derived subgroups. For the case having nilpo-
tent non-abelian derived subgroup we can state the following lemma.

Lemma 2.12. Let G be a rational group with a nilpotent derived subgroup,
P € Sylo(G) with cl(P) < 2 and K € Syls(G). Then G’ is non-abelian if and
only if K is non-abelian.

Proof. By Result 1.2(9), K < G’. Suppose that G’ is non-abelian. If P is
abelian, then by Result 1.2(6), G’ = K and so K is non-abelian. Now we
assume cl(P) = 2. Since K < G’ and G’ is nilpotent, K is normal in G. But
then as G is a {2, 3}-group by Lemma 2.7, G/K = P and if H € Syls(G’), we
have G' =K x H and H = G'/K = (G/K) 2 P'#1. Soas H=>= P' < Z(P),
H is abelian; hence K is non-abelian. The converse is hold as K < G'. O

Here we present the proof of Theorem 1.3.

Proof. By Lemma 2.7, G is a {2,3}-group. K is contained in G’ by Result
1.2(9), and it is normal in G. So G splits over K with P as a complement, i.e.,
G = K x P. Now if G/ is abelian, then by Lemma 2.9 we have G = E(3%)x P for
some k. By Theorem 2.11, the existence of the 2-subgroup H with mentioned
property, is confirmed, and so the case (a) of theorem is proved. The case (b)
is proved in Lemma 2.12. O

2.3. Groups with non-nilpotent derived subgroup.

Lemma 2.13. If G = MZs ,where M is the Markel group, and P € Syla(G),
then cl(P) = 4.

Proof. Since the Sylow 2-subgroup of M is isomorphic to Qg, P = Qg!Zy and
the proof can be completed by a simple calculation with GAP [5]. O

Our next theorem is about the structure of a {2,5}-solvable rational group
which satisfies our condition relating its Sylow 2-subgroups.

Theorem 2.14. Let G be a solvable rational {2,5}-group and P € Syla(QG).
If 5 divides |G| and cl(P) = 2, then G/O2(G) = Hle M;, in which, for each
i€{l,...,k}, M; is a copy of Markel group M.
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Proof. By [7, Theorem 1.2], G/O2(G) =2 M K, where K < §,, is a 2-group.
Suppose that K # 1 and o is an involution in K, say o = Hle(il,jl), as a
product of disjoint cycles. Let @ = {1,...,n} and I' = {i1,... %, J1,--,Jt}-
We know that Mg K = {(f;6)|f € M®,§ € K}. Suppose that f,g € M such
that f(i) = g(i) = e, for every i € Q\ I', where e is the identity element of M.
Then (fg,)(i) = f(i)go(i) = f(i)g(c71(i)) = ee = ¢, as 07 1(i) ¢ I'. So if we
replace every f € M, with the above property, by fr (the restriction of f to
I'), we have an embedding of M' x (o) in M x K = M1 K. Now let 7 = (i1, j1)
as a cycle of length 2 and A = {iy, j1}; then by a similar reason as above, one
can see that M {a () is embedded in M' x (o) and so in M ! K. Now by
Lemma 2.13, G/O2(G) has a Sylow 2-subgroup of nilpotency class more than
2, which is a contradiction. So K =1 and G/O3(G) is a direct product of M;,
i€ {l,...,k}, for some k < n. O

The next corollary is a restatement of part (a) of Theorem 1.4.

Corollary 2.15. Let G be a solvable rational {2,5}-group, G' non-nilpotent
and P € Syla(G) with cl(P) < 2. Then G/O3(G) = Hle M;, in which, for
each i € {1,...,k}, M; is a copy of the Markel group M.

Proof. If 5 1 |G|, then G is a 2-group, which is a contradiction. Also by Result
1.2(6), cl(P) # 1. Now as the derived subgroup of M is not nilpotent, the
claim is a conclusion of Theorem 2.14. O

The group S, is the only symmetric group which is solvable but its derived
subgroup is not nilpotent. Using S; and rational groups, satisfying our
condition on Sylow 2-subgroups and having nilpotent derived subgroup, by
direct product one can generate groups which are described in the title of this
subsection.

The next result provides the proof of the part (b) of Theorem 1.4.

Theorem 2.16. Let G be a solvable rational {2,3}-group with non-nilpotent
derived subgroup G'. Suppose that P € Syly(G), cl(P) =2, H € Syly(G') and
K € Syl3(G’"). Then K <G’ if and only if P' = H.

Proof. By Result 1.2(9), K € Syl3(G). If K <G’, then K <G and P 2 G/K
is a rational 2-group and we have P’ =2 G'/K = H. So P’ = H. Conversely,
suppose that P’ = H, we show that G’ has a normal 2-complement, which is
equivalent to K <1 G. If it is not the case, then by [10, Lemma 5.25], there are
elements =,y € H that are conjugate in G’ and they are not conjugate in H.
Now we can choose P such that P’ = H and then we have x,y € P’ so that
x,y are conjugate in G and they are not conjugate in P’. But, as cl(P) = 2, we
have P’ C Z(P) = Cg(P) which the last equality deduced from Result 1.2(7).
Now z,y € Cg(P) and since Cg(P) is elementary abelian, x and y are not
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conjugate in Cg(P), and by [10, Lemma 5.12], there exists t € Ng(P) such
that 2' = y. Also by Result 1.2(8), we have Ng(P) = P, i.e., t € P. But this
violates the fact that « € Z(P). This contradiction completes the proof. |

Here we mention that the result of previous theorem does not hold if we
drop the rationality assumption of G. A counterexample in this case is G =
SmallGroup(216,153) for which, by the above notation H 2 P’ but K < G'.

2.4. Examples. In this section we show that an interesting class of rational
groups, i.e., the class of all the rational Frobenius groups satisfies in the condi-
tion of the title of this paper. For the definition of a Frobenius group one can
see [0, Def. 7.1]. Here we state the main theorem of [3], which classifies the
rational Frobenius groups.

Theorem 2.17. If G is a Frobenius Q-group, then exactly one of the following
occurs:

(i) We have G = E(3"™) X Zz, where n > 1 and Zs acts on E(3"™) by
inverting every nonidentity element.

(ii) We have G = E(3*™) x Qg, where m > 1 and E(3%™) is a direct sum
of m copies of the 2-dimensional irreducible representation of Qg over
the field with 3 elements.

(ili) We have G = E(5%) x Qs, where E(52%) is the 2-dimensional irreducible
representation of Qg over the field with 5 elements.

Corollary 2.18. Let G be a rational Frobenius group. Then G is solvable and
for the Sylow 2-Subgroup P of G, we have cl(P) < 2.

In the classification theorem of Frobenius rational groups, Theorem 2.17,
the class (i) consists of groups with nilpotent derived subgroups and both the
second and third classes contain the groups with non-nilpotent derived sub-
groups.

3. Non-solvable rational groups

The next theorem, concerning the non-abelian simple composition factors of
a rational group, is achieved by Feit and Seitz.

Theorem 3.1 (See [1]). Let G be a non-cyclic finite simple group. Then G is
a composition factor of a rational group if and only if G is isomorphic to an
alternating group or one of the following groups:

(i) PSpa(3), Sps(2), OF (2).

(ii) PSL3(4), PSU4(3).

Here we restate and prove Theorem 1.5.

Theorem 3.2. Let G be a non-solvable rational group, P € Syla(G) and
cl(P) < 2. Then a non-cyclic composition factor of G is isomorphic to an
alternating group A,,, where n € {5,6,7}.
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Proof. Suppose that H/K is a non-abelian composition factor of G. Obviously
the nilpotency class of a Sylow 2-subgroup of H/K is not greater than that
of a Sylow 2-subgroup of G. Now H/K is isomorphic to one of the groups
mentioned in Theorem 3.1. But all such groups contain a Sylow 2-subgroup
of nilpotency class greater than 2, except As, Ag and A7 and the proof is
complete. O

It is worthwhile to mention here that S5, Sg and S; are non-solvable rational
groups having class 2 Sylow 2-subgroups.

Remark 3.3. There is a result analogous to Theorem 3.1, due to Thompson,
which is about the cyclic composition factors of a finite rational group. (See
[13].) If p is a prime such that some rational finite group has a composition
factor of order p, then p < 11. In the cited article, Thompson has mentioned
that, he has not found any rational groups with a composition factor of order
p if p € {7,11}, but he has not been able to eliminate this possibility either.
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