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1. Introduction

Consider a dynamical system with a compact state space X, given by a
continuous map S : X → X. We denote by C(X,R) the collection of continuous

functions from X to R. Given f ∈ C(X,R), let Snf :=
n−1∑
i=0

f ◦ Si and Anf :=

1

n
Snf be the Birkhoff sum and the Birkhoff average of f . We say that an orbit

{x, S(x), S2(x), · · · } has historic behaviour if for some f ∈ C(X,R) the limit
lim

n→∞
Anf(x) does not exist. This terminology was introduced by Ruelle in

[10] and was investigated by Takens in [11]. The absence of limit means that,
as time n tends to ∞, the point Snx keeps having new ideas about what it
wants to do. By convention, we call the set of points historic set if the orbit
{x, S(x), S2(x), ...} of each member x has historic behaviour. Especially, for any
given f ∈ C(X,R), let H(f ;X,S) := {x ∈ X : lim

n→∞
Anf(x) does not exist} be

the historic set with respect to f .
Historic sets have until very recently been considered of little interest in

dynamical systems and geometric measure theory. Indeed, according to folk-
lore, these sets carry no essential information about the underlying structure.
However, recent work [2, 8, 4, 5, 12, 13, 1, 14] has changed this point of view:
it carries full topological entropy and full Hausdorff dimension in most cases
[2, 4, 5, 12, 13, 14], especially in uniformly hyperbolic dynamical systems. The
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full dimension of historic set has been verified in subshift of finite type and
conformal repellers[2, 4, 5]. D. Thompson [12, 13] verified the full topological
pressure of the historic set for the systems satisfying some weak specification.
Barreira et al [1] looked into the historic set from topological viewpoint. They
showed that the historic set in subshift with weak specification is either empty
or residual. It is interesting to consider the corresponding question in the
non-uniformly hyperbolic cases.

In this paper, we study a more general historic set of ratio for Birkhoff aver-
age in a class of one dimensional non-uniformly hyperbolic dynamical systems.
Given f, g ∈ C(X,R) with inf

x∈X
g(x) > 0, we write the historic set related to the

ratio for Birkhoff average of f and g by

H(f, g;X,S) :=

{
x ∈ X : lim

n→∞

Snf(x)

Sng(x)
does not exist

}
.

Clearly, let g ≡ 1, H(f, g;X,S) recovers H(f ;X,S). Now, we introduce the
dynamical system considered in this paper.

1.1. Basic settings. In this paper, we consider the following model. Denote
the unit interval [0,1] by I. Let T :

∪m
i=1 Ii → I be a piecewise C1+ρ map with

exponent ρ > 0, where {Ii}mi=1 are m subintervals of I. Moreover, we impose
the following assumptions:

(1) int(Ii) ∩ int(Ij) = ∅ for i ̸= j, int(Ii) is the interior of Ii.
(2) T |Ii : Ii → I, is a C1+ρ continuous and surjective map, for all 1 ≤ i ≤

m. There is a unique xi ∈ Ii such that T (xi) = xi and T ′(xi) ≥ 1 for
i = 1, 2, . . . ,m. Point xi is called parabolic fixed point if T ′(xi) = 1,
otherwise, we call it expanding fixed point.

(3) T ′(x) > 1 for x ̸∈ {x1, x2, . . . , xm}.
The appearance of parabolic fixed point makes the picture of dynamical system
we considered is quite different with classical uniformly hyperbolic dynamical
system. Define the T - invariant repeller as

Λ :=

{
x ∈

m∪
i=1

Ii : T
n(x) ∈ I, ∀n ≥ 0

}
.

The class of non-uniformly hyperbolic maps includes the important example of
Manneville-Pomeau map, that is T : I → I defined by Tx = x+x1+β( mod 1),
where 0 < β < 1.

The above system has a natural symbolic codings: let Ti be the inverse map
of T |Ii : Ii → I for i = 1, 2, . . . ,m. Let A = {1, 2, . . . ,m} and Σ = AN. Write
Σn = {w = w1w2 . . . wn : wi ∈ A} as all the words with length n. There is a
shift map σ : Σ → Σ defined by σ((ωn)n≥1) = (ωn)n≥2. Define the coding map
Π : Σ → I as

Π(ω) := lim
n→∞

Tω1 ◦ Tω2 ◦ · · · ◦ Tωn(I).
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Then Π(Σ) = Λ and Π ◦ σ(ω) = T ◦ Π(ω). In fact, Λ is the attractor of the
iterated function system {Ti}mi=1, see [3, Section 2.2]. For each k ≥ 1, let
Tω1ω2...ωk

(I)=Tω1 ◦ Tω2 ◦ . . . ◦ Tωk
(I) be the level-k elementary interval and

Λk :=
∪
Σk

Tω1ω2...ωk
(I),

where the union is over Σk. Then, we have

Λ :=

∞∩
k=1

Λk.

If the iterated function system {Ti}mi=1 satisfies the strong separation condition,
i.e., Ii

∩
Ij = ∅ for all i ̸= j. Coding map Π is bijection. In this case, Λ can

be viewed as the classical Cantor set. If there exist distinct i and j with
Ti

∩
Tj ̸= ∅. In this case, for each k ≥ 1, only the end points of each level-

k elementary intervals may have two codings. Then, the coding map Π is a
bijection except for at most countably many points.

Let S : X → X be a topological dynamical system. Denote by M(X,S) the
set of all S-invariant probability measures and E(X,S) the set of all ergodic
S-invariant probability measures. Given f, g ∈ C(X,R) with inf

x∈X
g(x) > 0, we

define the following continuum (compact and connected set)

L(f, g;X,S) :=

{∫
fdµ∫
gdµ

: µ ∈ M(X,S)

}
.

The continuum L(f, g;X,S) has close relation with H(f, g;X,S).

1.2. Main result. In this paper, we prove that the historic set in the non-
uniformly hyperbolic dynamical system carries full Hausdorff dimension unless
it is empty. The corresponding part in uniformly hyperbolic dynamical systems
was established in [2, 4, 5]. We will explain our results more precisely after we
present the main result.

Theorem 1.1. Let T : Λ → Λ be C1+ρ continuous and f, g ∈ C(Λ,R) with
inf
x∈Λ

g(x) > 0, then

(1) H(f, g; Λ, T ) = ∅ ⇐⇒ L(f, g; Λ, T ) is a trivial continuum;
(2) H(f, g; Λ, T ) ̸= ∅ ⇐⇒ dimH H(f, g; Λ, T ) = dimH Λ.

Remark 1.2. It seems plausible that the C1+ρ regularity can be weakened if we
impose some weaker regularity condition near the parabolic fixed point. Indeed,
in the uniform hyperbolic case (without parabolic fixed point), C1 regularity
is enough to establish the theorem corresponded to Theorem 1.1. To our best
knowledge, it is still an open question that whether we can prove Theorem
1.1 under the assumption of C1 regularity, and the similar question was also
proposed in [6].
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2. Preliminaries

In this section, we will introduce some notations and include the lemmas
needed in the proof of Theorem 1.1.

Recall that A = {1, 2, . . .m} and Σ = AN. For ω = {ωn}∞n=1 ∈ Σ, write
ω|n = ω1ω2 . . . ωn. For w ∈ Σn, we define the cylinder [w] := {ω ∈ Σ : ω|n =
w}.

Given f : Σ → R continuous, define ∥f∥ := sup
τ∈Σ

|f(τ)|. We define ∥f∥

similarly for f : Λ → R continuous.
Now consider the coding map Π : Σ → Λ. Let Λ̃ := {x ∈ Λ : #{Π−1(x)} =

2} be the set of points which has two codings, where #A is the cardinality of

the set A, and Π : Σ \ Π−1(Λ̃) → Λ \ Λ̃ is a bijection. For w = w1w2 . . . wn,
write Iw := Tw1 ◦ Tw2 · · · ◦ Twn(I). For ω ∈ Σ, write In(ω) := Iω|n . Let
Dn(ω) := diam(In(ω)) be the diameter of In(ω) and g(ω) := − log T ′

ω1
Π(σω).

Then Dn(ω) and Ang(ω) can be related by the following lemma:

Lemma 2.1 ([6, 16]). Under the assumption on T , Dn(ω) converges to 0
uniformly. Moreover

lim
n→∞

sup
ω∈Σ

{
| − 1

n
logDn(ω)−Ang(ω)|

}
= 0.

Given µ ∈ M(Σ, σ), let λ(µ, σ) :=
∫
gdµ be the Lyapunov exponent of µ and

Π∗µ := µ ◦ Π−1. Similarly, Given µ ∈ M(Λ, T ), let λ(µ, T ) :=
∫
log |T ′|dµ be

the Lyapunov exponent of µ and h(µ, T ) be the metric entropy. The following
lemma, which is a combination of [6, Lemma 2 and Lemma 3], is very essential
in our proof of Theorem 1.1.

Lemma 2.2. For any given µ ∈ M(Σ, σ), there exists a sequence of ergodic
σ-invariant measures {µn : n ≥ 1} such that µn → µ in the weak star topology
and

h(µn, σ) → h(µ, σ), λ(µn, σ) → λ(µ, σ).

3. Proof of Theorem 1.1

Since T is C1+ρ continuous, by [16] we have

dimH Λ = sup
µ∈M(Σ,σ)

{
h(µ, σ)

λ(µ, σ)
: λ(µ, σ) > 0

}
.

Then for any ϵ > 0, there exists µ ∈ M(σ,Σ) with λ(µ, σ) > 0 such that

(3.1)
h(µ, σ)

λ(µ, σ)
≥ dimH Λ− ϵ.

We note that if the historic set H(f, g; Λ, T ) is not an empty set, we can

construct two measures µ, ν ∈ M(Λ, T ) such that

∫
fdµ∫
gdµ

̸=
∫
fdν∫
gdν

. These
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means #L(f, g; Λ, T ) ≥ 2. Then the ”⇐=” part of 1. follows. Given f, g ∈
C(Λ,R), we define F := f ◦ Π and G := g ◦ Π. It is easy to check that
L(f, g; Λ, T ) = L(F,G; Σ, σ). Then (2) and the ”=⇒” part of (1) are immediate
consequences of the following Lemma.

Lemma 3.1. For any µ, ν ∈ M(Σ, σ) with λ(µ, σ) > 0, λ(ν, σ) > 0 and∫
Fdµ∫
Gdµ

̸=
∫
Fdν∫
Gdν

, we have

dimH H(f, g; Λ, T ) ≥ min

{
h(µ, σ)

λ(µ, σ)
,
h(ν, σ)

λ(ν, σ)

}
.

Proof of the remainder of Theorem 1.1.

Let µ be the measure in (3.1) and α =

∫
Fdµ∫
Gdµ

. If H(f, g; Λ, T ) ̸= ∅, we

have #L(f, g; Λ, T ) ≥ 2, which means #L(F,G; Σ, σ) ≥ 2. Then we can choose

ν ∈ M(σ,Σ) such that β :=

∫
Fdν∫
Gdν

̸= α. We define µs = sµ + (1 − s)ν with

0 < s < 1. It is evident that µs ∈ M(σ,Σ), λ(µs, σ) > 0 and

∫
Fdµs∫
Gdµs

̸= α for

any s ∈ (0, 1). By Lemma 3.1, we have

dimH H(f, g; Λ, T ) ≥ min

{
h(µ, σ)

λ(µ, σ)
,
h(µs, σ)

λ(µs, σ)

}
= min

{
h(µ, σ)

λ(µ, σ)
,
sh(µ, σ) + (1− s)h(ν, σ)

sλ(µ, σ) + (1− s)λ(ν, σ)

}
for all s ∈ (0, 1). Taking s goes to 1, we get

dimH H(f, g; Λ, T ) ≥ h(µ, σ)

λ(µ, σ)
≥ dimH Λ− ϵ.

By the arbitrary of ϵ, Theorem 1.1 is finished. □
Then we only need to prove Lemma 3.1.

Proof of Lemma 3.1. In the proof, we write λ̃n(ω) = − logDn(ω)/n to simplify
notation. Our main idea is building a Moran set sitting in historic set and
constructing a measure supported on the Moran set. We dived the proof into
five steps for clarity.

Step 1: Constructing large block in the odd level
By Lemma 2.1, we can choose a decreasing sequence ϵi ↓ 0 such that for all

n ≥ 2i− 1, we have

(3.2)

{
varn Ang < ϵ2i−1,

max
ω∈Σ

|λ̃n(ω)−Ang(ω)| < ϵ2i−1.



Historic set 2344

By Lemma 2.2, we can choose a sequence of µ2i−1 ∈ E(Σ, σ), such that

(3.3)


|
∫
Fdµ2i−1∫
Gdµ2i−1

− α| < ϵ2i−1,

|h(µ2i−1, σ)− h(µ, σ)| < ϵ2i−1,

|λ(µ2i−1, σ)− λ(µ, σ)| < ϵ2i−1.

We write

∫
Fdµ2i−1∫
Gdµ2i−1

= α2i−1. Since µ2i−1 is ergodic, by Birkhoff ergodic

Theorem, Shannon-Mcmillan-Breiman Theorem and Egoroff’s Theorem, for
any given δ > 0, there exists Ω′(2i− 1) ⊂ Σ with µ2i−1(Ω

′(2i− 1)) > 1− δ and
there exists l2i−1 ≥ 2i − 1, such that for all n ≥ l2i−1 and ω ∈ Ω′(2i − 1), we
have

(3.4)


|SnF (ω)− α2i−1SnG(ω)| < n||G||ϵ2i−1,

|Ang(ω)− λ(µ2i−1, σ)| < ϵ2i−1,

| − logµ2i−1[ω|n]
n

− h(µ2i−1, σ)| < ϵ2i−1.

For the Birkhoff ergodic Theorem, readers can refer to [15], for the Shannon-
Mcmillan-Breiman Theorem readers can refer to [9]. The Egoroff’s Theorem
can be found in any text book of measure theory.

Let

Σ(2i− 1) = {ω|l2i−1 | ω ∈ Ω′(2i− 1)} and Ω(2i− 1) =
∪

w∈Σ(2i−1)

[w].

Then

µ2i−1(Ω(2i− 1)) ≥ µ2i−1(Ω
′(2i− 1) ≥ 1− δ.

Step 2: Constructing large block in the even level
Similarly, for all n ≥ 2i, we have

(3.5)

{
varn Ang < ϵ2i,

max
ω∈Σ

|λ̃n(ω)−Ang(ω)| < ϵ2i.

We can choose a sequence of µ2i ∈ E(Σ, σ), such that

(3.6)


|β2i − β| < ϵ2i,

|h(µ2i, σ)− h(ν, σ)| < ϵ2i,

|λ(µ2i, σ)− λ(ν, σ)| < ϵ2i

where in (3.6), β2i =

∫
Fdµ2i∫
Gdµ2i

. Given any δ > 0, there exists Ω′(2i) ⊂ Σ with

µ2i(Ω
′(2i)) > 1 − δ and there exists l2i ≥ 2i, such that for all n ≥ l2i and

ω ∈ Ω′(2i), we have
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(3.7)


|SnF (ω)− β2iSnG(ω)| < n||G||ϵ2i,
|Ang(ω)− λ(µ2i, σ)| < ϵ2i,

| − logµ2i[ω|n]
n

− h(µ2i, σ)| < ϵ2i.

Let

Σ(2i) = {ω|l2i | ω ∈ Ω′(2i)} and Ω(2i) =
∪

w∈Σ(2i)

[w].

Then

µ2i(Ω(2i)) ≥ µ2i(Ω
′(2i)) ≥ 1− δ.

Step 3: Constructing Moran set by gluing repeated blocks
Let N0 = 1, Ni = 2li+2+Ni−1 for i ≥ 1. Here Ni is the repeated number

of Σ(i) in the i-th level. We define the Moran set

M =
∞∏
i=1

Ni∏
j=1

Σ(i).

Here, we only point out that the repeat number Ni is very important in the
proof to get arbitrarily large dimension argument. It seems that if we only take
the length of Ω(i) very large is not enough to prove Lemma 3.1.

Step 4: The Moran set is contained in historic set
In this step, we will prove in the constructed Moran set, Birkhoff average

oscillates from α to β. By the definition of Σ(i), clearly we have M∩Π−1Λ̃ = ∅.
Now we will show that ΠM ⊂ H(f, g,Λ, T ). Noting that

lim
n→∞

SnF (ω)

SnG(ω)
= α iff lim

n→∞
An(F (ω)− αG(ω)) = 0

and

lim
j→∞

l2N2 + l4N4 + . . .+ l2jN2j

l1N1 + l2N2 + . . .+ l2j+1N2j+1
= 0.

Let nj =
j∑

i=1

liNi and fix ω ∈ M , we can check the following result:

lim
j→∞

Sn2j+1F (ω)

Sn2j+1G(ω)
= α, lim

j→∞

Sn2jF (ω)

Sn2jG(ω)
= β.

These implies that ΠM ⊂ H(f, g; Λ, T ).
Step 5: Estimation of the lower bound of the Hausdorff dimension

for the Moran set M
We can construct a measure η supported on M , and we call it Moran mea-

sure. The Moran measure is exactly the products of measures µi⌊Σ(i), to be
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more precise

η :=
∞∏
i=1

Ni∏
j=1

µi⌊Σ(i),

where, µi⌊Σ(i) is the restriction of µi on Σ(i).
By (3.2), (3.3), (3.4), (3.5), (3.6), (3.7), repeating similar estimation as in

our earlier work [7], for all x ∈ ΠM , we can show that

lim inf
r↓0

log Π∗η(B(x, r))

log r
≥ min

{
h(µ, σ)

λ(µ, σ)
,
h(ν, σ)

λ(ν, σ)

}
.

Then we have

dimH ΠM ≥ dimH Π∗η ≥ min

{
h(µ, σ)

λ(µ, σ)
,
h(ν, σ)

λ(ν, σ)

}
,

where dimH Π∗η := sup{dimH E : Π∗η(E) > 0} is the Hausdorff dimension
of measure Π∗η, the reader can refer to [3] for the inequality. Noting that
ΠM ⊂ H(f, g; Λ, T ), then it is obviously that

dimH H(f, g; Λ, T ) ≥ dimH ΠM ≥ min

{
h(µ, σ)

λ(µ, σ)
,
h(ν, σ)

λ(ν, σ)

}
.

Thus, the result follows. □
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