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HÖLDER CONTINUITY OF A PARAMETRIC VARIATIONAL

INEQUALITY

X.F. HU AND X.B. LI∗

(Communicated by Maziar Salahi)

Abstract. In this paper, we study the Hölder continuity of solution

mapping to a parametric variational inequality. At first, recalling a real-
valued gap function of the problem, we discuss the Lipschitz continuity of
the gap function. Then under the strong monotonicity, we establish the

Hölder continuity of the single-valued solution mapping for the problem.
Finally, we apply these results to a traffic network equilibrium problem.
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1. Introduction

The variational inequality of Hartman and Stampachia [14] is a well-known
model in optimization theory. It has many applications in different fields (in-
cluding mathematical programming and some equilibrium problems). The
reader can refer to the very informative recent book by Facchinei and Pang
[11] for the background information and motivations of the variational in-
equality. In recent thirty years, existence results and convergences for the
variational inequality, stability and sensitivity for the parametric variational
inequality (PVI), and some applications have been investigated extensively;
see [8, 11, 12,22–24,29] and the references therein.

In this paper, we mainly follow with interest the Hölder continuity for PVI.
There are many papers considering the stability of PVI, for example, [6, 8, 10,
13, 15, 25, 29–31]. Based on the nonexpansivity of the metric projection on
closed convex sets, Dafermos [8] derived the local uniqueness, upper Lipschitz
continuity and differentiability of the solution mapping of PVI. In virtue of the
similar idea, Yen [29] obtained the Hölder continuity of the solution mapping for
PVI. Later, Yen [30] got the local Lipschitz continuity of the solution mapping
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of PVI on a parametric polyhedral set and then he applied the results to a
traffic network equilibrium problem. Recently, Causa and Raciti [6] also made
use of the metric projection to discuss the Lipschitz continuity of the solution
mapping for PVI. Based on a theory of contingent derivative and by a result
about differentiability property of the metric projection, Shapiro [25] discussed
the continuity, locally upper Lipschitz and differentiability properties of the
solution mapping for PVI where the constraint set is nonconvex. There have
been many papers discussing the local uniqueness and Höder continuity of the
perturbed solution sets to Ky Fan inequality KFI; see, e.g., [1, 2, 5, 17–21, 27]
and references therein. Herein, having the aid of a gap function for PVI, we
make the solution mapping of PVI write as a simple implicit function and then
establish the Hölder continuity of the solution mapping for PVI. Finally, we
apply the results to a traffic network equilibrium problem with perturbations
in travel cost function and travel demand.

The rest of the paper is organized as follows. In Section 2, recalling a real-
valued gap function of PVI, we discuss the Lipschitz continuity of the gap
function. In Section 3, under the strong monotonicity, we establish the Hölder
continuity of the single-valued solution mapping for PVI. In Section 4, we apply
these results to a traffic network equilibrium problem. In Section 5, we give an
open question which we consider in future.

2. The regularized gap function of PVI

In this paper, let X,P and Λ be finite dimensional, and let B indicate the
closed unit ball of X. Given a subset A ⊂ X, we define the distance from
x ∈ X to A by d(x,A) := infa∈A ||x−a|| with the convention that d(x, ∅) = ∞.
Let F : Λ ⇒ X be a set-valued mapping. The effective domain and graph of F
are defined by domF := {λ ∈ Λ|F (λ) ̸= ∅} and gphF := {(λ, x) ∈ Λ ×X|x ∈
F (λ)}, respectively. F is said to be Hölder at λ̄ ∈ Λ if there exist constants
γ > 0, α > 0 and δ > 0 such that

F (λ) ⊂ F (λ′) + γ||λ− λ′||αB, ∀λ, λ′ ∈ U(λ̄, δ).

Whenever α = 1, F is said to be Lipschitz at λ̄ ∈ Λ.
In this section, we consider the regularized gap function for PVI of finding

x ∈ K(λ) for parameters p ∈ P, λ ∈ Λ such that

⟨f(p, x), y − x⟩ ≥ 0, ∀y ∈ K(λ),

where f : P ×X → X is a vector-valued mapping, K : Λ ⇒ X is a set-valued
mapping with nonempty closed convex values, and ⟨f(p, x), y − x⟩ denotes the
value of the function f(p, x)(·) at y − x. For each p ∈ P, λ ∈ Λ, by S(p, λ) we
denote the solution mapping of PVI, i.e.,

S(p, λ) := {x ∈ K(λ) : ⟨f(p, x), y − x⟩ ≥ 0, ∀y ∈ K(λ)}.
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Let p ∈ P, λ ∈ Λ, x ∈ K(λ) and γ > 0 be arbitrarily given. The regularized
gap function for PVI introduced by Fukushima [12] is defined by

hγ(p, λ, x) := − min
y∈K(λ)

{⟨f(p, x), y − x⟩+ γ

2
||y − x||2}.

Let πγ(p, λ, x) := ProjK(λ)(x − f(p,x)
γ ) denote the best approximation to x −

f(p,x)
γ from K(λ). Then hγ could be written as

hγ(p, λ, x) = ⟨f(p, x), x− πγ(p, λ, x)⟩ −
γ

2
||πγ(p, λ, x)− x||2.

Now we consider the Lipschitz property of hγ which will be used in the next
section.

Proposition 2.1. Let U(λ̄) and U(p̄) be neighborhoods of λ̄ ∈ Λ and p̄ ∈ P
respectively. Assume that

(i) K(·) is Lipschitz on U(λ̄) and K(λ̄) is bounded;
(ii) f(·, ·) is Lipschitz on U(p̄) × K(U(λ̄)) and f(p̄, ·) is bounded on

K(U(λ̄)).

Then there exist U(p̄, δ1), U(λ̄, δ1) of p̄ ∈ P and λ̄ ∈ Λ such that hγ is Lipschitz
on U(p̄, δ1)× U(λ̄, δ1)×K(U(λ̄, δ1)).

Proof. By the conditions, without loss of generality, we assume that there exist
constants l1 > 0, l2 > 0 and δ1 > 0 such that

(2.1) K(λ) ⊂ K(λ′) + l1||λ− λ′||B, ∀λ, λ′ ∈ U(λ̄, δ1)

and for any p, p′ ∈ U(p̄, δ1), x, x
′ ∈ K(U(λ̄, δ1)),

(2.2) ||f(p, x)− f(p′, x′)|| ≤ l2(||p− p′||+ ||x− x′||),

where U(λ̄, δ1) ⊂ U(λ̄) and U(p̄, δ1) ⊂ U(p̄).
We divide the proof into three steps.
(I) K(·) is bounded on λ ∈ U(λ̄, δ1), i.e., there exists a constant M > 0 such

that

λ ∈ U(λ̄), x ∈ K(λ), ∥x∥ ≤ M.(2.3)

Indeed, it follows from the boundedness of K(λ̄) that there exists a constant
M ′ > 0 such that

∀x ∈ K(λ̄), ∥x∥ ≤ M ′.(2.4)

From (2.1), we have

K(λ) ⊂ K(λ̄) + l1δ1B, ∀λ ∈ U(λ̄, δ1).

Then for any x ∈ K(λ), there exist y ∈ K(λ̄) and b ∈ B such that

x = y + l1δ1b,
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which together with (2.4) yields that

∥x∥ ≤ ∥y∥+ l1δ1∥b∥ ≤ M ′ + l1δ1.

Then (2.3) is satisfied with M := M ′ + l1δ1.
(II) f(·, ·) is bounded on U(p̄, δ1)×K(U(λ̄, δ1)).
By assumption (ii), we have

l := sup
x∈K(U(λ̄,δ1))

∥f(p̄, x)∥ < +∞.

Then from (2.2) it follows for any fixed ϵ > 0, there exits a neighborhood of p̄
denoted without loss of generality by U(p̄, δ1), such that

sup
(p,x)∈U(p̄,δ1)×K(U(λ̄,δ1))

∥f(p, x)∥ ≤ l + ϵ < +∞.

Take l0 := max{l; l + ϵ}, which implies that l0 > 0. Then

∀p ∈ U(p̄, δ1),∀x ∈ K(U(λ̄, δ1)), ∥f(p, x)∥ ≤ l0.(2.5)

(III) hγ(·, ·, ·) is Lipschitz on U(p̄, δ1)× U(λ̄, δ1)×K(U(λ̄, δ1)).
Indeed, fix p, p′ ∈ U(p̄, δ1), λ, λ

′ ∈ U(λ̄, δ1), x ∈ K(λ) and x′ ∈ K(λ′). By
the definition of hγ , we have the following assertion: for any ϵ > 0, there exists
yϵ ∈ K(λ) such that

hγ(p, λ, x) ≤ ⟨f(p, x), x− yϵ⟩ −
γ

2
||yϵ − x||2 + ϵ.

By (2.1) there exists y′ ∈ K(λ′) such that

||yϵ − y′|| ≤ l1||λ− λ′||.(2.6)

Then we get

hγ(p, λ, x)− hγ(p
′, λ′, x′)

≤ ⟨f(p, x), x− yϵ⟩ −
γ

2
||yϵ − x||2 + ε− ⟨f(p′, x′), x′ − y′⟩+ γ

2
||y′ − x′||2

≤ ⟨f(p, x)− f(p′, x′), x− yϵ⟩+ ⟨f(p′, x′), x− x′ + y′ − yϵ⟩

+
γ

2
⟨y′ − yϵ + x− x′, y′ − x′ + yϵ − x⟩+ ϵ,

≤ ∥f(p, x)− f(p′, x′)∥(∥x∥+ ∥yϵ∥)

+∥f(p′, x′)∥(∥x− x′∥+ ∥y − yϵ∥) +
γ

2
(∥y′ − yϵ∥

+∥x− x′∥)(∥y′∥+ ∥x′∥+ ∥yϵ∥+ ∥x∥) + ϵ.(2.7)

So, from (2.2), (2.3), (2.4), (2.5), (2.6), (2.7) and the arbitrariness of ϵ, we have

hγ(p, λ, x)− hγ(p
′, λ′, x′)

≤ 2Ml2∥p− p′∥+ (l0 + 4Mγ)l1∥λ− λ′∥+ (2Ml2 + l0 + 4Mγ)∥x− x′∥
≤ l(∥p− p′∥+ ∥λ− λ′∥+ ∥x− x′∥),
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where l := max{2Ml2, (l0 +4Mγ)l1, (2Ml2 + l0 +4Mγ)}. Therefore, it follows
from the symmetry between (p, λ) and (p′, λ′) that the conclusion holds and
the proof is complete. □
Corollary 2.2. Let U(λ̄) and U(p̄) be neighborhoods of p̄ ∈ P and λ̄ ∈ Λ,
respectively. Assume that

(i): K(·) is Lipschitz with compact values on U(λ̄);
(ii): f(·, ·) is Lipschitz on U(p̄)×K(U(λ̄)) .

Then there exist U(p̄, δ1) and U(λ̄, δ1) of p̄ ∈ P and λ̄ ∈ Λ such that hγ is
Lipschitz on U(p̄, δ1)× U(λ̄, δ1)×K(U(λ̄, δ1)).

Proof. Take U(λ̄, δ1) and U(p̄, δ1) of (2.1) and (2.2) be compact neighborhoods.
Obviously, (2.3 ) naturally holds as K(λ) is compact for any λ ∈ U(λ̄, δ1).

Since K(·) is Lipschitz on U(λ̄), K(·) is upper semicontinuous on U(λ̄, δ1) ⊂
U(λ̄). Then it follows from [3, Proposition 11] that the set K(U(λ̄, δ1)) is
compact. By (ii), U(p̄, δ1) ⊂ U(p̄) and U(λ̄, δ1) ⊂ U(λ̄), we have f(·, ·) is also
Lipschitz on U(p̄, δ1)×K(U(λ̄, δ1)). Therefore, we have

l0 = sup
(p,x)∈U(p̄,δ1)×K(U(λ̄,δ1))

∥f(p, x)∥ < +∞.

This implies that (2.5) holds. Thus, following the proof of Proposition 2.1, we
can obtain the conclusion and the proof is complete. □

3. The Hölder continuity of the solution mapping for PVI

In this section, in virtue of the properties of hγ we discuss the Hölder conti-
nuity of the solution mapping S for PVI. In the rest of paper, let p̄ ∈ P, λ̄ ∈ Λ
and x̄ ∈ S(p̄, λ̄). Since hγ is a gap function of PVI, we have

S(p, λ) = {x ∈ K(λ) : hγ(p, λ, x) = 0},
which illustrates the close relationships between hγ and S.

At first, we recall the existence of the solution for PVI.

Proposition 3.1. Suppose that f is strongly monotone with modulus ρ > 0
with respect to x uniformly in (p, λ) which are around (p̄, λ̄), namely, there
exists an open neighborhood of (p̄, λ̄) denoted by U(p̄, δ) × U(λ̄, δ) for some
δ > 0 such that for each p ∈ U(p̄, δ), λ ∈ U(λ̄, δ) and x, x′ ∈ K(λ) one has that

⟨f(p, x)− f(p, x′), x− x′⟩ ≥ ρ||x− x′||2.
If ρ > γ

2 and f is continuous with respect to x uniformly in p which is around
p̄, then, for PVI, there exists a unique solution.

Proof. The conclusion is a parametric version of [11, Theorem 2.3.3 (b)]. We
omit its proof. □
Theorem 3.2. Let all conditions of Propositions 2.1 (or Corollary 2.2) and
3.1 hold. Then S is Hölder continuous at (p̄, λ̄).
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Proof. Fix p ∈ U(p̄, δ), λ ∈ U(λ̄, δ) and x ∈ K(λ). The following inequality
holds

(3.1) ||x− S(p, λ)|| ≤ 1√
ρ− γ

2

√
hγ(p, λ, x),

since

hγ(p, λ, x) = − min
y∈K(λ)

{⟨f(p, x), y − x⟩+ γ

2
||y − x||2}

≥ −⟨f(p, x), S(p, λ)− x⟩ − γ

2
||S(p, λ)− x||2

≥ ⟨f(p, S(p, λ))− f(p, x), S(p, λ)− x⟩ − γ

2
||S(p, λ)− x||2

≥ (ρ− γ

2
)||S(p, λ)− x||2,

where the second inequality holds thanks to ⟨f(p, S(p, λ)), S(p, λ)−x⟩ ≤ 0 and
the last inequality holds due to the strong monotonicity of f .

By the conditions, it follows from Proposition 2.1 (or Corollary 2.2) that hγ

is locally Lipschitz at (p̄, x̄) with respect to (p, λ) uniformly in x, i.e., there
exist constants δ1 > 0 and l > 0 such that for any p, p′ ∈ U(p̄, δ1), λ, λ

′ ∈
U(λ̄, δ1) and x ∈ U(x̄, δ1), one has

(3.2) |hγ(p
′, λ′, x)− hγ(p, λ, x)| ≤ l(||p− p′||+ ||λ− λ′||).

Fix arbitrary p, p′ ∈ U(p̄, δ2), λ, λ
′ ∈ U(λ̄, δ2), where δ2 = min{δ, δ1}. By (2.1)

there exists x′ ∈ K(λ′) such that ||S(p, λ) − x′|| ≤ l1||λ − λ′||. By (3.1) and
(3.2), we get

||S(p, λ)− S(p′, λ′)|| ≤ ||S(p, λ)− x′||+ ||x′ − S(p′, λ′)||

≤ l1||λ− λ′||+ 1√
ρ− γ

2

√
hγ(p′, λ′, x′)

= l1||λ− λ′||+ 1√
ρ− γ

2

√
hγ(p′, λ′, x′)− hγ(p, λ, S(p, λ))

≤ l1||λ− λ′||+

√
l

ρ− γ
2

(||p− p′||+ ||λ− λ′||+ ||x′ − S(p, λ)||) 1
2

≤ l1||λ− λ′||+

√
l

ρ− γ
2

[||p− p′||+ (l1 + 1)||λ− λ′||] 12

Thus, the conclusion holds. □

Remark 3.3. (i) Under the Hölder continuity of the best approximation map-
ping, Yen [29, Theorem 2.1] has obtained the Hölder continuity of the solution
mapping for PVI. His methods are very different from ours, and [29, Theorem
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2.1] needs not the condition: ρ > γ
2 , while, needs additional conditions: f is

locally Lipschitz at (p̄, x̄),

l2

γ
≤ ρ < γ and

l2

γ2
− 2ρ

γ
+ 1 > 0,

which are used to apply the Banach fixed point theorem, and l is the local
Lipschitzian constant of f .

(ii) If we set f(x, y, p) = ⟨f(x, p), y − x⟩, then PVI becomes a case of PKFI
in [1, 2, 5, 17–21, 27]. In these papers, the strongly monotonicity (or pseu-
domonotonicity) and the Hölder related assumptions of Ky Fan function and
the properties of the solution have been employed directly to obtain the suffi-
cient conditions for Hölder continuity of the solutions of PKFI. However, in this
paper, we use a regularized gap function of PVI to write the solution mapping
of PVI as a simple implicit function and then we establish the Hölder continuity
of the solution mapping for PVI. Therefore, our method is very different from
corresponding ones of [1, 2, 5, 17–21,27].

4. Application to a traffic network equilibrium problem

Consider a traffic network equilibrium G = (N,A), where N and A denote
the set of nodes and directed arcs, respectively. Let W denote the set of origin-
destination (OD) pairs and let d = (dw)w∈W denote the demand vector, where
dw denotes the demand of traffic flow on OD pair w. Let a ∈ A denote an
arc of the network connecting a pair of nodes and p denote a path, assumed to
be acyclic, consisting of a sequence of arcs connecting an OD pair. For each
w ∈ W , let Pw denote the set of available paths joining the OD pair w. Let
α = |A|, ω = |W |, π =

∑
w∈W |Pw| and P = ∪w∈WPw. For a given path

p ∈ Pw, let qp denote the traffic flow on this path and q = (qp)p∈P ∈ Rπ denote
the path flow. The path flow vector q induces an arc flow xa on each arc a ∈ A
given by

(4.1) xa =
∑
p∈P

δapqp,

where δap = 1 if arc a is contained in path p and 0, otherwise. Let x =
(xa)a∈A ∈ Rα denote the arc flow. Suppose that the demand of network flow
is denoted by dw for each OD pair w, and d = (dw)w∈W denotes the travel
demand. We say that a path flow q satisfies demands if

(4.2)
∑
p∈Pw

qp = dw, ∀w ∈ W.

Then the path flow q is called a feasible path flow. If there exists a feasible path
flow q = (qp), then the arc flow x = (xa) with xa =

∑
p∈P δapqp for each arc a

is called a feasible arc flow. Let f : Rα → Rα be the travel cost function and
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fa(x) denote the cost on the arc a. Then the travel disutility on path p ∈ P is
denoted by

(4.3) Fp =
∑
a∈A

faδap.

The traffic network equilibrium conditions, following the standard theory
(see [4,9,22] and the references therein), take on the following form: a feasible
path flow q is called an equilibrium path flow if, for each OD pair w and each
path p ∈ Pw, the following Wardrop conditions (see [28]) hold:

(4.4) Fp

{
= λw if xp > 0
≥ λw if xp = 0,

where λw is an indicator, whose value is not known a priori. A feasible arc flow
x is an equilibrium arc flow if there exists an equilibrium path flow q satisfying
(4.1). It is easy to verify (see also [7,23,26]) that x is an equilibrium arc flow if
and only if it solves the following variational inequality: find x ∈ K such that

⟨f(x), y − x⟩ ≥ 0, ∀y ∈ K,

where K is the set of feasible arc flows, i.e.,

K = {x ∈ Rα|for some q ∈ Rπ
+ satisfying (4.1) and (4.2)}.

The arguments in Smith [26] also show that if x is an equilibrium arc flow, then
each q ∈ Rπ

+ satisfying (4.1) and (4.2) is an equilibrium path flow.
Now we introduce the parameter to be present in the sensitivity analysis:

they are denoted by µ ∈ Rc, where the dimensions c ∈ R+\{0}. The parameter
µ may conclude many factors, for example, the weather, the tastes of the
travelers, traffic regulations, etc. These factors all could influence the travel
cost. Consequently, in this paper, we assume that the travel cost function
makes perturbations with the parameter µ which takes values in a subset U of
Rc. Moreover, we treat the travel demand d as a parameter of this problem
and let it take values in a subset V of Rω.

For the parameters µ and d, we shall consider the sensitivity of the equilib-
rium arc flow which is the solution set of the parametric variational inequality:
find x ∈ K(d) such that

(4.5) ⟨f(µ, x), y − x⟩ ≥ 0, ∀y ∈ K(d),

where K(d) = {x ∈ Rα|for some q ∈ Rπ
+ satisfying (4.1) and (4.2)}. Obviously,

K(d) is a compact convex set for each d. For d ∈ Rω and µ ∈ Rc, let S(µ, d)
denote the solution mapping of (4.5).

Theorem 4.1. Let d̄ ∈ Rω, µ̄ ∈ Rc and x̄ ∈ S(µ̄, d̄). Assume that f is locally
Lipschitz in µ at (µ̄, x̄) uniformly in x and that f is locally strongly monotone
with modulus ρ > 0 in x at (µ̄, x̄) uniformly in µ. If ρ > γ

2 , then there exists a
neighborhood U(x̄) of x̄ such that S(·, ·)∩U(x̄) is a single-valued mapping and
is Hölder continuous at (µ̄, d̄).



2379 Hu and Li

Proof. To prove the conclusion, it follows from Theorem 3.2 that we only need
prove that K is locally Lipschitz at d̄ which implies the Lipschitz-likeness of
K at (d̄, x̄). For an arbitrary neighborhood U(d̄) of d̄, let d′, d ∈ U(d̄) and
x′ ∈ K(d′). Then there exists q′ ∈ Rπ

+ such that x′
a =

∑
p∈P δapq

′
p and∑

p∈Pw
q′p = d′w, ∀w ∈ W. Let ∆ = [δap] ∈ Rα×π and Λ = [Λwp] ∈ Rω×π denote

the arc-road incidence matrix and the OD-road incidence matrix, respectively,
where Λwp = 1 if the road p ∈ Pw and Λwp = 0 otherwise. Then x′ = ∆q′

and d′ = Λq′. Then there exists a matrix G ∈ Rπ×ω such that q′ = Gd′. Set
q := Gd, x := ∆q. Then x ∈ K(d). Thus,

||x′ − x|| = ||∆G(d′ − d)|| ≤ ||∆G|| · ||d′ − d||.
This completes the proof. □

5. Conclusions

In this paper, we study Hölder continuity of the single-valued solution map-
ping to PVI by using a gap function. While, generally speaking, the solution
mapping for PVI is set-valued. Now a very interesting and valuable topic arises
in a natural way: How to establish the Hölder continuity (Lipschitz property)
of the set-valued solution mapping of PVI? In fact, by using a different method
from here, they have discussed Lipschitz property of the set-valued solution
mapping for PVI [16]. However, the first condition of [16, Theorem 5.1] which
is added in the function ⟨f(p, ·), ·⟩ : x 7→ ⟨f(p, x), x⟩ is hard to be checked.
And [16, Theorem 5.1] also need that K is compact valued at the reference
point. Therefore, under suitable conditions and avoiding the compactness of
the constraint set, it is worth investigating the Lipschitz property of the set-
valued solution mapping for PVI in our future work.
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