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Abstract. In this paper, a new approach is applied to study the self-
similar solutions of 2 × 2 systems of nonlinear hyperbolic conservation
laws. A notion of characteristic directions is introduced and then used to
construct local and smooth solutions of the associated Riemann problem.
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1. Introduction

Consider the following hyperbolic system of conservation laws

(1.1) ∂tU + ∂x1
f1(U) + ∂x2

f2(U) = 0,

where t > 0, x = (x1, x2) ∈ R2, U ∈ D with D being an open domain of R2 and
f1, f2 ∈ C2(D,R2). The Riemann problem associated with the system (1.1) is
a Cauchy problem where the initial data U0(x1, x2) ∈ D is discontinuous across
a line Γ of class C∞.

It is well known [5] that the Riemann problem in a single space variable
is locally solved in terms of a succession of centered waves which consist of
shock, rarefaction or contact waves. The interaction of these elementary waves
is the key mechanism in determining the solutions for more general initial value
problems.

In several space dimensions, a very few analytic results are available for the
general Riemann problem. Majda [7] uses suitable assumptions of stability
and compatibility on the initial data to prove the local existence of a solution
containing a single shock surface for general systems. For 2×2 systems, Métivier
[9] solves the Riemann problem when the solution has jump discontinuities
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across two shock surfaces. For quasi-linear systems in two space dimensions,
Alinhac [1] obtains (with assumptions of compatibility on the initial data) the
existence of a solution containing a single rarefaction wave. More recently, Pang
et al. [10] apply a characteristic analysis method to obtain explicit solutions of
a two-dimensional Riemann problem model.

It is worth noticing that many numerical techniques are available for the two-
dimensional case. The works of Balsara [3], Schulz-Rinne et al. [11], Kurganov
and Tadmor [4] and many others have provided a solid framework for further
advancement.

Majda [8] observes that the characteristic surfaces delimiting a rarefaction
fan are difficult to control in an approximate process. In this paper, we propose
an analytical method to construct exact rarefaction waves. More precisely, we
use a technique of characteristic directions to reduce the initial system (1.1)
into equations with two unknowns β1, β2 depending on any variable w ∈ R2

and not on U ∈ D. By performing the integration for suitable β1, β2, we
generate smooth solutions of the Riemann problem. Note that a characteristic
decoupling theory is proposed in [2] in the one-dimensional case.

This paper is organized as follows. In Section 2, we introduce a coupling
property and establish an existence result of real characteristic directions. In
Section 3, we construct a new system of 2n equations (n = 2) with self-similar
solutions. These equations may be considered as a generalization of the usual
equations of rarefaction waves. Using a Schwartz (-Frobenius) integrability
condition, we transform this new system into a well-posed n × n evolution
system. In Section 4, we use a continuous extension technique to construct
locally a foliated smooth solution of the Riemann problem.

2. Definitions and notations

Assume that the system (1.1) is strictly hyperbolic, that is for any w ∈ D
and η = (η1, η2) ∈ R2\{0}, the eigenvalues of the matrix η1df1(w) + η2df2(w)
are real and simple. We shall denote by λj(w, η) these eigenvalues, and by
rj(w, η) the associated eigenvectors, j = 1, 2. Without loss of generality, we
may assume that λ1(w, η) < λ2(w, η).

One of the most important features of the Riemann problem is that the
solutions may be assumed to be self-similar, reducing the dimensions by one.
In the current numerical studies, any collection of rays centered at some point
and separated by constant states leads to a self-similar solution [3]. So we deal

with self–similar smooth solutions defined by u(
x1

t
,
x2

t
) with u ∈ C2(V,R2) and

V an open domain of R2. We set σj =
xj

t
, j = 1, 2. Then the smooth form of

the system (1.1) is:

(2.1)
(
∂σ1f1(u)− σ1∂σ1u

)
+

(
∂σ2f2(u)− σ2∂σ2u

)
= 0.
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Throughout this paper, we consider the Riemann problem associated with the
system (2.1) and the initial data U0 ∈ D. We make the following coupling
assumption:

For any w ∈ D, λ1(w, .) and λ2(w, .) are nonlinear functions.

Note that for any 2× 2 two-dimensional system of conservation laws, the func-
tions η 7→ λj(w, η) are both linear or both nonlinear. This is due to the formula

λ1(w, η) + λ2(w, η) = trace (η1df1(w) + η2df2(w)) .

Now we can define the (co)directions associated with the characteristic fields
of the system (2.1).

Proposition 2.1. Let S be the unit sphere of R2 and ⟨., .⟩ the canonical inner
product in R2. Then there exist two open domains V ⊂ R2 and D′ ⊂ D (V ̸= ∅,
D′ ̸= ∅) and two smooth functions ξj : V ×D′ → S (j = 1, 2) such that for any
(X,w) ∈ V ×D′, we have:

(1) λj(w, ξ
j(X,w)) = ⟨ξj(X,w), X⟩ for j = 1, 2.

(2)
{
ξ1(X,w), ξ2(X,w)

}
is a basis of R2.

(3)
{
r1(w, ξ

1(X,w)), r2(w, ξ
2(X,w))

}
is a basis of R2.

Proof. Let (α0, β0) be a basis of R2. For w ∈ D (fixed) and X = (σ1, σ2), the
system: {

⟨α0, X⟩ = λ1(w,α0),
⟨β0, X⟩ = λ2(w, β0),

has a unique solution X0 = (σ1,0, σ2,0). Set A(w, η) = η1df1(w) + η2df2(w).
Then the quadratic form Q(X0,w) : R2 −→ R defined by:

Q(X0,w)(η) = det

(
A(w, η)− ⟨η,X0⟩I2

)
,

has at least two isotropic vectors α0 and β0. As usual I2 denotes the 2×2 iden-
tity matrix. Since λj(w, .) are nonlinear functions, there exists µ = (µ1, µ2) ∈ S
such that λj(w, µ)−⟨µ,X0⟩ ̸= 0, j = 1, 2. Therefore we getQ(X0,w)(µ1, µ2) ̸= 0,
which means that Q(X0,w) ̸= 0 and Q(X0,w) is non-degenerate. Hence for
(X ′, w′) lying in a neighborhood V ×D′ of (X0, w), the quadratic form Q(X′,w′)

is non-degenerate and the associated characteristic fields are independent with
isotropic directions proving Assertion (1).

Furthermore for any (X ′, w′) ∈ V ×D′, the system:{
λ1(w

′, α) = ⟨α,X ′⟩,
λ2(w

′, β) = ⟨β,X ′⟩,

has a unique solution (α, β) ∈ R2⧹{0} × R2⧹{0} depending continuously on
(X ′, w′). Since the vectors α, β are linearly independent, we get the assertion
(2).
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We denote the above solution by (ξ1(X ′, w′), ξ2(X ′, w′)) with ξj = (ξj1, ξ
j
2),

j ∈ {1, 2}. We can assume (without loss of generality) that (ξ1(X
′, w′), ξ2(X

′,
w′)) ∈ S2.

To prove (3), assume that for some (X,w) ∈ V × D′ with X = (σ1, σ2),
there exists λ ∈ R \ {0} such that r2(w, ξ

2(X,w)) = λ r1(w, ξ
1(X,w)). Then

for j ∈ {1, 2}, we have:

2∑
i=1

ξji (X,w)

(
df i(w)− σiI2

)
r1(w, ξ

1(X,w)) = 0.

Using (2) above, we conclude that:(
df i(w)− σiI2

)
r1(w, ξ

1(X,w)) = 0, i ∈ {1, 2},

so that, for any η = (η1, η2) ∈ R2,

2∑
i=1

ηi
(
df i(w)− σiI2

)
r1(w, ξ

1(X,w)) = 0,

which contradicts our coupling assumption. □

Remark 2.2. From now on, we will write (σ, τ) (respectively, u(σ, τ)) in-
stead of (σ1, σ2) (respectively, u(σ1, σ2, w)). We may assume (by reduc-
ing D) that D′ = D and set Rj(σ, τ, w) = rj(w, ξ

j(σ, τ, w)) for ξj =(
cos θj(σ, τ, w), sin θj(σ, τ, w)

)
with (σ, τ, w) ∈ R2 × D and θj : V × D → R

(j ∈ {1, 2}) a smooth function.

3. Local solution for the two-dimensional 2× 2 Riemann problem

In this section, we construct (non trivial) self–similar solutions u ∈ C2(V,R2)
of the two-dimensional Riemann problem. Consider the following evolution
equation for functions β1, β2 : V ×D −→ R of class C2:

2∑
j=1

{(− sin θj∂σβj + cos θj∂τβj)Rj + βj(∂τ (cos θjRj)− ∂σ(sin θjRj))}(σ, τ, w)

+
∑
i ̸=j

(
βi sin(θi − θj)((∂wβj)Ri)Rj

)
(σ, τ, w)

−
∑
i,j

(
βiβj cos(θj − θi)((∂wθj)Ri)Rj

)
(σ, τ, w)

+ β1β2 sin(θ1 − θ2)((∂wR2)R1 − (∂wR1)R2)(σ, τ, w) = 0.

Observe that this equation, called “the integrability condition”, does not de-
pend on the function u.
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Lemma 3.1 (Characteristic form of System (2.1)). Assume that the system
(1.1) is strictly hyperbolic and endowed with two fields ξ1, ξ2 as described in
Proposition 2.1. Let u ∈ C2(V,R2) and β1, β2 ∈ C2(V × D,R) be functions
satisfying:

∂σu(σ, τ) =
2∑

j=1

(βj cos θjRj)(σ, τ, u(σ, τ)),(3.1)

∂τu(σ, τ) =
2∑

j=1

(βj sin θjRj)(σ, τ, u(σ, τ)).(3.2)

Then:

(1) The function u is a solution of the Riemann problem.
(2) The integrability condition is satisfied on the graph T = {(σ, τ, w) ∈

S × R2 : w = u(σ, τ)}.

Note that the equations (3.1), (3.2) generalize the one–dimensional equations
of rarefaction waves [12].

Proof. The property (1) is obvious. The property (2) is simply ∂2
στu(σ, τ) =

∂2
τσu(σ, τ) where ∂σu and ∂τu are given respectively by the formulas (3.1) and

(3.2). □

Now we can construct a solution u ∈ C2(V,R2) of the Riemann problem
by solving the system of equations (3.1) and (3.2). Consider the integrability
condition as a system with variable β = (β1, β2). From the assertion (3.1)
of Proposition 2.1, this system is well-posed. It is locally hyperbolic in the
direction a∂σ + b∂τ

(
(a, b) ∈ R2

)
[12].

Assume that sin θ1 sin θ2 ̸= 0 on a neighborhood W of some point (σ0, τ0, w0)
∈ V ×D. Then for any smooth initial data β(σ0, τ, w) = β0(τ, w), (τ, w) lying in
a neighborhood of (τ0, w0), this system admits a smooth solution β = (β1, β2)
on W . Let us fix a solution β = (β1, β2) on W and check that the system (3.1),
(3.2) admits a local solution with the initial data u(σ0, τ) = u0(τ), where τ is
lying on a neighborhood of τ0 and u0 is a given smooth function satisfying the

compatibility condition u′
0(τ) =

2∑
k=1

(βk sin θkRk)(σ0, τ, u0(τ)). Note that such

function u0 exists by the Cauchy-Lipschitz theorem. Thus we can integrate
the equation (3.1) for (σ0, τ0, u0(τ0)) ∈ W . Therefore the equation (3.2) is

straightforward. In fact, set
d

dσ
= ∂σ + ∂σu.∂w, M = (σ, τ, u(σ, τ)) and

U1(M) =
2∑

j=1

(βj cos θjRj)(M)(= ∂σu(σ, τ)),
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U2(M) =
2∑

j=1

(βj sin θjRj)(M),

X = ∂τu− U2.

Let us prove that X = 0. The integrability condition and Equation (3.1) give:

dU2

dσ
(M) = ∂τU1(M) + (∂wU1(M))U2(M).

However we have:

∂τ (∂σu) = ∂τU1(M) + (∂wU1(M))∂τu(σ, τ).

Thus
dX

dσ
(M) = ∂wU1(M).X(M). Since the compatibility condition on the

initial data u0 is X(σ0, .) = 0, we obtain X = 0 for any (σ, τ) lying on a
neighborhood of (σ0, τ0). Finally we get the following proposition.

Proposition 3.2. Let the system (1.1) be strictly hyperbolic endowed with two
fields ξ1, ξ2 as described in Proposition 2.1. Assume that sin θ1 sin θ2 ̸= 0. Let
(β1, β2) be a smooth solution of the integrability condition on a neighborhood
W of a point (σ0, τ0, w0) and u0 ∈ C2(R, D) a function which satisfies u′

0(τ) =
2∑

j=1

(βj sin θjRj)(σ0, τ, u0(τ)) on W . Then there exists a smooth solution of

the Riemann problem with the initial data u(σ0, .) = u0 on a neighborhood of
(σ0, τ0).

Before going further, note that the compatibility condition is not restric-
tive. In fact, by the assumption sin θ1 sin θ2 ̸= 0 on a neighborhood of
(σ0, τ0, u0(σ0, τ0)), we get for any u0 ∈ C2(Λ, D) with Λ ⊂ R, a smooth func-
tion β0 = (β1,0, β2,0) which depends on (τ, w) and satisfies the compatibility
condition:

u′
0(τ) =

2∑
j=1

βj,0(τ, u0(τ))(sin θjRj)(σ0, τ, u0(τ))).

Remark 3.3. The problem is even more complicated for a space dimension
d ≥ 3. It requires writing of nd(d − 1)/2 > n integrability conditions (on n
variables β1, . . . , βn).

Consider for example the case d = 3 and n ≥ 2. Set

C(X,w) = {ξ ∈ Rd : det

( d∑
j=1

(
ξj(df

j(w)− σjIn)
))

= 0},
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for (X,w) = (σ1, . . . , σd, w) ∈ Rd × Rn. Assume that C(X,w) ̸= ∅ and write

C(X,w) =
n∪

j=1

Cj(X,w) with

Cj(X,w) = {ξ ∈ C(X,w) : λj(w, ξ) = ⟨ξ,X⟩}.

For any (X,w) ∈ Rd × Rn, we denote by Mj(X,w) (j ∈ {1, . . . , n}) a curve
included in Cj(X,w) ∩ S (S denotes the unit sphere) and depending on the
parameter s ∈ [0, 1]. The generic point of Mj(X,w) is denoted by ξj(X,w, s).
As stated before, we set Rj(X,w, s) = rj(X,w, ξj(X,w, s)). Then the system
(3.1), (3.2) can be generalized as follows (i ∈ {1, . . . , d}):

∂σiu(X) =
n∑

j=1

⟨µj(X,u(X)), ξji (X,u(X), .)Rj(X,u(X), .)⟩.

Here (X,w) 7→ µj(X,w) is a measure–valued smooth function. Note that
if µj(X,w) is absolutely continuous for the Lebesgue measure on [0, 1], it is
possible to write nd(d − 1)/2 integrability conditions on the differentials of

density functions ρj(X,w, .) =
dµj(X,w)

ds
. Nevertheless we cannot say whether

or not this new system is well-posed.

4. Extension of smooth solutions

4.1. Foliated solutions. First we have:

Proposition 4.1. Let u = (u1, u2) ∈ C2(V,R2) be a solution of system (2.1).
Assume that

(1) ∇u1 ̸= 0;
(2) The function u is constant along the leaves of a smooth foliation F with

single codimension.

Then these leaves are included in straight lines.

Proof. Let f1 = (f1, f2) and f2 = (g1, g2). By hypothesis, there exists a
function Φ : V → R such that ∇u2 = Φ∇u1. Moreover we have:

∂σΦ∂τu1 − ∂τΦ∂σu1 = ∂2
στu2 − ∂2

στu2 = 0.

Then Φ is constant along the level lines of u1. In particular Φ is constant along
the leaves of F .

Now we fix a leaf F and denote by s the oriented arc length on F . Let X(s)
be the point of F with arc length s. We write Frenet formulas on F :

T (s) = X ′(s) and T ′(s) = c(s)N(s).

Since the normal vector N(s) is proportional with ∇u1(s), we get from the
system (2.1):

⟨A(s)−X(s), N(s)⟩ = 0,
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where A(s) denotes the vector field

(
∂w1f1(u(X(s))+Φ(X(s))∂w2f1(u(X(s)),

∂w1g1(u(X(s)) + Φ(X(s))∂w2g1(u(X(s))

)
. The function A being constant, we

obtain from the previous equality the existence of a function α : J ⊂ R2 → R
such that (X − αT ) = 0. Hence we have:

(1− α′(s))T (s)− (αc)(s)N(s) = 0.

Thus αc = 0, α′(s) = 1 and so c = 0. □

4.2. Construction of smooth solutions. Our goal here is to extend (as far
as possible) the previous smooth local solution u of System (2.1). We introduce
a continuous extension of u, foliated (when it does not coincide with u) in the
sense of Proposition 3.2. More precisely, let X0 ∈ R2 and U be a sphere of
center X0 and radius R > 0 small enough. We denote by E a smooth curve,
defined by φ : I → R2, containing X0 and dividing U into two subsets U− and
U+. Here I = (a, b) is a segment of R.

For u ∈ C1(U−,R2)∩C0(U−,R2) (U denotes the closure of U in R2) solution
of the system (2.1), we will define a function ρ ∈ C0(U ,R2) which coincides
with u on U−. Assume that U+ is foliated into lines (Hs)s∈I of R2 and E∩Hs =
{φ(s)} for any s ∈ I. Then the function (σ1, σ2) 7→ s is constant along the
leaves Hs. We set v = u ◦φ with φ = (φ1, φ2). To determine the function ρ on
U+ , it is sufficient to determine the function φ and the family (Hs)s∈I . Let us
first write the system (2.1) on U+ in the following way:

(4.1)
2∑

i=1

(
f i ◦ v)′ − φiv

′) ∂s

∂σi
= 0.

Consider then the system:

∇s(φ(s)) ∧ ξj(φ(s), v(s)) = 0,(4.2)

v′(s) ∧ rj(v(s), ξ
j(φ(s), v(s))) = 0,(4.3)

for j ∈ {1, 2} and ξ1, ξ2 co-directions as described in Proposition 2.1. It is easy
to check that a solution of this system is also a solution of (4.1).
Let us solve the equations (4.2), (4.3). Consider the system

φ′(s) = ξq⊥(φ(s), u ◦ φ(s)),(4.4)

φ(s0) = X0,(4.5)

on variable φ : I → R2 with s0 ∈ I, q ∈ {1, 2}\{k} and ξq⊥ = (− sin θq, cos θq).
The curves Hs are defined such that for any s ∈ I, Hs is contained in a straight
line orthogonal to ξk(φ(s), v(s)). So we write Hk

s instead of Hs.
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Since ∇s(φ(s)) is proportional to ξk(φ(s), v(s)), we use the system (3.1),
(3.2) to write:

v′(s) =
d

ds
(φ(s))φ′(s)

=
2∑

j=1

(
(− cos θj sin θq + sin θj cos θq) βjrj

)
(φ(s), v(s))

=
(
sin(θk − θq)βkrk

)
(φ(s), v(s)).

Thus φ is a solution of the system (4.2), (4.3) denoted by φk in what follows.
Now let us construct the extended solution ρ ∈ C0(W,R2) of System (2.1),

where W is a subset of U , to be determined below. We draw the curve fam-
ilies Lk(X0) defined by s 7→ φk(s,X0) where X0 ∈ U and k ∈ {1, 2}. Note
that if φ1(s1, X1) = φ2(s2, X2) for (s1, s2) ∈ R2 and (X1, X2) ∈ R2, then
(∂s1φ1(s1, X1), ∂s2φ2(s2, X2)) is a basis of R2 (Proposition 2.1).

Let P be a parallelogram in U with sides contained in L1(X1), L2(X2),
L1(X3), L2(X1), for some (X1, X2, X3) ∈ V 3 with X2 ∈ L1(X1) and X3 ∈
L2(X2). We set ρ = u inside P. Then we draw (as far as possible) the affine
foliation (Hk

s )s described above, from each side of P and extend the function ρ
continuously such that it is constant along the leaves Hk

s . Note that each leaf
Hk

s is tangent to Lq(H
k
s ∩ Lk(Xi)) for q ̸= k and i ∈ {1, 2, 3}. The set W is

chosen in U such that it contains P.
Finally let us check that ρ is a solution of the system (2.1) on the support

of the leaves Hk
s for k ∈ 1, 2 and i ∈ {1, 2, 3}. We set vk = ρ ◦ φk and we use

equation (3.2) to write:

v′k(s) = ρ′(φk(s))φ
′
k(s)

=
2∑

j=1

[
− (cos θj sin θq)(φk(s), vk(s))(βjrj)(vk(s), ξ

j(φk(s), vk(s)))

+(sin θj cos θq)(φk(s), vk(s))(βjrj)(vk(s), ξ
j(φk(s), vk(s)))

]
= sin(θk − θq)(φk(s), vk(s))(βkrk)(vk(s), ξ

k(φk(s), vk(s))).

Hence we get

v′k(s) ∧ rk(vk(s), ξ
k(φk(s), vk(s))) = 0.

Otherwise, the function (σ, τ) 7→ s is defined by “(σ, τ) and φk(s) belong to
the same leaf”, so that:

∇s(φk(s)) ∧ ξk(φk(s), vk(s)) = 0.

Consequently

2∑
i=1

[
∂σif

i(ρ)− σi∂σiρ
]
=

2∑
i=1

[
(f i ◦ vk)′ − φkiv

′
k(s)

] ∂s

∂σi
= 0,
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and the solution ρ ∈ C0(W, D) is constructed.
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