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ABSTRACT. Let p(z) = z°h(z) where h(z) is a polynomial of degree at
most n — s having all its zeros in |z| > k or in |z| < k. In this paper we
obtain some new results about the dependence of |p(Rz)| on |p(rz)| for
r2 <rR < k%, k> <rR < R? and for R < r < k. Our results refine and
generalize certain well-known polynomial inequalities.
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1. Introduction

Let P(z) be a polynomial of degree n. It was shown by Govil [4, Theorem
1], that if P(z) has no zeros in |z| < 1, then for 0 <r < p <1,

1 n
(1.1) max |P(2)] > (“L ) max |P(z)].
j2l=r p+1) 2=
Inequality (1.1) is best possible and equality holds for the polynomial P(z) =
1+2 "

<1+P>

As an extension of (1.1), Aziz [1] proved that if P(z) # 0 in |z| < k, where
k>1,

(1.2) max |P(z)| > rtk nmax |P(2)]
' |z|=r<1 “\1+k/) |z=1 ’
and in the case k < 1,
(1.3) max |P(z)] > <T+k>nma IP(z)],  for 0<r <k
. x| P(z x |P(z)], <r <k
|z|=r “A\1+k) |z2=1

Aziz and Mohammad [2] obtained the upper bound for the max,,|—g>1 |P(2)]
by proving the following result:
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Theorem 1.1. If P(z) is a polynomial of degree n such that P(z) # 0 in
|z| < k, where k > 1, then

R+ k\"
(1.4) |rzr|12>l<{|P(z)| < (1ik) gl‘zi)ﬂP(z)\, for 1< R <K

Here equality holds if P(z) = (z + k)™.
As an extension of (1.2) Bidkham and Dewan [3] proved that:

Theorem 1.2. If P(z) is a polynomial of degree n such that P'(0) = 0 and
P(z) #0in |z| < k, where k > 1, then for 0 <r < A <1,

r+k\"
P >
max|P(z)] 2 ()\Jrk)
—1

(15) (k=NOA—r)n (k+r\""
X[I_ 453 <k¢+)\) ] max [P(z)]-

For the case of polynomials having all their zeros in |z| < k, k > 0, we have
the following results due to Aziz [1].

Theorem 1.3. If P(z) is a polynomial of degree n which has all its zeros in
the disk |z| < k, where k <1, then

R—Fk n
1. P > ——— P .
(1.6 s 1P > (T ) x| Po)

The result is sharp and equality holds for P(z) = (z + k)™.

Theorem 1.4. If P(z) is a polynomial of degree n having all its zeros in
|z| <k, where k > 1, then for every R > k2,

R+k\"
1. P > —— P .
(L7) max |PG) > (157 ) maxlP)
The result is sharp with equality for P(z) = (z + k)™.

Also Mir [5] proved the following theorem for polynomials with s-fold zeros
at the origin.

Theorem 1.5. If P(z) is a polynomial of degree n having all its zeros in
|z| <k <1 with s-fold zeros at the origin, then for R <k <1,

R+ k
(T ) maxlPol

The result is best possible for s = n—1 and equality holds for P(z) = 2"~ 1(z+k).

(1.8) lrrllmé |P(z)] < R®
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2. Main results

In this paper, we first extend inequalities (1.2), (1.3) and (1.4) to the class
of polynomials of degree n with s-fold zeros at origin. In fact we prove:

Theorem 2.1. If P(z) is a polynomial of degree n, with s-fold zeros at origin,
0 < s < n where the remaining n— s zeros in |z| > k, then for every r2 < Rr <
k2,

2.1) P(r2)| > (%) (;ii)n_s \P(R2)], for |2 =1.

If we use the Mazimum Modulus Principle, the result is best possible and equal-
ity holds for P(z) = z°(z + k)" 5.

Remark 2.2. 1f we take s = 0, R = 1, then Theorem 2.1 reduces to inequality
(1.2). Also for s =0, r = 1, inequality (2.1) reduces to (1.4). Finally, for s =0,
R =1, k <1, Theorem 2.1 reduces to inequality (1.3).

Next, we prove the following result which among other things includes The-
orems 1.3 and 1.4 as special case.

Theorem 2.3. Let P(z) = z°h(z) where h(z) is a polynomial of degree n — s
having all its zeros in |z| < k and (0 < s <n). Then for k? <rR < R?,

R R+E

If we use the Mazimum Modulus Principle, the result is best possible and equal-
ity holds for P(z) = 2°(z + k)" .

(2.2) Per2) < (5) (T +k )n \P(R2), for |z =1.

If we take R =1 in Theorem 2.3, then we get the following result:

Corollary 2.4. Let P(z) = z°h(z) where h(z) is a polynomial of degree n — s
having all its zeros in |z| <k, k <1 and (0 < s <n). Then for k> <r <1,

r+k\"°
2.3 P <7’ P(2)|.
(23) max PG| <0 (15F) x|
Remark 2.5. In general for £ < 1 , we can not compare Corollary 2.4 with
Theorem 1.5 but, one can easily see that for k? < r < k, the bound indicated
in Corollary 2.4 is better than the bound obtained in Theorem 1.5.

If we take 7 = 1 in Theorem 2.3, then we get the following interesting result:

Corollary 2.6. Let P(z) = z°h(z) where h(z) is a polynomial of degree n — s
having all its zeros in |z| < k and (0 < s <mn). Then for R > max{1, k?},

R+k n—s
. >R ——
(2.4) max |P(z)] > R (1+k>

max | P(z)].
max P()

|z]=1
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Remark 2.7. Corollary 2.6 not only includes Theorems 1.3 and 1.4 as special
cases but also improves them. In fact:

(1) For s =0, k < 1, Corollary 2.6 reduces to Theorem 1.3, so for s # 0,
this result improves it.

(2) For s =0, k > 1, Corollary 2.6 reduces to Theorem 1.4, so for s # 0,
this result improves it also.

Finally, we give the following result which can be thought of as a general-
ization as well as an improvement of Theorem 1.2.

Theorem 2.8. Let P(z) = ag + ¥)_,avz" be a polynomial of degree n having
all its zeros in |z| > k. Then for everyr < R <k,

E+r\"
P >
max| <Z>'—(k+R>

n(k* ' = RFY(R—71) (k+r\"
(2.5) X [1— T (k+R> 1

n ([ RF—1r# .
x LSEZ;'P(Z)' o (w) g}ﬂ'””@ -

By taking u = 1, we get the following improvement of result due to Bidkham
and Dewan [3].

-1

Corollary 2.9. Let P(z) be a polynomial of degree n having all its zeros in
|z| > k. Then for every r < R < k,

26 max PG 2 (0 max PG+ o (g ) min PG

The result is best possible and equality holds for P(z) = (z + k)™.

By taking p = 2, we get the following improvement of Theorem 1.2.

Corollary 2.10. Let P(z) = ag+X7_5a,2" is a polynomial of degree n having
all its zeros in |z| > k. Then for everyr < R <k,

max [P(2)] > (’““)n L= R)(R=7) (mr)nl]—

— 2

2.7) |z|= k+ R 4k k+ R
n [ R?—r? .

x {S@’ﬂp@' +3 (m) L?L%'P(Z)@ :

If P(2) = 2°h(z) where h(z) = ao + ¥} a,z" be a polynomial of degree
n — s having all its zeros in |z| > k, by using Theorem 2.8 for h(z), we get the
following interesting result.
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Corollary 2.11. Let P(z) = 2°h(z) where h(z) = ap + X}Za,2" is a polyno-
mial of degree n — s having all its zeros in |z| > k. Then for every r < R < k,

NS (k+r\"°
P> (DY (FEr
max P> (1) (157

(0= )~ = R (R—1) (k|
(2.8) X [1 - T <k+R) 1

R\°n—s (RH—rH .
[mmpren+ () 55 (7))

For ;1 =1 in Corollary 2.11, we get the following result:

-1

Corollary 2.12. Let P(z) = 2°h(z) where h(z) is a polynomial of degree n — s
having all its zeros in |z| > k. Then for every r < R < k,

r\s (k4+r\"°
Pi)| > (=) (=
gllgfl (Z)I_(R) <k+R)

R\°(R—r .
« [max P+ 00 (F) (57 min PG
Here equality holds for P(z) = z°(z + k)" ~%.

(2.9)

3. Lemma

For the proof of Theorem 2.8, we need the following lemma.

Lemma 3.1. If P(z) = ap+ Yo=pavz" is a polynomial of degree n, having no
zeros in |z| < k, k> 1, then

(3.1) max |P'(2)] <

|z|=

n
P — min |P
s {mex P - iy P
with equality for P(z) = ((z* + k*)/(1 + k")) & where n is a multiple of p .

This lemma is due to Pukhta [6].

4. Proofs of the theorems

Proof of Theorem 2.1. Since P(z) has s-fold zeros at the origin and remain-
ing n — s zeros lie in |z| > k, we can write

P(z)=Cz* H (z — R;e)
j=1
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where R; > k, j=1,2,3,...,n — s. Therefore, for 0 < 6 < 27, we have

()1
G

Now for r > R, Rr > R? (r<R, TR< Rf) and for each 0, 0 < 0 < 2, it
can be easily seen that

Re'? — R; e

P(Re')
retd — R;et%

(4.1)
Re'"=%) — R,
ret0=%) — R; ‘ '

—

Rei0=6:) _ R, |?

re?=9%) — R,

B R2+R§—2Rchos(9—0j) - (R+Rj)2.

4.2 =
(42) 724+ RS —2rRjcos(0 —60;) — \r+R;

Since R; > k, for all j =1,2,...,n—s, it follows from (4.1) and (4.2) that

if r2 <rR < k?, then
< E H R+ R; < E R+Ek .
r . r+ R; r r+k
Jj=1
Hence for 72 < rR < k? and for each #, 0 < 6 < 27, we have

|P(Re™®)| < (R)s (R i k)n_s |P(re?®)].

r r+k

oif
ay | g

This completes the proof of Theorem 2.1.
Proof of Theorem 2.3. Similar to previous one for (r < R, Rr > Rf) or

(r> R, 7R < R?) and for each #, 0 < < 2, it can be easily seen that

Rei0=%) — R, |?

re?=9%) — R,

2
(4.4) B R2+R§ —2RR; cos(6 — 0;) S (R+Rj) .

~ r24+RZ2—2rRjcos(0—0;) ~ \r+R;

Since R; < k, for all j = 1,2,...,n — s, it follows from (4.1) that if k? <

rR < R?, then

P(Re) R\* T4 (R+R; R\° (R+E\"°
. —=| > | — Il > — .
(4.5) ’P(re“’) (r) j_l(r+Rj —\r r+k

Hence for k2 < rR < R? and for each 0, 0 < 0 < 2m, we have

P = (B) (B2 ey,

This completes the proof of Theorem 2.3.
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Proof of Theorem 2.8. If P(z) = ag+X}_,a,z" has no zeros in |z| < k, and
r <t < R <k, then H(z) = P(tz) has no zeros in |z| < k/t, where k/t > 1.
Hence by Lemma 3.1,

(4.6) max [tP'(tz)| < W {max |P(tz)] — ‘n‘nn |P(tz)|}

=1=1 i

which gives

/ ntt !
a0 malPG) < g {mepe) - min el |

We have for r <t < R<k, 0<60 <2,

R

|P(Re™) — P(re'®)| = e“gP/(telg)dtlg / |P’(te”)]dt

L . )
</ {maxlP)] - min PG a0y (47)

kH + tr 2|
R -1 n
nt* k+t .
< _
<) mtu{(m) ma ()] - iy P2
‘/ Tk + )™ A )
(k—i—r"u— kv 4 tr

ntt!
_m1n|P |/ k#th“ t,

which gives for r < R < k,

n Br=l(k +t)"
<<1
mag |P(a) < {1+ )n[ e O ma PG

ot
— min |P(z \/ "
|z|=k k“+t“

n RrM 1(k+R) n n—1
<
< {l—i— (R N D /T (k+t)" " dt Imlfi)§|P( 2)|

n 1
"t
YT '/

- e - (655) e

n ( R¥ —r# .
i (i) i re)
[k =Rk R* 'k + R) (k:-i—R)"}

max |P(z)|

|z|=r

kr + Re kr + Re k+r
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() min i)

(B0 - - () Y e
(B2

ey [ty

i (ku+Ru)(k+R)( R) k+R J2l=r

(=)

(5 s (ko

- () min P

< (58 |- n(ku_i;?f)m_” (b3) e

This completes the proof of Theorem 2.8.
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