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Abstract. Let G be a group and H a subgroup of G. Then H is said
to have semi-Π-property in G if there is a subgroup T of G such that
G = HT and H ∩ T has Π-property in T . In this paper, investigating on

semi-Π-property of subgroups, we shall obtain some new description of
finite groups.
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1. Introduction

Throughout this paper, all groups are finite. We use standard terminology,
as in Huppert [7] or Guo [5]. G always is a group, and |G| is the order of G;
π(G) denotes the set of all primes dividing |G|. Also P is the set of all primes
and π denotes a subset of P; π′ is the complement of π in P. A group G is said
to be a π-group if π(G) is a subset of π.

Subgroups play a very important role in group theory and different prop-
erties of subgroups have been studied by mathematicians, such as normality,
quasinormality [10], S-quasinormality (cf. [3], etc), C-normality [14], weakly s-
permutability [12], s-embedded and n-embedded property [6] and cover-avoida-
nce property (cf. [4, A(10.8)]). A property of subgroups was proposed as the
following in [8], to uniform some recent results.

Definition 1.1. Let H be a subgroup of G. H is said to have Π-property in G
if for any G-chief factor L/K, |G/K : NG/K(HK/K ∩L/K)| is a π (HK/K ∩
L/K)-number.

Li proved in [8] that there are many examples of embedding properties of
subgroups implying the possession of the Π-property. After the work in [8],
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some new research has been done by many mathematicians (cf. [2, 13], etc).
Let H and T be two subgroups of G. Recall that T is called a supplement of H
in G if G=HT , and if furthermore H∩T=1, then T is said to be a complement
of H in G. To develop the work of Π-property of subgroups, we introduce the
following new concept in this paper.

Definition 1.2. Let H be a subgroup of G. Then H is said to have semi-Π-
property in G, if there is a subgroup T of G such that G = HT and H ∩T has
Π-property in T .

Remark 1.3. (1) If H is a complement, then H has semi-Π-property in G (cf.
Lemma 2.2 in Section 2).
(2) It is clear that if H has Π-property in G then H has semi-Π-property, but
the reverse is not true. For example, the Sylow 5-subgroups of A5 are comple-
ment in A5 and hence have semi-Π-property in A5, but there is no non-trivial
subgroup of A5 with Π-property.
(3) If H has a supersolvable supplement in G, then H has semi-Π-property in
G (cf. Lemma 2.2 in Section 2).
(4) In [8], if HT = G and H ∩ T ≤ I ≤ H, where I is a subgroup having
Π-property in G, then H is called Π-supplemented in G. The following ex-
ample shows that a subgroup H satisfying semi-Π-property in G can not be
Π-supplemented in G.

Example 1.4. Let X = ⟨x⟩ × ⟨y⟩, where |x| = |y| = 25. The maps α : x 7→
x7, y 7→ y−7 and β : x 7→ y−1, y 7→ x are automorphisms of X and generate a
subgroup A ≤Aut(X) of order 8 (A is isomorphic with the quaternion group).
Let G = [X]A. Then the subgroup H = ⟨x5, α⟩ has a supplement T = ⟨X,β⟩
in G. Since T is supersolvable, H has semi-Π-property in G. On the other
hand, since x5 belongs to Φ(X) and X is the normal Sylow 5-subgroup of G
and x5 ∈ T for any supplement T of H in G. That is ⟨x5⟩ ≤ H ∩ T ≤ H. But
neither ⟨x5⟩ nor H has the Π-property in G, so H is not a Π-supplement in G.

Recall that a normal subgroup H of G is said to be SE in G if every chief
factor of G lying in H is cyclic, and, there is a unique maximal SE subgroup
of G, which is denoted by SE(G). It is (cf. [15, 1.7]). Similarly, we call that a
normal subgroup H of G is SEp in G if every pd-chief factor of G which lies in
H is cyclic. The unique maximal SEp subgroup of G is denoted by SEp(G). If
G ̸= 1 is p-solvable, then G has a nontrivial p-nilpotent normal subgroup. The
product of all p-nilpotent normal subgroup of G is denoted by Fp(G). A group
G is said quasinilpotent if all of its elements induce an inner automorphism on
each chief factor of G. In a group G, the product of all quasinilpotent normal
subgroups is called the generalized Fitting subgroup of G is denoted by F ∗(G).

Based on the concept of semi-Π-property, we shall mainly prove the following
theorems.
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Theorem A. Let E be a p-solvable normal subgroup of G and P a Sylow p-
subgroup of Fp(E). Then E ≤ SEp(G) if and only if every cyclic subgroup of
P of order p or 4(if P is a non-abelian 2-group) has semi-Π-property in G.

Theorem 1.5 (Theorem B). Let E be a normal subgroup of G. Then E ≤
SE(G) if and only if every cyclic subgroup of F ∗(E) of prime order or of order
4 (if the Sylow 2-subgroup is non-abelian) has semi-Π-property in G.

2. Preliminaries

Lemma 2.1. Let H be a subgroup of G and N a normal subgroup of G.
(1) If H ≤ T ≤ G and H has Π-property in T , then HN/N has Π-property in
TN/N .
(2) If H has Π-property in G, then H has semi-Π-property in G.
(3) If H has semi-Π-property in G, then HN/N has semi-Π-property in G/N
when H ⊆ N or (|H|, |N |) = 1.

Proof. (1) Since H has Π-property in T , hence by [8, Proposition 2(1)] H(T ∩
N)/(T ∩ N) has Π-property in T/T ∩ N . On the other hand, by using the
isomorphism

σ : T/T ∩N −→ TN/N

t(T ∩N) 7−→ tN

we may replace H(T ∩ N)/(T ∩ N) by HN/N . So HN/N has Π-property in
TN/N .

(2) It is obvious by choosing T = G
(3) Suppose that H has semi-Π-property in G, then there is a subgroup T

of G such that G = HT and H ∩ T has Π-property in T . If N ⊆ H, then
(H/N)∩ (TN/N) = (H ∩T )N/N , and (H ∩T )N/N has Π-property in TN/N
by (1). Thus H/N has semi-Π-property in G/N . If (|H|, |N |) = 1, then N ⊆ T
since N is normal in G. Similarly as above, we have H/N has semi-Π-property
in G/N .

□

Lemma 2.2. Let H be a subgroup of G. Then H has semi-Π-property in G if
one of the following holds:
(1) H is complement in G; (2) H has a supersolvable supplement in G.

Proof. (1) Assume that T is a complement of H in G. Then, H ∩ T = 1 has
Π-property in T and hence H has semi-Π-property in G.

(2) Assume that T is supersolvable and G = HT . Then every subgroup
of T has Π-property in T by [8, Proposition 2.11]. In particular, H ∩ T has
Π-property in T and therefore, H has semi-Π-property in G. □
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Lemma 2.3. ([8, Proposition 2.9]) Let H be a p-subgroup of G for some prime
divisor p of |G|, and assume that H has Π-property in G. Then any G-chief
factor L/K which does not avoid H is a p-factor and hence is abelian.

Lemma 2.4. ([8, Proposition 2.7]) Let H be a p-group of G and N a minimal
normal subgroup of G. Assume that H has Π-property in G. If there is a Sylow
p-subgroup Gp of G such that H ⊴Gp, then H ∩N = N or 1.

Lemma 2.5. Let N be a normal subgroup of order p in G and a ∈ G is an
element of order p. If H = ⟨N, a⟩ has Π-property in G then so does A = ⟨a⟩.

Proof. Let L/K be an arbitrary chief factor of G. By the definition, we only
need to prove that |G/K : NG/K((A ∩ L)K/K)| is a p-number. If A ≤ K,
then it is clear. Assume that A ̸≤ K. By [8, Proposition 2.1 (1)], HN/N has
Π-property in G/N . If N ≤ K then H ⊆ AK and so, (A ∩ L)K = (H ∩ L)K.
It follows that |G/K : NG/K((A ∩ L)K/K)| = |G/K : NG/K((H ∩ L)K/K)|
is a p-number since H has Π-property in G. If N ̸≤ K, then the hypotheses
still hold for G/K. By induction, if K ̸= 1, then AK/K has Π-property in
G/K. This induces that |G/K : NG/K((A ∩ L)K/K)| is a p-number. Assume
that K = 1 and hence L is a minimal normal subgroup of G. Since N is also
minimal normal in G, we see that L = N or L ∩ N = 1. If L = N , then
A ∩ L = 1 or A = N and thus |G : NG(A ∩ L)| = 1. Assume that L ∩N = 1.
Since H has order p2, H ∩L = 1 or cyclic of order p. On the other hand, Since
A is cyclic of order p, A∩L = 1 or is cyclic of order p, too.. If A∩L = 1, then
|G : NG(A∩L)| = 1. If A∩L is of order p, we should have A∩L = H ∩L and
hence |G : NG(A ∩ L)| = |G : NG(H ∩ L)| is a p-number. This shows that the
lemma holds. □
Lemma 2.6. ([9, Lemma 2.7]) Let P be a Sylow p-subgroup of G and N a
normal subgroup of G with G = NP . Assume that NG(P ) is p-nilpotent and
all subgroups of order p in N are complemented in G. Then G is p-nilpotent.

3. Proofs of Theorems A and B

Lemma 3.1. Let P be a normal p-subgroup of G. If every cyclic subgroup of
P of order p or 4(if P is a non-abelian 2-group) has semi-Π-property in G then
P ≤SE(G).

Proof. Assume that this lemma does not hold. Then there is a G-chief factor
in P which is not of prime order. Choose a G-chief factor L/K in P such that
|L/K| is not prime but |U/V | is prime for any chief factor U/V of G in P with
|U | < |L|.

Let W =
∩

U⊆K CG(U/V ), where U/V is a G-chief factor. Then, by [4,

A(12.3)], all elements in W of p′-order act trivially on K. Let C = CG(K) and
assume L ⊈ C. If L ⊆ KC, then (L ∩C)/(K ∩C) ∼= L/K is chief factor of G.
By the choice of L/K, |L/K| = |(L∩C)/(K ∩C)| is prime, a contradiction. If
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L ⊈ KC, then it is easy to see that LC/K = L/K ×KC/K, and thereby all
p′-elements in C act trivially on L/K. It follows that all p′-elements in W act
trivially on L/K. Hence W ⊆ CG(L/K). Since G/W = G/

∩
U⊆K CG(U/V ) is

an abelian group of exponent dividing p− 1 and W ⊆ CG(L/K), G/CG(L/K)
is an prime order by [15, I,Lemma 1.3], a contradiction.

Now assume L ⊆ C. Then K ⊆ Z(L). Let a, b be elements of order p in L.

Suppose p > 2 or P is abelian. Then (ab)p = apbp[b, a]
p(p−1)

2 = 1. Hence the
product of elements of order p is of order p or 1 and hence Ω = {a ∈ L|ap = 1}
is a subgroup of L. If Ω ⊆ K, then all elements of W with p′-order act
trivially on all elements of L with order p since they act trivially on K. It
follows from [7, IV,Satz 5.12] that all elements in W of order p′ act trivially
on L. Thus W ⊆ CG(L/K) and, as above argument, L/K is of prime order,
a contradiction. If Ω ⊈ K, then L = ΩK. Choose an element a in Ω\K
such that ⟨a⟩K/K ⊆ L/K ∩ Z(Gp/K). Let H = ⟨a⟩. Then H has semi-Π-
property in G and so there is a subgroup T of G such that G = HT and
H ∩ T has Π-property in T . If T = G, then H ∩ T = H has Π-property in
T = G. By Lemma 2.1 (1), HK/K has Π-property in G/K. It follows from
Lemma 2.4 that L/K = HK/K ∩ L/K = HK/K is cyclic, a contradiction.
Assume that T < G. Clearly, T is maximal in G. If K ⊈ TG, then KTG/TG is
nontrivial. By Bare’s Theorem (cf. [4, A(15.2)]), G/TG has a unique minimal
normal subgroup R/TG which is contained in KTG/TG and is self centralized.
Clearly R/TG ≤ KTG/TG ≤ LTG/TG. Since R/TG ≤ Z(LTG/TG) by the

property of p-group, KTG = LTG. It follows that |K|
|K∩TG| =

|L|
|L∩TG| and hence

|L/K| = |(L ∩ TG)/(K ∩ TG)|. Since K ⊈ TG, L ⊈ TG and so, |L ∩ TG| < |L|.
By the choice of L/K, (L ∩ TG)/(K ∩ TG) is of order p and so is L/K, a
contradiction. Assume that K ≤ TG ≤ T . Then T/K is maximal in G/K and
G/K = (⟨a⟩K/K)(T/K) = (L/K)(T/K). It follows that T/K is a complement
of L/K in G/K and |L/K| = |G/K : T/K| = |G : T | = |x| = p. Thus L/K
is cyclic. It can be proved that L/K is cyclic similarly when p = 2 and P is
a non abelian 2-group. This contradiction shows P ≤ SE(G) and the lemma
holds. □

Proof of Theorem A. The “if” part: assume that Op′(E) ̸= 1. Then Fp(E/Op′

(E)) = Fp(E)/Op′(E). By Lemma 2.1, the hypotheses still hold on E/Op′(E).
Then, by induction on |E|, E/Op′(E) ≤SEp(G/Op′(E)) and hence every pd-G-
chief factor which lies in E is cyclic, that is E ≤SEp(G).

Assume that Op′(E) = 1. Then Fp(E) = F (E) = Op(E) is a p-group. By
Lemma 3.1, F (E) ≤SE(G). Let Mi/Ni, i = 1, · · · , n, be all G-chief factor in
F (E) and C =

∩n
i=1 CG(Mi/Ni). Then F (E) ≤ C. We claim that F (E) = C.

Otherwise, let R/F (E) be a G-chief factor with R ≤ C. Since E is p-solvable,
R/F (E) is a p-factor or p′-factor. In particular, R/F (E) is p-nilpotent. But
R ≤ C, so R is p-nilpotent and hence R ≤ Fp(E) = F (E), a contradiction.
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Thus our claim holds and F (E) = C. If E ̸≤SEp(G), then there is a G-chief
factor L/K in E such that L/K is noncyclic, but any G-chief factor U/V in
E with |V | < |K| is cyclic. Let M/N be an arbitrary G-chief factor lying in
F (E) and put C1 = CE(M/N) . Since M/N is of prime order, E/C1 is cyclic
and hence L/L ∩ C1

∼= LC1/C1 ≤ E/C1 is cyclic. It follows that L ∩ C1 ̸≤ K
and so L = (L∩C1)K. Therefore, L/K = (L∩C1)K/K ∼= L∩C1/K ∩C1 is a
G-chief factor. By the choice of K, we have K ≤ C1 and so L = K(L ∩ C1) =
L∩KC1 = L∩C1. This induces that L ≤ C1 and consequently L ≤ CE(M/N)
for any G-chief factor M/N of F (E). Thus L ≤ C = F (E), a contradiction
and hence E ≤SEp(G).

The “only if” part: we shall prove that every p-subgroup of E has Π-property
in G and hence the “only if” part holds. To prove this, by [8, Proposition 2.3],
we only need to prove that every p-subgroup of E is a CAP-subgroup of G.

Let H be a p-subgroup of E and L/K be a G-chief factor. Since E is normal
in G, E covers or avoids L/K. If E avoids L/K then so does H since H ≤ E.
Assume that E covers L/K. Then L ≤ KE and hence L = L∩KE = (L∩E)K.
It follows that L/K = (L ∩ E)K/K ∼= (L ∩ E)/(K ∩ E) ≤ E/(K ∩ E). Since
E ≤SEp(G), L/K is either of p′-order or of order p. If L/K is of p′-order, then
clearly, H avoids L/K. If L/K is of order p. Then (H ∩ L)K/K = L/K or 1.
If (H ∩ L)K/K = L/K then L = (H ∩ L)K = L ∩ HK and hence H covers
L/K. If (H ∩ L)K/K = 1 then H ∩ L ≤ K and hence H avoids L/K. This
means that H is a CAP-subgroup of G and hence the theorem holds. □

Proof of Theorem B. The “only if” part can be proved similarly to Theorem
A and we only prove the “if” part.

We claim that F ∗(E) is solvable. Let H be a subgroup of F ∗(E) with order
2 and let T be a supplement of H in G. If H ∩ T = 1 then |G : T | = 2 and
hence T ⊴ G. It follows that F ∗(E) ∩ T ⊴ G and F ∗(E) ∩ T < F ∗(E) ≤ E.
Clearly, the hypotheses still hold for (G,F ∗(E) ∩ T ) and, by induction on |E|,
we have that F ∗(E) ∩ T ≤SE(G). In particular, T ∩ F ∗(E) is solvable. Since
F ∗(E)/F ∗(E)∩T is of order 2, F ∗(E) is solvable. Assume that H ∩T = H for
any supplement T , then H has Π-property in G by the hypotheses. If the Sylow
2-subgroup of F ∗(E) is abelian. Then F ∗(E) is 2-nilpotent and hence is solvable
by [8, Lemma 3.2]. Assume that the Sylow 2-subgroup of F ∗(E) is nonabelian.
If F ∗(E) is a 2′-group, then it is solvable. Assume that F ∗(E) is not a 2′-group.
Then O2′(F

∗(E)) < F ∗(E). Let R/O2′(F
∗(E)) be a G-chief factor in F ∗(E).

Then |R| is even and R has a subgroup H of order 2. By above argument, H
has Π-property in G. Clearly, H does not avoid R/O2′(F

∗(E)). By Lemma
2.3, R/O2′(F

∗(E)) is a 2-group and so R is solvable. Since R ≤ F ∗(E) is
quasinilpotent, R is nilpotent and hence O2(R) ̸= 1. It follows that O2(E) ̸= 1
and by Lemma 3.1, O2(E) ≤SE(G). Thus, every G-chief factor in O2(E)
is cyclic. Therefore, O2(E) ≤ Z∞(G). Let X/F (E) be a G-chief factor in
F ∗(E). If X is solvable, then X is nilpotent since X ≤ F ∗(E), a contradiction.
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Thus X and so X/F (E) is not solvable. Since X is not solvable, there is a
minimal non-2-nilpotent subgroup M in X. By the structure of a minimal
non-p-nilpotent group, M = A ⋊ B, where A is a 2-group of exponent 2 or
4(when A is nonabelian 2-group) and B is a p′-group. If all elements of X of
order 2 and 4 are in O2(E), then all such elements are in O2(E) ≤ Z∞(G). Thus
A ≤ Z∞(G). It follows that A ≤ M ∩Z∞(G) ≤ Z∞(M) and so M is nilpotent,
a contradiction. Hence there must be some element x of order 2 or 4 such that
x ∈ X and x ̸∈ O2(E). Furthermore, we can choose that x2 ∈ O2(E). By the
hypotheses, H = ⟨x⟩ has semi-Π-property in G. Let T be a supplement of H
in G. Assume T < G. If O2(E) ≤ T , then |G : T | = 2 since x2 ∈ O2(E) ≤ T
and HT = G. Thus T ⊴G. By a similar argument as above, F ∗(E) is solvable.
If O2(E) ⊈ T , then there must be a subgroup D of O2(E) such that DT is a
subgroup of G and |G : DT | = 2 since O2(E) ≤ Z∞(G) and |G : T | = 2 or 4.
Then DT ⊴G and similarly as above, F ∗(E) is solvable. Finally, assume that
G is the only supplement of H in G. Then H has Π-property in G. By Lemma
2.3, X/F (E) is abelian, a contradiction. This contradiction shows that F ∗(E)
is solvable and our claim holds.

Now, let F ∗(E) = F (E) be the direct product of primary subgroups. By
Lemma 3.1, F ∗(E) ≤SE(G). Similar to the proof of Theorem A, E ≤SE(G)
and the theorem holds.

□

4. On p-nilpotency of groups

Theorem 4.1. Let G be a group and p a prime with (|G|, p− 1) = 1. Assume
that E is a normal subgroup of G with p-nilpotent quotient. Let P be a Sylow
p-subgroup of E. If every subgroup of P of order p or 4 (if P is a nonabelian
2-group) has semi-Π-property in G, then G is p-nilpotent.

Proof. By a similar argument as in the proof of Theorem B, we can obtain
that E is solvable. Then, it follows from Theorem A that E ≤ SEp(G). Thus
every pd-chief factor H/K of G in E is cyclic of order p. Since G/CG(H/K)
is isomorphic to some subgroup of Aut(H/K), which is cyclic of order p − 1,
and (|G|, p − 1) = 1, we see that G/CG(H/K) = 1 and H/K is central, that
is, every G-chief factor in E is either of p′-order or central in G. Since G/E is
p-nilpotent, we obtain that G is also p-nilpotent. □

It is easy to show that if (|G|, p2−1) = 1, then G has no chief factor of order
p2 and so if p3 ∤ |G| then G is p-nilpotent. A more general result can be found
in [1, Lemma 2.12]. Considering groups in which every subgroup of order p2

has semi-Π-property, we obtain the following theorem.

Theorem 4.2. Let G be a group and p a prime with (|G|, p2−1) = 1. Assume
that E is a normal subgroup of G with p-nilpotent quotient. Let P be a Sylow
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p-subgroup of E. If every subgroup of P of order p2 has semi-Π-property in G,
then G is p-nilpotent.

Proof. Assume that theorem is not true, and G is a counterexample of minimal
order. We prove the theorem via the following steps:

(1) Op′(G) = 1.
By Lemma 2.1, the hypotheses still hold on G/Op′(G). If Op′(G) ̸= 1, then

we can assume that G/Op′(G) is p-nilpotent by the choice of G. It follows that
G is p-nilpotent, a contradiction. Hence Op′(G) = 1.

(2) Let N be a minimal normal subgroup of G. If N ≤ Op(G), then N is
cyclic of order p.

Since N ≤ Op(G), N is a p-group. If N ⊈ E, then NE/E is a chief factor of
G/E. But G/E is p-nilpotent, so N ∼= NE/E is cyclic of order p. Assume that
N ⊆ E. If |N | > p2, then N has a proper subgroup H of order p2 with H⊴Gp,
a Sylow p-subgroup of G. By the hypotheses, H has semi-Π-property in G, and
so there is a subgroup T of G such that G = TH and H ∩ T has Π-property
in T . Clearly, G = NT . Thus N ∩ T ⊴ G since N is abelian. If T ̸= G, then
N ∩ T ̸= N . It follows that N ∩ T = 1 since N is minimal normal in G. Hence
|N | = |G : T | ≤ |H| = p2, a contradiction. If T = G, then H ∩ T = H has
Π-property in T = G. By Lemma 2.4, N = H is of order p2, which contradicts
to |N | > p2 and thus |N | ≤ p2.

If |N | = p2, then Aut(N) is of order (p2 − 1)(p2 − p). Since G/CG(N)
is isomorphic to some subgroup of Aut(N), |G/CG(N)| is a divisor of (p2 −
1)(p2 − p). But (|G|, p2 − 1) = 1, so |G/CG(N)| is a p-number. It follows
from [5, Lemma 1.7.11] that |G/CG(N)| = 1 and hence N ⊆ Z(G). It follows
that all subgroups of N are normal in G. This is not true for |N | = p2 and N
is a minimal normal subgroup G. Therefore, |N | ̸= p2 and so |N | = p.

(3) p = 2.
If p ̸= 2, then G is of odd order since (|G|, p2−1) = 1. Thus G is solvable and

so Op(G) ̸= 1 by (1). Then (2) implies that G has a minimal normal subgroup
N of order p. By Lemma 2.1(3) and the hypotheses, every subgroup of order
p in E/N has semi-Π-property in G/N . By Theorem A, E/N ≤ SEp(G/N).
Since N is cyclic, E ≤SEp(G). Similar to the proof of Theorem 4.1, we have
that G is p-nilpotent, contrary to the choice of G. Thus p = 2 and (3) holds.

(4) Let N ≤ E be a minimal normal subgroup of G, then N is of order 2
and hence is contained in Z(G).

Assume that L is a minimal normal subgroup of N . If N is not a 2-group,
then, since Op′(G) = 1 by (1), L is a nonabelian simple group. By [11, (10.1.9)]
and (|G|, p2 − 1) = 1, the order of a Sylow 2-subgroup of L is greater than 4.
Choose H to be a subgroup of L of order 4. We claim that G is the only
supplement of H in G. In fact, if H has a proper supplement T in G, then
|G : T | = 2 or 4. If |G : T | = 2, then T is normal in G. Since LT = HT = G,
|L : L ∩ T | = |G : T | = 2. This shows that L ∩ T ⊴ L, a contradiction. If
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|G : T | = 4, then |L : T ∩ L| = 4. Considering the permutation of L on the
right coset of L∩T , we can see that L/(L∩T )G is isomorphic to some subgroup
of the symmetric group S4 of degree 4. Since (|G|, p2− 1) = 1, L/(L∩T )G is a
2-group. But L is simple, a contradiction. Thus our claim holds and therefore,
H has Π-property in G. Applying Lemma 2.3, N is abelian and hence is a
2-group. By Theorem A, N is cyclic and thus (4) holds.

(5) Soc(E) ∩ Φ(G) ̸= 1.
If Soc(E)∩Φ(G) = 1 then Soc(E) is complement in G and hence is comple-

ment in E. By (4), Soc(E) ≤ Z(G). If E =Soc(E), then E ≤ Z(G) and hence
G is p-nilpotent since G/E is. If Soc(E) < E and let M be a complement of
Soc(E) in E, then M ̸= 1. Moreover, since Soc(E) ≤ Z(G), M ⊴E and hence
M∩Soc(E) ̸= 1, a contradiction. Thus (5) holds.

(6) Every cyclic subgroup of order 2 or 4 in E has semi-Π-property in G.
It follows directly and Step (3) that every subgroup of order 4 has semi-Π-

property in G. Let A = ⟨a⟩ be a subgroup of order 2. By (4) and (5), G has a
minimal normal subgroup N ≤ E ∩Φ(G) and N = ⟨b⟩ is of order 2. Obviously,
N ≤ Z(G). If A = N , then it is clear that A has semi-Π-property. Assume
A ̸= N . Then H = AN is of order 4. By hypotheses, H has semi-Π-property
in G. Suppose G = HT and H ∩T has Π-property in T . If T = G, then H has
Π-property in G. It follows from Lemma 2.5 that A has Π-property in G. If
T < G, then |G : T | = 2 or 4 since |H| = 4. If |G : T | = 2, then T is maximal
in G and hence N ≤ T . Thereby, A ∩ T = 1, otherwise H = AN ≤ T and
G = HT = T . Also, AT = ANT = G. Thus A has semi-Π-property in G in
this case. If |G : T | = 4, then N ̸≤ T and T1 = NT is maximal in G, and then
T1 is a complement of A in G and A has semi-Π-property in G. Thus (6) holds.

(7) The final contradiction.
By (6) and Theorem A, E ≤SEp(G). It follows from G/E is p-nilpotent that

G is p-nilpotent. This is the final contradiction and the theorem holds. □
Theorem 4.3. Let G be a group and p an odd prime divisor of |G|. Assume
that E is a normal subgroup of G with p-nilpotent quotient. Suppose that P is
a Sylow p-subgroup of E and NG(P ) is p-nilpotent. If every minimal subgroup
of P has semi-Π-property in G, then G is p-nilpotent.

Proof. Assume that the theorem is not true and let G be a counter example of
minimal order, we prove the theorem via the following steps.

(1) Op′(G) = 1.
If Op′(G) ̸= 1, then the hypotheses still hold on G/Op′(G). Hence we can

assume that G/Op′(G) is p-nilpotent by the choice of G. It follows that G is
p-nilpotent, a contradiction and then Op′(G) = 1.

(2) Op(E) ̸= 1 and Op(E) = F (E) = F ∗(E).
Let N be a minimal normal subgroup of G contained in E. Then, by (1), p

devides |N |. By the hypotheses, every subgroup of order p in N has semi-Π-
property in G. If all subgroups of order p in N are complemented in G, then
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by Lemma 2.6, NP is p-nilpotent and so is N . Since Op′(G) = 1 by (1), N is a
p-group. Assume there is a subgroup H of order p in N not complemented in
G. Then G is the only supplement of H in G. Hence H must have Π-property
in G. By Lemma 2.3, N is a p-group and so Op(E) ̸= 1.

Since Op′(E) ≤ Op′(G) = 1, it is easy to see that F (E) = Op(E). If F (E) ̸=
F ∗(E), then we can choose a G-chief factor R/F (E) with R ⊆ F ∗(E). Let
Q = Op(R) = ⟨a ∈ R|p ∤ |a|⟩ and O = Op(E) ∩Op(R). Then Q/O ∼= R/Op(G)
is a chief factor of G and is characteristically simple. Choose M/O to be a
minimal normal subgroup of Q/O. Then Q/O ∼= M/O × · · · ×M/O. Clearly,
M is not solvable, otherwise, M ⊆ F (E). Let x be an element of F ∗(E) of
order p′. Then x induces an inner automorphism on each chief factor of F ∗(E)
and so acts trivially on all abelian chief factors. In particular, x acts trivially
on all G-chief factors of F (E). By [4, A,12.3], x acts trivially on Op(E). Thus
all p′-elements in F ∗(E) act trivially on Op(E). It follows that Q and so Op(M)
act trivially on Op(E). Clearly, M is not p-nilpotent, so M has a subgroup
X, which is not p-nilpotent, but all of its proper subgroups are p-nilpotent.
Then X = A ⋊ B, where A is a p-group and B is a cyclic p′-group. Assume
B = ⟨x⟩. Then x ∈ F ∗(E) and x acts trivially on Op(E). If all elements of
order p in A are contained in Op(E), then B acts trivially on A by [7, Satz
IV.5.12]. This is contrary to the choice of X. Thus there must be elements
of order p in A\Op(E). Then ⟨x⟩ does not avoid Q/O. If ⟨x⟩ has Π-property
in G, then, by Lemma 2.3, Q/O is a p-factor. This is not true and hence
⟨x⟩ does not have Π-property in G. On the other hand, since |x| = p, if ⟨x⟩
is not complemented in G, then ⟨x⟩ is contained in every supplement of it in
G and it follows that ⟨x⟩ has Π-property in G since ⟨x⟩ has semi-Π-property
in G by the hypotheses. Therefore, ⟨x⟩ is complemented in G and so is in
M . Choose T to be a complement of ⟨x⟩ in M . Then |M : T | = p. By
considering the action of M on the right coset of T in M , one can find that
M/TM is isomorphic to a subgroup of Sp, the symmetric group of degree p.
Hence the Sylow p-subgroups of M/TM are of order p. If TM is not contained
in Op(E), then M/TM is a p-group since M/M ∩ Op(E) is simple. It follows
that x ∈ Op(M) ⊆ T , a contradiction. Thus TM ⊆ Op(E) and so the Sylow
p-subgroups of M/M ∩ Op(E) = M/O are of order p. Since x ∈ M \ Op(E)
and |x| = p, every non trivial p-group of M/O is a conjugate of ⟨x⟩O/O, that
is, for every subgroup of H of order p in M/O there is a subgroup H of order
p in M such that H = HO/O. Furthermore, by the choice of M , we see that
for every subgroup H of order p in Q there is also a subgroup H of order p in
Q such that H = HO/O.

Now, we claim that every subgroup of order p in Q/O is complemented in
G/O. Choose H = HO/O to be a subgroup of order p in Q/O, where H
is a subgroup of order p. Then by above argument, H is complemented in G.
Assume that T is a complement of H in G. Then T is maximal in G. Let Q1 be
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a minimal supplement of O in Q. Then, by [5, Lemma 2.3.4], Q1 ∩O ⊆ Φ(Q1).
So, Q1 is generated by all its p′-elements. Since, by the above argument,
O ≤ Z∞(Q), we have O ≤ CQ(Q1). Hence Q1 ⊴ Q. Thus Q = Op(Q) ≤ Q1

and so Q = Q1. It follows that O = O∩Q ⊆ Φ(Q) ⊆ Φ(G) ⊆ T . Hence HO/O
is complemented in G/O and T/O is a complement of it. Our claim holds.

It is easy to see that NG/O(P/O) is p-nilpotent. Hence, by Lemma 2.6.
QP/O is p-nilpotent and so is Q. But this is not true and so (2) holds.

(3) The final contradiction.
By Theorem B and Step (2), we have that E ≤SE(E). In particular, E

is supersolvable. Since Op′(G) = 1 by (1), P , the Sylow p-subgroup of E, is
normal in E and hence is normal in G. Thus G = NG(P ) is p-nilpotent. The
theorem holds. □
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