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ABSTRACT. Let G be a group and H a subgroup of G. Then H is said
to have semi-ll-property in G if there is a subgroup 7' of G such that
G = HT and H N T has [I-property in 7. In this paper, investigating on
semi-IT-property of subgroups, we shall obtain some new description of
finite groups.
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1. Introduction

Throughout this paper, all groups are finite. We use standard terminology,
as in Huppert [7] or Guo [5]. G always is a group, and |G| is the order of G;
7m(G) denotes the set of all primes dividing |G|. Also P is the set of all primes
and 7 denotes a subset of P; 7’ is the complement of 7 in P. A group G is said
to be a m-group if 7(G) is a subset of .

Subgroups play a very important role in group theory and different prop-
erties of subgroups have been studied by mathematicians, such as normality,

quasinormality [10], S-quasinormality (cf. [3], etc), C-normality [14], weakly s-
permutability [12], s-embedded and n-embedded property [6] and cover-avoida-
nce property (cf. [4, A(10.8)]). A property of subgroups was proposed as the
following in [3], to uniform some recent results.

Definition 1.1. Let H be a subgroup of G. H is said to have II-property in G
if for any G-chief factor L/K, |G/K : Ng,x(HK/KNL/K)|isar (HK/K N
L/K)-number.

Li proved in [8] that there are many examples of embedding properties of
subgroups implying the possession of the II-property. After the work in [8],
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some new research has been done by many mathematicians (cf. [2, 13], etc).
Let H and T be two subgroups of G. Recall that T is called a supplement of H
in G if G=HT, and if furthermore H N'T'=1, then T is said to be a complement
of H in G. To develop the work of II-property of subgroups, we introduce the
following new concept in this paper.

Definition 1.2. Let H be a subgroup of G. Then H is said to have semi-II-
property in G, if there is a subgroup T of G such that G = HT and HNT has
II-property in T'.

Remark 1.3. (1) If H is a complement, then H has semi-II-property in G (cf.
Lemma 2.2 in Section 2).

(2) Tt is clear that if H has II-property in G then H has semi-II-property, but
the reverse is not true. For example, the Sylow 5-subgroups of As are comple-
ment in As and hence have semi-II-property in As, but there is no non-trivial
subgroup of As with II-property.

(3) If H has a supersolvable supplement in G, then H has semi-II-property in
G (cf. Lemma 2.2 in Section 2).

(4) In [8], if HT = G and HNT < I < H, where I is a subgroup having
[I-property in G, then H is called II-supplemented in G. The following ex-
ample shows that a subgroup H satisfying semi-Il-property in G can not be
[I-supplemented in G.

Ezample 1.4. Let X = (z) x (y), where |z| = |y| = 25. The maps o : z
27, y—= vy " and B:x— y~ ', y+— x are automorphisms of X and generate a
subgroup A <Aut(X) of order 8 (A is isomorphic with the quaternion group).
Let G = [X]A. Then the subgroup H = (2°,a) has a supplement T' = (X, 3)
in G. Since T is supersolvable, H has semi-Il-property in G. On the other
hand, since #° belongs to ®(X) and X is the normal Sylow 5-subgroup of G
and x° € T for any supplement T of H in G. That is (z°) < HNT < H. But
neither (z°) nor H has the II-property in G, so H is not a II-supplement in G.

Recall that a normal subgroup H of G is said to be SE in G if every chief
factor of G lying in H is cyclic, and, there is a unique maximal SE subgroup
of G, which is denoted by SE(G). It is (cf. [15, 1.7]). Similarly, we call that a
normal subgroup H of G is SE, in G if every pd-chief factor of G which lies in
H is cyclic. The unique maximal SE,, subgroup of G is denoted by SE,(G). If
G # 1 is p-solvable, then G has a nontrivial p-nilpotent normal subgroup. The
product of all p-nilpotent normal subgroup of G is denoted by F,(G). A group
@ is said quasinilpotent if all of its elements induce an inner automorphism on
each chief factor of G. In a group G, the product of all quasinilpotent normal
subgroups is called the generalized Fitting subgroup of G is denoted by F*(G).

Based on the concept of semi-II-property, we shall mainly prove the following
theorems.
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Theorem A. Let E be a p-solvable normal subgroup of G and P a Sylow p-
subgroup of F,,(E). Then E < SE,(G) if and only if every cyclic subgroup of
P of order p or 4(if P is a non-abelian 2-group) has semi-II-property in G.

Theorem 1.5 (Theorem B). Let E be a normal subgroup of G. Then E <
SE(G) if and only if every cyclic subgroup of F*(E) of prime order or of order
4 (if the Sylow 2-subgroup is non-abelian) has semi-Il-property in G.

2. Preliminaries

Lemma 2.1. Let H be a subgroup of G and N a normal subgroup of G.

(1) If H <T < G and H has I-property in T, then HN/N has II-property in
TN/N.

(2) If H has H-property in G, then H has semi-Il-property in G.

(3) If H has semi-Il-property in G, then HN/N has semi-Il-property in G/N
when H C N or (|H|,|N|) = 1.

Proof. (1) Since H has Il-property in T, hence by [3, Proposition 2(1)] H(T N
N)/(T N N) has I-property in T/T N N. On the other hand, by using the
isomorphism

c:T/TNN — TN/N
t(TNN)+—tN

we may replace H(TNN)/(TNN) by HN/N. So HN/N has II-property in
TN/N.
(2) It is obvious by choosing T'= G
(3) Suppose that H has semi-II-property in G, then there is a subgroup T
of G such that G = HT and H NT has Il-property in T. If N C H, then
(H/NYN(T'N/N)=(HNT)N/N, and (HNT)N/N has II-property in TN/N
by (1). Thus H/N has semi-II-property in G/N. If (|H|,|N|) =1, then N C T
since N is normal in G. Similarly as above, we have H/N has semi-II-property
in G/N.
O

Lemma 2.2. Let H be a subgroup of G. Then H has semi-Il-property in G if
one of the following holds:
(1) H is complement in G; (2) H has a supersolvable supplement in G.

Proof. (1) Assume that T' is a complement of H in G. Then, HNT =1 has
II-property in T" and hence H has semi-Il-property in G.

(2) Assume that T is supersolvable and G = HT. Then every subgroup
of T has Il-property in T by [38, Proposition 2.11]. In particular, H N T has
[I-property in T and therefore, H has semi-Il-property in G. ]
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Lemma 2.3. ([3, Proposition 2.9]) Let H be a p-subgroup of G for some prime
divisor p of |G|, and assume that H has I-property in G. Then any G-chief
factor L/ K which does not avoid H is a p-factor and hence is abelian.

Lemma 2.4. ([8, Proposition 2.7]) Let H be a p-group of G and N a minimal
normal subgroup of G. Assume that H has Il-property in G. If there is a Sylow
p-subgroup G, of G such that H 1 G, then HNN = N or 1.

Lemma 2.5. Let N be a normal subgroup of order p in G and a € G is an
element of order p. If H = (N, a) has -property in G then so does A = {a).

Proof. Let L/K be an arbitrary chief factor of G. By the definition, we only
need to prove that |G/K : Ng/x((ANL)K/K)| is a p-number. If A < K,
then it is clear. Assume that A £ K. By [8, Proposition 2.1 (1)], HN/N has
II-property in G/N. If N < K then H C AK and so, (ANL)K = (HNL)K.
It follows that |G/K : Ng/k((ANL)K/K)| = |G/K : Ng/k((H N L)K/K)|
is a p-number since H has Il-property in G. If N £ K, then the hypotheses
still hold for G/K. By induction, if K # 1, then AK/K has II-property in
G/K. This induces that |G/K : Ng/x((AN L)K/K)| is a p-number. Assume
that K = 1 and hence L is a minimal normal subgroup of G. Since N is also
minimal normal in G, we see that L = N or LN N = 1. If L = N, then
ANL=1or A= N and thus |G : Ng(ANL)| =1. Assume that LN N = 1.
Since H has order p?>, HN L = 1 or cyclic of order p. On the other hand, Since
A is cyclic of order p, ANL =1 or is cyclic of order p, too.. If ANL = 1, then
|G : Ng(ANL)|=1. If AN L is of order p, we should have ANL = HN L and
hence |G : Ng(ANL)| =|G: Ng(H N L)| is a p-number. This shows that the
lemma holds. O

Lemma 2.6. ([9, Lemma 2.7]) Let P be a Sylow p-subgroup of G and N a
normal subgroup of G with G = NP. Assume that Ng(P) is p-nilpotent and
all subgroups of order p in N are complemented in G. Then G is p-nilpotent.

3. Proofs of Theorems A and B

Lemma 3.1. Let P be a normal p-subgroup of G. If every cyclic subgroup of
P of order p or 4(if P is a non-abelian 2-group) has semi-Il-property in G then
P <SE(G).

Proof. Assume that this lemma does not hold. Then there is a G-chief factor
in P which is not of prime order. Choose a G-chief factor L/K in P such that
|L/K]| is not prime but |U/V] is prime for any chief factor U/V of G in P with
|U| < |L.

Let W = Nyckx Ca(U/V), where U/V is a G-chief factor. Then, by [4,
A(12.3)], all elements in W of p’-order act trivially on K. Let C' = Cq(K) and
assume L ¢ C. If L C KC, then (LNC)/(KNC) = L/K is chief factor of G.
By the choice of L/K, |L/K| = |(LNC)/(K NC)| is prime, a contradiction. If
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L ¢ KC, then it is easy to see that LC/K = L/K x KC/K, and thereby all
p’-elements in C' act trivially on L/K. It follows that all p’-elements in W act
trivially on L/K. Hence W C Cq(L/K). Since G/W = G/(Nycx Ca(U/V) is

an abelian group of exponent dividing p—1 and W C C¢(L/K), G/Cq(L/K)

is an prime order by [15, I,Lemma 1.3], a contradiction.
Now assume L C C. Then K C Z(L). Let a,b be elements of order p in L.
Suppose p > 2 or P is abelian. Then (ab)? = aPbP[b, a] 222 _ 1. Hence the

product of elements of order p is of order p or 1 and hence 2 = {a € L|a? = 1}
is a subgroup of L. If Q@ C K, then all elements of W with p’-order act
trivially on all elements of L with order p since they act trivially on K. It
follows from [7, IV,Satz 5.12] that all elements in W of order p’ act trivially
on L. Thus W C Cg(L/K) and, as above argument, L/K is of prime order,
a contradiction. If Q ¢ K, then L = QK. Choose an element a in Q\K
such that (a)K/K C L/KNZ(G,/K). Let H = (a). Then H has semi-II-
property in G and so there is a subgroup T of G such that G = HT and
H N T has Il-property in T. If T = G, then H NT = H has II-property in
T = G. By Lemma 2.1 (1), HK/K has Il-property in G/K. It follows from
Lemma 2.4 that L/K = HK/K N L/K = HK/K is cyclic, a contradiction.
Assume that T' < G. Clearly, T is maximal in G. If K ¢ T, then KT¢ /T¢ is
nontrivial. By Bare’s Theorem (cf. [1, A(15.2)]), G/T¢ has a unique minimal
normal subgroup R/Ts which is contained in KT /T and is self centralized.
Clearly R/T¢ < KT¢/Teg < LTg/Tg. Since R/Te < Z(LTg/Tc) by the

property of p-group, KTg = LT¢g. It follows that I Klrlﬁ(%cl =7 LIQLJLG‘ and hence

|IL/K|=|(LNTg)/(KNTg)|. Since K ¢ Ty, L € Tz and so, |LNTg| < |L|.
By the choice of L/K, (LNTg)/(K NTg) is of order p and so is L/K, a
contradiction. Assume that K < Tg <T. Then T/K is maximal in G/K and
G/K = ((a)K/K)(T/K) = (L/K)(T/K). It follows that T/ K is a complement
of L/K in G/K and |L/K| = |G/K : T/K|=|G : T| = |z| = p. Thus L/K
is cyclic. It can be proved that L/K is cyclic similarly when p = 2 and P is
a non abelian 2-group. This contradiction shows P < SE(G) and the lemma
holds. O

Proof of Theorem A. The “if” part: assume that O, (E) # 1. Then F,(E/O,
(E)) = F,(E)/Oy(E). By Lemma 2.1, the hypotheses still hold on E/O, (E).
Then, by induction on |E|, E/O, (E) <SE,(G/O, (F)) and hence every pd-G-
chief factor which lies in E is cyclic, that is E <SE,(G).

Assume that O (E) = 1. Then F,(E) = F(E) = O,(FE) is a p-group. By
Lemma 3.1, F(E) <SE(G). Let M;/N;, i = 1,--- ,n, be all G-chief factor in
F(E) and C = (., Cg(M;/N;). Then F(E) < C. We claim that F(E) = C.
Otherwise, let R/F(FE) be a G-chief factor with R < C. Since E is p-solvable,
R/F(E) is a p-factor or p’-factor. In particular, R/F(FE) is p-nilpotent. But
R < C, so R is p-nilpotent and hence R < F,(E) = F(E), a contradiction.
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Thus our claim holds and F(E) = C. If E £SE,(G), then there is a G-chief
factor L/K in E such that L/K is noncyclic, but any G-chief factor U/V in
E with |V| < |K] is cyclic. Let M/N be an arbitrary G-chief factor lying in
F(FE) and put C; = Cg(M/N) . Since M/N is of prime order, E/C is cyclic
and hence L/LNCy =2 LC,/Cy < E/Ch is cyclic. Tt follows that LNC; £ K
and so L = (LNCY)K. Therefore, L/K = (LNC)K/K 2 LNCy/KNCy is a
G-chief factor. By the choice of K, we have K < Cy and so L = K(LNCy) =
LNKCy; = LNC;. This induces that L < C and consequently L < Cg(M/N)
for any G-chief factor M/N of F(E). Thus L < C = F(FE), a contradiction
and hence E <SE,(G).

The “only if” part: we shall prove that every p-subgroup of F has II-property
in G and hence the “only if” part holds. To prove this, by [8, Proposition 2.3],
we only need to prove that every p-subgroup of F is a CAP-subgroup of G.

Let H be a p-subgroup of E' and L/K be a G-chief factor. Since E is normal
in G, E covers or avoids L/K. If E avoids L/K then so does H since H < E.
Assume that E covers L/K. Then L < KE and hence L = LNKFE = (LNE)K.
It follows that L/K = (L N E)K/K = (LN E)/(K NE) < E/(K N E). Since
E <SE,(G), L/K is either of p’-order or of order p. If L/K is of p’-order, then
clearly, H avoids L/K. If L/K is of order p. Then (HNL)K/K = L/K or 1.
If (HNL)K/K = L/K then L = (HNL)K = LN HK and hence H covers
L/K. If (HNL)K/K =1 then HN L < K and hence H avoids L/K. This
means that H is a CAP-subgroup of G and hence the theorem holds. O

Proof of Theorem B. The “only if” part can be proved similarly to Theorem
A and we only prove the “if” part.

We claim that F*(E) is solvable. Let H be a subgroup of F*(E) with order
2 and let T be a supplement of H in G. If HNT =1 then |G : T| = 2 and
hence T'< G. Tt follows that F*(E)NT <G and F*(E)NT < F*(E) < E.
Clearly, the hypotheses still hold for (G, F*(E)NT) and, by induction on |E|,
we have that F*(E) NT <SE(G). In particular, T N F*(E) is solvable. Since
F*(E)/F*(E)NT is of order 2, F*(E) is solvable. Assume that HNT = H for
any supplement 7', then H has II-property in G by the hypotheses. If the Sylow
2-subgroup of F*(E) is abelian. Then F*(E) is 2-nilpotent and hence is solvable
by [8, Lemma 3.2]. Assume that the Sylow 2-subgroup of F*(E) is nonabelian.
If F*(F) is a 2/-group, then it is solvable. Assume that F"*(E) is not a 2'-group.
Then Oy (F*(E)) < F*(E). Let R/Oy (F*(E)) be a G-chief factor in F*(E).
Then |R| is even and R has a subgroup H of order 2. By above argument, H
has II-property in G. Clearly, H does not avoid R/Oy (F*(FE)). By Lemma
2.3, R/Oy (F*(E)) is a 2-group and so R is solvable. Since R < F*(E) is
quasinilpotent, R is nilpotent and hence O2(R) # 1. It follows that O2(E) # 1
and by Lemma 3.1, Oz(E) <SE(G). Thus, every G-chief factor in Oz(E)
is cyclic. Therefore, Oz(E) < Zy(G). Let X/F(E) be a G-chief factor in
F*(E). If X is solvable, then X is nilpotent since X < F*(F), a contradiction.
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Thus X and so X/F(F) is not solvable. Since X is not solvable, there is a
minimal non-2-nilpotent subgroup M in X. By the structure of a minimal
non-p-nilpotent group, M = A x B, where A is a 2-group of exponent 2 or
4(when A is nonabelian 2-group) and B is a p’-group. If all elements of X of
order 2 and 4 are in O3 (E), then all such elements are in O3(F) < Z(G). Thus
A < Z(G). Tt follows that A < MNZy(G) < Zoo(M) and so M is nilpotent,
a contradiction. Hence there must be some element x of order 2 or 4 such that
r € X and z € O2(E). Furthermore, we can choose that 2% € O2(E). By the
hypotheses, H = (x) has semi-II-property in G. Let T be a supplement of H
in G. Assume T < G. If O2(E) < T, then |G : T| = 2 since 2? € O9(E) < T
and HT = G. Thus T <G. By a similar argument as above, F*(F) is solvable.
If O5(E) € T, then there must be a subgroup D of O(E) such that DT is a
subgroup of G and |G : DT'| = 2 since O3(F) < Zo(G) and |G : T| = 2 or 4.
Then DT < G and similarly as above, F*(E) is solvable. Finally, assume that
G is the only supplement of H in G. Then H has I[I-property in G. By Lemma
2.3, X/F(FE) is abelian, a contradiction. This contradiction shows that F*(E)
is solvable and our claim holds.

Now, let F*(E) = F(E) be the direct product of primary subgroups. By
Lemma 3.1, F*(E) <SE(G). Similar to the proof of Theorem A, E <SE(G)
and the theorem holds.

O

4. On p-nilpotency of groups

Theorem 4.1. Let G be a group and p a prime with (|G|,p—1) = 1. Assume
that E is a normal subgroup of G with p-nilpotent quotient. Let P be a Sylow
p-subgroup of E. If every subgroup of P of order p or 4 (if P is a nonabelian
2-group) has semi-Il-property in G, then G is p-nilpotent.

Proof. By a similar argument as in the proof of Theorem B, we can obtain
that E is solvable. Then, it follows from Theorem A that E < SE,(G). Thus
every pd-chief factor H/K of G in E is cyclic of order p. Since G/Cq(H/K)
is isomorphic to some subgroup of Aut(H/K), which is cyclic of order p — 1,
and (|G|,p — 1) = 1, we see that G/Cq(H/K) =1 and H/K is central, that
is, every G-chief factor in E is either of p’-order or central in G. Since G/F is
p-nilpotent, we obtain that G is also p-nilpotent. g

It is easy to show that if (|G|,p> — 1) = 1, then G has no chief factor of order
p? and so if p? { |G| then G is p-nilpotent. A more general result can be found
in [1, Lemma 2.12]. Considering groups in which every subgroup of order p?
has semi-II-property, we obtain the following theorem.

Theorem 4.2. Let G be a group and p a prime with (|G|,p?> —1) = 1. Assume
that E is a normal subgroup of G with p-nilpotent quotient. Let P be a Sylow
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p-subgroup of E. If every subgroup of P of order p? has semi-Il-property in G,
then G is p-nilpotent.

Proof. Assume that theorem is not true, and G is a counterexample of minimal
order. We prove the theorem via the following steps:

(1) Op (G)=1.

By Lemma 2.1, the hypotheses still hold on G/O, (G). If O, (G) # 1, then
we can assume that G/O,/(G) is p-nilpotent by the choice of G. It follows that
G is p-nilpotent, a contradiction. Hence O,/ (G) = 1.

(2) Let N be a minimal normal subgroup of G. If N < O,(G), then N is
cyclic of order p.

Since N < O0,(G), N is a p-group. If N ¢ E, then NE/E is a chief factor of
G/E. But G/E is p-nilpotent, so N = NE/F is cyclic of order p. Assume that
N C E. If IN| > p?, then N has a proper subgroup H of order p? with H <G,,,
a Sylow p-subgroup of G. By the hypotheses, H has semi-II-property in G, and
so there is a subgroup T of G such that G = TH and H NT has Il-property
in T. Clearly, G = NT. Thus N NT <G since N is abelian. If T # G, then
NNT # N. It follows that N NT = 1 since N is minimal normal in G. Hence
IN| = |G : T| < |H| = p?, a contradiction. If T = G, then HNT = H has
II-property in 7' = G. By Lemma 2.4, N = H is of order p?, which contradicts
to [N| > p? and thus |[N| < p?.

If |[N| = p?, then Aut(N) is of order (p*> — 1)(p*® — p). Since G/Cg(N)
is isomorphic to some subgroup of Aut(N), |G/Cg(N)| is a divisor of (p* —
1)(p? — p). But (|G|,p?> — 1) = 1, so |G/Cq(N)| is a p-number. It follows
from [5, Lemma 1.7.11] that |G/Cg(N)| = 1 and hence N C Z(G). It follows
that all subgroups of N are normal in G. This is not true for |N| = p? and N
is a minimal normal subgroup G. Therefore, |N| # p* and so |N| = p.

(B)p=2.

If p # 2, then G is of odd order since (|G|, p*—1) = 1. Thus G is solvable and
50 Op(G) # 1 by (1). Then (2) implies that G has a minimal normal subgroup
N of order p. By Lemma 2.1(3) and the hypotheses, every subgroup of order
p in E/N has semi-II-property in G/N. By Theorem A, E/N < SE,(G/N).
Since N is cyclic, E <SE,(G). Similar to the proof of Theorem 4.1, we have
that G is p-nilpotent, contrary to the choice of G. Thus p = 2 and (3) holds.

(4) Let N < E be a minimal normal subgroup of G, then N is of order 2
and hence is contained in Z(G).

Assume that L is a minimal normal subgroup of N. If N is not a 2-group,
then, since O, (G) =1 by (1), L is a nonabelian simple group. By [11, (10.1.9)]
and (|G|,p? — 1) = 1, the order of a Sylow 2-subgroup of L is greater than 4.
Choose H to be a subgroup of L of order 4. We claim that G is the only
supplement of H in G. In fact, if H has a proper supplement 7" in G, then
|G:T)=2or4. If |G:T| =2, then T is normal in G. Since LT = HT = G,
|IL: LNT|=|G:T| =2 This shows that LNT < L, a contradiction. If
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|G : T| =4, then |L : TN L| = 4. Considering the permutation of L on the
right coset of LNT, we can see that L/(LNT)¢ is isomorphic to some subgroup
of the symmetric group Sy of degree 4. Since (|G|,p? —1) =1, L/(LNT)¢ is a
2-group. But L is simple, a contradiction. Thus our claim holds and therefore,
H has II-property in G. Applying Lemma 2.3, N is abelian and hence is a
2-group. By Theorem A, N is cyclic and thus (4) holds.

(5) Soc(E)N®(G) # 1.

If Soc(E)N®(G) = 1 then Soc(E) is complement in G and hence is comple-
ment in E. By (4), Soc(F) < Z(G). If E =Soc(FE), then E < Z(G) and hence
G is p-nilpotent since G/F is. If Soc(F) < E and let M be a complement of
Soc(E) in E, then M # 1. Moreover, since Soc(E) < Z(G), M < E and hence
MnNSoc(E) # 1, a contradiction. Thus (5) holds.

(6) Every cyclic subgroup of order 2 or 4 in E has semi-II-property in G.

It follows directly and Step (3) that every subgroup of order 4 has semi-II-
property in G. Let A = (a) be a subgroup of order 2. By (4) and (5), G has a
minimal normal subgroup N < EN®(G) and N = (b} is of order 2. Obviously,
N < Z(G). If A = N, then it is clear that A has semi-II-property. Assume
A # N. Then H = AN is of order 4. By hypotheses, H has semi-II-property
in G. Suppose G = HT and HNT has II-property in T. If T' = G, then H has
II-property in G. It follows from Lemma 2.5 that A has II-property in G. If
T < G, then |G :T| =2 or 4 since |H| =4. If |G : T| = 2, then T is maximal
in G and hence N < T. Thereby, ANT = 1, otherwise H = AN < T and
G =HT =T. Also, AT = ANT = G. Thus A has semi-II-property in G in
this case. If |G : T| =4, then N £ T and Ty = NT is maximal in G, and then
T; is a complement of A in G and A has semi-II-property in G. Thus (6) holds.

(7) The final contradiction.

By (6) and Theorem A, E <SE,(G). It follows from G/FE is p-nilpotent that
G is p-nilpotent. This is the final contradiction and the theorem holds. |

Theorem 4.3. Let G be a group and p an odd prime divisor of |G|. Assume
that E is a normal subgroup of G with p-nilpotent quotient. Suppose that P is
a Sylow p-subgroup of E and Ng(P) is p-nilpotent. If every minimal subgroup
of P has semi-1l-property in G, then G is p-nilpotent.

Proof. Assume that the theorem is not true and let G be a counter example of
minimal order, we prove the theorem via the following steps.

(1) 0, (G) = 1.

If Oy (G) # 1, then the hypotheses still hold on G/O, (G). Hence we can
assume that G/O, (G) is p-nilpotent by the choice of G. It follows that G is
p-nilpotent, a contradiction and then O, (G) = 1.

(2) Op(E) # 1 and O,(F) = F(E) = F*(E).

Let N be a minimal normal subgroup of G contained in E. Then, by (1), p
devides |N|. By the hypotheses, every subgroup of order p in N has semi-II-
property in G. If all subgroups of order p in N are complemented in G, then
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by Lemma 2.6, NP is p-nilpotent and so is N. Since O,/ (G) =1 by (1), N isa
p-group. Assume there is a subgroup H of order p in N not complemented in
G. Then G is the only supplement of H in G. Hence H must have II-property
in G. By Lemma 2.3, N is a p-group and so O,(E) # 1.

Since Oy (E) < Oy (G) =1, it is easy to see that F(E) = O,(E). If F(E) #
F*(E), then we can choose a G-chief factor R/F(FE) with R C F*(E). Let
Q =O0P(R)=(a€ Rlpfla|) and O = O,(E)NOP(R). Then Q/O = R/0,(G)
is a chief factor of G and is characteristically simple. Choose M/O to be a
minimal normal subgroup of @/O. Then Q/O =2 M/O x --- x M/O. Clearly,
M is not solvable, otherwise, M C F(F). Let x be an element of F*(E) of
order p’. Then z induces an inner automorphism on each chief factor of F*(FE)
and so acts trivially on all abelian chief factors. In particular, z acts trivially
on all G-chief factors of F(E). By [4, A,12.3], « acts trivially on O,(E). Thus
all p’-elements in F*(FE) act trivially on O,(E). It follows that @ and so OP (M)
act trivially on O,(E). Clearly, M is not p-nilpotent, so M has a subgroup
X, which is not p-nilpotent, but all of its proper subgroups are p-nilpotent.
Then X = A x B, where A is a p-group and B is a cyclic p’-group. Assume
B = (z). Then z € F*(FE) and x acts trivially on O,(E). If all elements of
order p in A are contained in O,(E), then B acts trivially on A by [7, Satz
IV.5.12]. This is contrary to the choice of X. Thus there must be elements
of order p in A\O,(E). Then (z) does not avoid Q/O. If (z) has II-property
in G, then, by Lemma 2.3, @/O is a p-factor. This is not true and hence
(x) does not have II-property in G. On the other hand, since |z| = p, if (x)
is not complemented in G, then (x) is contained in every supplement of it in
G and it follows that (x) has II-property in G since () has semi-II-property
in G by the hypotheses. Therefore, (z) is complemented in G and so is in
M. Choose T to be a complement of (z) in M. Then |M : T| = p. By
considering the action of M on the right coset of T" in M, one can find that
M /Ty is isomorphic to a subgroup of S, the symmetric group of degree p.
Hence the Sylow p-subgroups of M /Ty are of order p. If T is not contained
in O,(E), then M/Ty is a p-group since M/M N O,(E) is simple. It follows
that z € OP(M) C T, a contradiction. Thus Tpy C O,(FE) and so the Sylow
p-subgroups of M/M N O,(E) = M/O are of order p. Since z € M \ O,(FE)
and |z| = p, every non trivial p-group of M/O is a conjugate of (x)O/O, that
is, for every subgroup of H of order p in M/O there is a subgroup H of order
p in M such that H = HO/O. Furthermore, by the choice of M, we see that
for every subgroup H of order p in Q there is also a subgroup H of order p in
Q such that H = HO/O.

Now, we claim that every subgroup of order p in /O is complemented in
G/O. Choose H = HO/O to be a subgroup of order p in Q/O, where H
is a subgroup of order p. Then by above argument, H is complemented in G.
Assume that T' is a complement of H in G. Then T is maximal in G. Let Q1 be
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a minimal supplement of O in @. Then, by [5, Lemma 2.3.4], @1 NO C ®(Q1).
So, Q1 is generated by all its p’-elements. Since, by the above argument,
O < Z(Q), we have O < Cg(Q1). Hence @1 < Q. Thus Q = OP(Q) < @1
and so @ = Q1. It follows that O = ONQ C ¢(Q) C ®(G) C T. Hence HO/O
is complemented in G/O and T'/O is a complement of it. Our claim holds.

It is easy to see that Ng,o(P/O) is p-nilpotent. Hence, by Lemma 2.6.
QP/O is p-nilpotent and so is Q. But this is not true and so (2) holds.

(3) The final contradiction.

By Theorem B and Step (2), we have that £ <SE(F). In particular, E
is supersolvable. Since O, (G) = 1 by (1), P, the Sylow p-subgroup of E, is
normal in E and hence is normal in G. Thus G = Ng(P) is p-nilpotent. The
theorem holds. |
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