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1. Introduction

Let (X,d) be a metric space. A geodesic joining x to y (where z,y € X)
is a map ~ from a closed interval [0,]] C R to X such that v(0) = z,v(l) =y
and d(y(t1),v(t2)) = [t1 — to| for all £1,t2 € [0,]. Thus v is an isometry and
d(x,y) = l. The image of v is called a geodesic (or metric) segment joining x and
y. When it is unique, this geodesic is denoted by [z,y]. We write ax @ (1 —a)y
for the unique point z in the geodesic segment joining from x to y such that
d(z,z) = (1 — a)d(z,y) and d(y,z) = ad(z,y) for a € [0,1]. The space X
is said to be a geodesic metric space if every two points of X are joined by a
geodesic, and X is said to be uniquely geodesic if there is exactly one geodesic
joining x and y for each x,y € X. A subset D of X is said to be convex if D
includes every geodesic segment joining any two of its points.

Following [3], a metric space X is said to be a CAT(0) space if it is geodesi-
cally connected and if every geodesic triangle in X is at least as thin as its com-
parison triangle in the Euclidean plane E2. It is well known that any complete,
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simply connected Riemannian manifold having nonpositive sectional curvature
is a CAT(0) space. Other examples include Pre-Hilbert spaces [3], R-trees [18],

the complex Hilbert ball with a hyperbolic metric [15], and many others. It
follows from [3] that CAT(0) spaces are uniquely geodesic metric spaces. The
fixed point theory in CAT(0) spaces was first studied by Kirk [16,17]. He

showed that every nonexpansive (single-valued) mapping defined on a bounded
closed convex subset of a complete CAT(0) space always has a fixed point.
Since then, there have been many researches concerning the existence and the
convergence of fixed points for single-valued and multi-valued mappings in such

spaces (e.g., see [2,5,7,8,18-20]).
The study of fixed points for nonexpansive multi-valued mappings using
the Pompeiu-Hausdorff metric was initiated by Markin [21]. Different itera-

tive processes have been used to approximate fixed points of nonexpansive and
quasi-nonexpansive multi-valued mappings; in particular, Sastry and Babu [24]
considered Mann and Ishikawa iterative processes for a multi-valued mapping T’
with a fixed point p and proved that these iterative processes converge to a fixed
point ¢ of T under certain conditions in Hilbert spaces. Moreover, they illus-
trated that fixed point ¢ may be different from p. Later, in 2007, Panyanak [22]
generalized the results of Sastry and Babu [24] to uniformly convex Banach
spaces and proved a convergence theorem of Mann iterative processes for a
mapping defined on a noncompact domain. Since then, the strong convergence
of the Mann and Ishikawa iterative processes for multi-valued mappings has
been rapidly developed, and many papers have appeared (e.g., see [6,12,25,28]).
Among other things, Shahzad and Zegeye [26] defined two types of Ishikawa it-
erative processes and proved strong convergence theorems for such iterative
processes involving quasi-nonexpansive multi-valued mappings in uniformly
convex Banach spaces. Recently, Abkar and Eslamian [1] established strong
and Delta-convergence theorems for the multi-step iterative process for a fi-
nite family of quasi-nonexpansive multi-valued mappings in complete CAT(0)
spaces.

In this paper, motivated by the above results, we propose a new one-step it-
erative process for a countable family of quasi-nonexpansive multi-valued map-
pings in CAT(0) spaces and prove strong and Delta-convergence theorems for
the proposed iterative process in CAT(0) spaces. We finally provide an example
to support our main result.

2. Preliminaries

For a nonempty set X, we let P(X) be the power set of X and 2¥ =
P(X) — {@}. For a metric space (X,d), x € X, and A, B € 2%, let B(x,¢) =
{y € X : d(z,y) < €}, dist(z, B) = inf{d(z,y) : y € B}, and h(A,B) =
sup{dist(x, B) : x € A}.
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We now recall some definitions of continuity for multi-valued mappings (see
[4,14] for more details). Let (X, d) and (Y, d) be metric spaces. A multi-valued
mapping T : X — 2Y is said to be

e Hausdorff upper semi-continuous at «x if for each € > 0, there is § > 0
such that h(Ty,Tx) < € for each y € B(x,0);

o Hausdorff lower semi-continuous at x if for each € > 0, there is § > 0
such that h(Tx,Ty) < € for each y € B(z,J);

o continuous at x if T' is Hausdorff upper and lower semi-continuous at
x.

We say that the multi-valued mapping 7' is continuous if it is continuous at
each point in X.

Let D be a nonempty subset of a metric space X. Let CB(D) and KC(D)
denote the families of nonempty closed bounded subsets and nonempty compact
convex subsets of D, respectively. The Pompeiu-Hausdorff distance [23] on
CB(D) is defined by

H(A, B) = max {sup dist(z, B), sup dist(y, A)} for A,B € CB(D),
T€A yeB

where dist(z, D) = inf{d(z,y) : y € D} is the distance from a point z to a

subset D.

Note that a continuous multi-valued mapping behaves like a continuous
single-valued mapping [14], that is, if a multi-valued mapping T': D — C'B(D)
is continuous then for every sequence {z,} in D such that lim, . z, = x, we
have lim,,_, oo H(Txz,,Tx) = 0.

The set of fixed points of a multi-valued mapping T : D — CB(D) will be
denoted by F(T)={x € D : x € Tx}.

Definition 2.1. A multi-valued mapping T : D — CB(D) is said to be
(i) nonexpansive [21] if H(Tx,Ty) < d(z,y), for all z,y € D,
(ii) quasi-nonezpansive [24] if F(T) # 0 and H(Tx,Tp) < d(z,p), for all
x €D and p e F(T),
(iii) hemicompact if for any sequence {x,} in D such that
lim,, oo dist(xy,, Txy,) = 0 there exists a subsequence {z,,} of {z,}
such that lim; ,oc z,, =p € D.

Definition 2.2. A multi-valued mapping T : D — CB(D) is said to satisfy
condition (E,) provided that

dist(z, Ty) < pdist(z, Tx) + d(z,y)

for each z,y € D. We say that T satisfies condition (E) whenever T satisfies
(E,) for some p > 1.

Remark 2.3. From the above definitions, it is clear that:
(i) if T is nonexpansive, then T satisfies the condition (E);
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(ii) if D is compact, then T is hemicompact.

Although the condition (E) implies the quasi-nonexpansiveness for single-
valued mappings [13], but it is not true for multi-valued mappings as the fol-
lowing example.

Example 2.4 ([27, Example 1]). Let D = [0,00) and T : D — CB(D) be
defined by
Tz = [x,22] for all z € D.

Then T satisfies condition (E) and is not quasi-nonexpansive.

Notice also that the classes of (multi-valued) quasi-nonexpansive mappings,
continuous mappings and mappings satisfying condition (E) are different (see
Examples 2.5-2.7).

Example 2.5 ([13, Example 2]|). Let D = [-1,1] and T : D — CB(D) be

defined by
_ {%msin(%)} if 0
{0} if x=0.
Then T is quasi-nonexpansive and does not satisfy condition (E).

Example 2.6 ([5, p. 984]). Let D =[0,1] and T : D — C'B(D) be defined by

To — {mQ} if 0<z<1;
{0} if =1,

Then T is quasi-nonexpansive and is not continuous. Notice also that the
mapping T'x = {xz} on [0, 1] is continuous but is not quasi-nonexpansive nor
satisfies condition (E).

Example 2.7 ([13, Example 3]). Let D = [-2,1] and T : D — CB(D) be

defined by
{{'“’2'} if —2<z<l;
Tr =

{-1} if z=1

Then T satisfies condition (E) and is not continuous.

The notion of the asymptotic center can be introduced in the general setting
of a CAT(0) space X as follows: Let {x,} be a bounded sequence in X. For
x € X, we define a mapping (-, {z,}) : X — [0,00) by

r(z,{z,}) = limsupd(x, x,).

n—roo

The asymptotic radius of {x,} is given by
r({z,}) =inf {r(z, {z,}) 2 € X},
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and the asymptotic center of {x,} is the set

A({zn}) ={z e X v (@ {za}) = ({za})}-
It is known by [10] that in a CAT(0) space, the asymptotic center A ({x,})
consists of exactly one point.

We now give the definition and collect some basic properties of the A-
convergence which will be used in the sequel.

Definition 2.8 ([19]). A sequence {z,} in a CAT(0) space X is said to A-
converge to x € X if x is the unique asymptotic center of {u,} for every
subsequence {u,} of {z,}. In this case, we write A-lim,,_,~, ©, = 2 and call z
the A-limit of {z,}.

Lemma 2.9 ([19]). Every bounded sequence in a CAT(0) space has a A-
convergent subsequence.

Lemma 2.10 ([9]). If D is a nonempty closed convex subset of a CAT(0) space
X and if {x,} is a bounded sequence in D, then the asymptotic center of {x,}
15 in D.
Lemma 2.11 ([L1]). Let {z,} be a sequence in a CAT(0) space X with
A({zn}) = {z}. If {u,} is a subsequence of {x,} with A({u,}) = {u} and
{d(zn,u)} converges, then x = u.
Lemma 2.12 ([3]). Let X be a geodesic metric space. The following are equiv-
alent:

(i) X is a CAT(0) space.

(i) X satisfies the (CN) inequality: If x,y € X and *2¥ is the midpoint

of x and y, then

coy)® 1 1 1
d (z, 5 y) < §d(z,x)2 + id(z,y)2 - Zd(a:,y)Q, forall z € X.

The following lemma is a generalization of the (CN) inequality which can
be found in [11].

Lemma 2.13. Let X be a CAT(0) space. Then
d(z, 2z ® (1 —N)y)? < Md(z,2)? + (1 = Nd(z,9)? — M1 — N)d(z,y)?,
for any A € 10,1] and xz,y,z € X.

In 2012, Dhompongsa et al. [8] introduced the following notation in CAT(0)
spaces: Let z1,...,x, be points in a CAT(0) space X and \q,...,\, € (0,1)
with "1 | A; = 1, we write

(2.1)

i )\1 )\2 )\n—l
Nzi = (1= Ay @ 1) © An
Z@ 2 o= )(1Anx1@1/\nx2@ © {15 o1 ) @ Aea
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The definition of € is an ordered one in the sense that it depends on the order
of points z1,...,2,. Under (2.1) we obtain that

d (@ )\iwi,y> < Z Aid(z;,y) for each y € X.

i=1 i=1
3. Main results

In this section, we first introduce a new one-step iterative process for a count-
able family of quasi-nonexpansive multi-valued mappings in CAT(0) spaces.
Let D be a nonempty closed convex subset of a CAT(0) space X and let {7;}
be a countable family of quasi-nonexpansive multi-valued mappings of D into
CB(D) with N2, F(T;) # 0 and T;p = {p} for all i € N and p € N2, F(T;).
For z1 € D, the sequence {z,} generated by

(3.1) Tpg1 = @)\g)yg), for all n € N,
i=0
where y%o) = Ty, yg) € Tz, and the sequences {/\ﬁf)} C (0,1) satisfying

Z?:o )‘gli) =1
Note that, if we put

Wi = @ syl
=0

(i,m) AP

where 6,7 = == N for+=0,1,...,m, then we get
o A
wim
(0,m) (1,m) (m—1,m)
_ (1 _ s(tm,m) on on W o o On (m—1)
= (1= simm) (1 S ® T s @@

& 5yl
_ (1 . 6;m,m)) (620”"’1%” @6T(L1,m71)y’21) OO 65Lm71,m71)y51mfl)) @5§Lm,m)y§lm)

o A A MY e mom), (m
=(1-armm) | paeme i e Y | @ sy
P > A > A
j=0 =0 j=0

_ (1 _ 67(Lm,m)) Wr(Lm—l) ® 5§Lm,m)y7(1m)

m—1

X A (m)

3=0 Wim=1 g An (m)
3 AQ) TS
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Therefore, the following result holds:

m—1 .
X A (m)
(3.2) wim = va(lm—l) ® An” (m).,
S AP S AT
5=0 §=0

The following two lemmas are useful and crucial for our main theorems.
Lemma 3.1. Let D be a nonempty closed convex subset of a complete CAT(0)
space X and let {T;} be a countable family of quasi-nonexpansive multi-valued
mappings of D into CB(D) with N2, F(T;) # 0 and Tip = {p} for alli € N
and p € N2, F(T;). For 1 € D, consider the sequence {x,} generated by
(3.1). Then, lim, o0 d(xy,p) exists for all p € N2 F(T;).

Proof. For p € N2, F(T;), we have by (3.1) that
d(wns1,p) = d (@ /\Sf)yé”7p>
i=0
<> A p)
=0
=D Adist(y, Tip)
=0

<Y ANVH(Tian, Tip)
=0

IN
M: -~

o

ADd(2,p)
= d(Zn, D).

This implies that lim,, . d(x,,p) exists for all p € N2, F(T;). O

Lemma 3.2. Let D be a nonempty closed convex subset of a complete CAT(0)
space X and let {T;} be a countable family of quasi-nonexpansive multi-valued
mappings of D into CB(D) with N2, F(T;) # 0 and T;p = {p} for all i €
N and p € N2, F(T;). For x1 € D, consider the sequence {x,} generated
by (3.1). If lim, oo 2D exists for all i € NU {0} and lies in (0,1), then
lim,, o dist(zy, Tizy) =0 for all i € N.
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Proof. For each p € N2, F(T;), we obtain by (3.1) that

n n 7
o AD
d(@ns1,p) = d (EB Aﬁf)yﬂp) —d | P ——v.p | =dW M, p).
i=0 i=0 » AP
j=0
It follows by Lemma 2.13 and (3.2) that
2
PPt (n)
d@nsp)? = d| S WD g 2y
i=o0 j=0
n—1
— _ )\nn
< 2 —aw Y p)? + o d  p)?
A A
j=0 j=0
SN
() 2 M
_An =0 d(Wﬁ”’l) ;n))z
) AW zn: AW
j=0 j=0
n—1 . n—1 .
= S AW Y ) 4 A A p)? = A0 ST AP awt T, y)?
=0 =0
2
) AW )
n— n n—
o = n— >\n n— n n
SRV ] T iy e I
=0 > Ay > Ay
7=0 7=0
n—1
(n) () (n—1)  (n)y2
= D N AW )
j=0
) A )
= 5| =" _ A _
< AP | I a2k o d(y( Y, p)?
=0 Dy A7) pDjy AY
2
) AW )
n— n n—
o j— n— >\n n— n n
= Z )\g)d %Wé 2 S5} ﬁ?h(z 1)717 + /\51 >d(y51 ),p)2
=0 > Ay > Ay
j=0 j=0

n—1
AT AP w2
7=0
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"2 0)
n—1 Z An n—1
G) | 5=0 2y o, ATV )
< Z An ﬁd(Wn ,P)° + ﬁd(yn ,D)
7=0 > A > a7
j=0 Jj=0
2 .
()
jgo)\n {n-1) (n=2) , (n=1)y2 (n) 5, (n) 2
- ————d(Wy 2|+ A d(yn",p)

(")ZA(J)d WD 2

= Z AP AW p)2 + ATV, p)? + A, p)?
j=0
AG=D 53 0)
LIS ) )z )\(n)z)\(a)d WD 2

> a7 1=0
3=0
n—3 )
< SoAPaw Y )2+ A0 a0 + AT VY p)?
j=0
n—3 .
AU DR
My p)? - 7%2]:0 AW yln=2)y2
> Ay
7=0
(n-1) "=\ ()
AU ;0 AU i
— a2 A ST AP a2
> A §=0
7=0
© 4 © 12 4 S Ry e = =) (h—1) (k)12
< A d(Wn 7p) +Z>\n yn 7p Z k (Wn > Yn )
k=1 k=1 ) )\nﬂ)
j=0
k—1 .
. . AT A
(k) 2 3=0 (k=1)  (k)\2
< I;)/\n d(zn,p)* = > — dWiED gy

k=1 Z /\(J)
j=o0
k=1 .
L A
i=0 _
= d(wn,p)? =Y ———dWFT )2
k=1 > /\glj)
j=0
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This implies that
n
(3.3) Z (W““ Y yN?2 < d(@n,p)? — d(zns1,p)>

Since 0 < )\%0) < Z )\(j) <1lforall k=1,2,...,n, we have 0 < A%O))\%k) <

. (k) §~k=1 3(5)

)\;k) Z?:o )\51]). So, 0 < )\( ))\(k) < % forall k =1,2,...,n. Then
(3.3) becomes

(3.4) D ADALAWEY, y9)? < d(an,p)? — d(znsr,p)*.

k=1

By Lemma 3.1 and the condition lim,, o A exists for all i € NU {0} and lies
n (0,1), we get that

(3.5) lim d(z,,yV) =0 and lim d(WFY yF)) =0 for all k > 2.
n—oo

n—0o0

Then, for k > 2, we have
d(n,y ) < d(w,, WFED) +d(WFY, 4 P)

k=1 (i)
=d | zp, @ v | + AW,y )
=0 Z )\nj)
7=0
k=l () ‘
<Y —d(@n,y) + AWy )
=0 )\%7)
7=0
k=14 G)
=3 —d(w, yD) + AW, ).
i=1 )\nj)
3=0

This implies by (3.5) that lim,, 00 d(mn,y,(L )) = 0 for all £ > 1. Since

dist(zp, Tizy,) < d(wn, ) for all ¢ € N, it follows that lim,, o dist(z,,, T;z,)
=0 forall i € N. O

In what follows we get a A-convergence theorem for a countable family of
quasi-nonexpansive multi-valued mappings in complete CAT(0) spaces.

Theorem 3.3. Let D be a nonempty closed convex subset of a complete CAT(0)
space X and let {T;} be a countable family of quasi-nonexpansive multi-valued
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mappings of D into KC(D) satisfying the condition (E). Assume that
NX,F(T;) # 0 and Tip = {p} for alli € N and p € N2, F(T;). Suppose
that lim,,_, o0 2D epists for alli € NU{0} and lies in (0,1). Then, the sequence
{z,} generated by (3.1) A-converges to a common fized point of {T;}.

Proof. By Lemmas 3.1 and 3.2, we have lim,_,o d(z,,p) exists for all p €
N2, F(T;) and lim,_, o dist(zy,, T;z,) = 0 for all ¢ € N. Thus the sequence
{zn} is bounded. We put wa(z,) := |JA({un}), where the union is taken
over all subsequences {u,} of {z,}. Let u € wa(z,). Then, there exists a
subsequence {u,} of {x,} such that A({u,}) = {u}. By Lemma 2.9, there
exists a subsequence {uy,} of {u,} such that A-lim; o u,; =z € D. We will
show that z € Ty z. Since T}z is compact, for all j € N, we can choose Yn; € T12
such that d(un;,yn;) = dist(un;, T12) and {y,,} has a convergent subsequence
{yn, } with limg_,o0 yn, = ¢ € T12z. By condition (E), we have

dist(un,,, T12) < pdist(wn, , T1tn, ) + d(tn,, 2).
Then we have

d(tny, > q) < d(ting s Yny,) + d(Yny, 9)
= dist(un,, T12) + d(Yn,, q)
< pdist(un,, Titing, ) + d(tny, 2) + d(Yny s q)-
This implies that
lim sup d(tn,,, ¢) < limsup d(u,, , 2).

k—o0 k—o0
By the uniqueness of asymptotic centers, we have z = g € Tyz. Similarly, it
can be shown that z € T;z for all i = 2,...,N. Then, z € N2, F(T;) and so
lim,, o d(z,, 2) exists. Suppose that u # z. By the uniqueness of asymptotic
centers, we have
lim sup d(uy,;, 2) < limsup d(uy,,u)
j—00 Jj—o0
< lim sup d(uy,, u)
n—oo

< lim sup d(uy, 2)

n—oo

n—oo

(
= limsup d(zy, 2)
= limsup d(un,, 2).
Jj—oo
This is a contradiction, hence u = z € N2, F(T;). This shows that wa(x,) C
N2, F(T;).
Next, we show that wa(z,) consists of exactly one point. Let {u,} be

a subsequence of {z,} with A({u,}) = {p} and let A({z,}) = {q}. Since
p € walx,) C NZ,F(T;), it follows that lim,, o d(xy, p) exists. By Lemma
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2.11, we obtain that p = ¢q. Hence, the sequence {x,,} A-converges to a common
fixed point of {T;}. O

The following result is a strong convergence theorem for a countable family
of quasi-nonexpansive multi-valued mappings in complete CAT(0) spaces.

Theorem 3.4. Let D be a nonempty closed convex subset of a complete CAT(0)
space X and let {T;} be a countable family of continuous and quasi-nonexpansive
multi-valued mappings of D into CB(D) with N2, F(T;) # 0 and T;p = {p}
for alli € N and p € N2, F(T;). Let the sequence {x,} generated by (3.1)
with limy,_ee A exist for all i € NU {0} and lie in (0,1). Assume that one
member of the family {T;} is hemicompact. Then, {x,} converges strongly to
a common fized point of {T;}.

Proof. By Lemma 3.2, lim,,_, dist(x,, T;x,) for all : € N. Without loss of
generality, we assume that 77 is hemicompact. Then there exists a subse-
quence {w,,} of {x,} such that lim; ., ,, = p € D. By continuity of T;,
we have lim;_, o dist(zy,,, Tiwy,) = dist(p, Tip) for all i € N. This implies that
dist(p, T;p) = 0 for all ¢ € N and hence p € N2, F(T;). It follows by Lemma
3.1 that {z,} converges strongly to p. g

Remark 3.5. Since any CAT(k) space is a CAT(x') space for &’ > £ (see [3]),
all our results immediately apply to any CAT(x) space with x < 0.

Finally, we give a numerical example supporting Theorems 3.3 and 3.4.

Example 3.6. Let X be a real line with the Euclidean norm and D = [0, 1].
Forx € D,i=1,2,..., we define mappings T; on D as follows:

Tix = [0, %} for all ¢ € N.

Let the sequence {z,} be generated by

(3.6) T = @ APy, forall n €N,
i=0
where y,(LO) = T, y,@ € T;z, and the sequences {,\S )} defined by
1 n S ial
2 \nt1)’ nzi+
Aﬁf) = n no1
1_ 1 _
”+1<k§12k>’ e
0, n < 1.

Obviously, T; is quasi-nonexpansive and satisfies condition (F) for all i € N
and T;(0) = {0} such that N2, F(T;) = {0}. It can be observed that all the
assumptions of Theorems 3.3 and 3.4 are satisfied.
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For any arbitrary 21 € D = [0, 1], we put yg) = %= for all i € N. Then, we
rewrite the algorithm (3.6) as follows:

mnH:)\;O)acn—l—u Ry 4 2" foralln e N,
5 10
where
1 3
7 3 0 0 0 0 0
1 1 1
3 G 3 0 0 0 0
3 3 3 11
g 16 32 32 0 0 0
2 1 1 1 1
(,\53')): 5 5 io 30 1 0 0
2(nn+1) 4(nn+1) S(nrfkl) 16(77LL+].) 32(:Z+1) 64(:LL+1) Qi(:LL+1)

The values of the sequence {x,,} with different n are reported in Table 1.

TABLE 1. The values of the sequence {z,} in Example 3.6.

r1 =0.11 | 21 =0.95

n| x, T
1 0.1100000 | 0.9500000
2 0.0440000 | 0.3800000
3 0.0183333 | 0.1583333
4 0.0081545 | 0.0704253
5 0.0037986 | 0.0328065
6 0.0018280 | 0.0157875
7 | 0.0009008 | 0.0077801
8 0.0004520 | 0.0039036
9 0.0002300 | 0.0019863
10 | 0.0001184 | 0.0010222

17 | 0.0000014 | 0.0000118
18 | 0.0000007 | 0.0000064
19 | 0.0000004 | 0.0000034
20 | 0.0000002 | 0.0000019

From Table 1, it is clear that {x,} converges to 0, where {0} = N2, F(T;).
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