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Abstract. Let S-Set be the category of S-sets, that is sets equipped
with an action of a semigroup S on them. Also, let S-Pos be the category

of S-posets, that is posets together with the actions compatible with the
orders on them. In this paper we show that the category S-Pos is a
radical extension of S-Set; that is there is a radical on the category S-
Pos, the order desolator radical, whose torsion-free class is S-Set.

To do this, first we give a precise definition of a radical on the cat-
egory S-Pos and construct some functors between the above mentioned
categories and finally we show that S-Pos is a radical extension of S-Set.
Keywords: Radical, S-set, S-poset.
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1. Introduction

The category of S-sets as well as that of ordered algebraic structures, in
particular, the category S-Pos of partially ordered S-sets, have always been of
interest to mathematicians (see, for example, [2–5,9, 10]).

The purpose of the present paper is to give a new perspective of the category
S-Pos. In fact, we use the notion of a radical and demonstrate that S-Pos
may be intuitively, but reasonably and accurately, characterized as a radical
extension of S-Set. That is, there exists a radical, namely the order desolator
radical, on S-Pos whose torsion-free class is S-Set, as a subclass of S-Pos (see
Section 4).

Although the radical and the torsion theory for S-sets were introduced and
investigated by Verena Guruswami [8], to generalize this notion on S-Pos, we
follow and generalize the category theoretical view of M.M. Clementino, D.
Dikranjan and W. Tholen in [7]. In our investigations, it seems necessary to
define the radical in a more general manner than what is given in [7], because
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S-Pos is not necessarily a normal category. Indeed, as a topos, the category
of S-sets is Barr-exact and protomodular, but lacks a zero object.

In this paper, we first introduce a preradical and a radical on S-Pos and
examine the algebraic and the categorical properties of these notions. We then
introduce, in the third section, the free, or ordering, functor from S-Set to
S-Pos and the order desolator functor from S-Pos to S-Set and investigate
their relationship. Finally, in the last short section, we demonstrate our claim
that S-Pos is a radical extension of S-Set. Now we briefly recall the necessary
concepts needed in the sequel.

Recall that, for a semigroup S, a (left) S-set is a set A equipped with an
action S×A → A such that, denoting the image of (s, a) by sa, (st)a = s(ta), for
every a ∈ A and s, t ∈ S. The category of all S-sets with action-preserving (or
equivariant) maps between them (f : A → B, f(sa) = sf(a)) will be denoted
by S-Set. We refer the readers to [9] for further information on the category
of S-sets.

A semigroup S is said to be a partially ordered semigroup (or simply, a
posemigroup) if it is a partially ordered set (poset) whose partial order is com-
patible with the binary operation; that is for all s, s1, s2 ∈ S,

s1 ≤ s2 ⇒ ss1 ≤ ss2 and s1s ≤ s2s.

Throughout this paper S is a posemigroup unless stated otherwise.
A poset (A,≤) is called a (left) S-poset if A is a (left) S-set such that the

action of S satisfies

a ≤ b ⇒ sa ≤ sb and s ≤ t ⇒ sa ≤ ta,

for all a, b ∈ A and s, t ∈ S. In this paper, S-sets are all left S-sets. The
morphisms of S-posets are equivariant as well as order preserving maps and
they are called S-poset morphisms. The family of S-posets and the morphisms
between them form a category which is denoted by S-Pos. Definitions and
results about the category S-Pos can be found in [5].

A poset (B,≤B) is said to be a sub-S-poset of an S-poset (A,≤A) if B is a
sub-S-set of A and ≤B = ≤A ∩B2.

A regular S-poset epimorphism is the coequalizer of a pair of S-poset mor-
phisms and dually a regular S-poset monomorphism is the equalizer of a pair
of S-poset morphisms. Similarly to [5], it is proved that an S-poset monomor-
phism f : A → B is regular if and only if f is an order-embedding; that is,

f(a1) ≤ f(a2) ⇔ a1 ≤ a2.

Given an S-set A, an equivalence relation θ on A is called an S-set congruence
(or briefly a congruence on A) if aθa′ implies (sa)θ(sa′) for every a, a′ ∈ A and
s ∈ S. The diagonal congruence ∆A on A is the set {(a, a) | a ∈ A} and the all
congruence A× A is denoted by ∇A. For any binary relation θ on an S-poset
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A, one can define the relation ≤θ on A as follows:

a ≤θ b ⇔ ∃a1, · · · , an, b1, · · · , bn; a ≤ a1θb1 ≤ · · · ≤ anθbn ≤ b.

Then, an S-set congruence θ on an S-poset A is an S-poset congruence if
and only if aθb whenever a ≤θ b ≤θ a. Given an S-poset A and an S-poset
congruence θ on A, the set A/θ of all the equivalence classes together with
the order a/θ ≤ a′/θ ⇔ a ≤θ b constitutes an S-poset with the natural action
sa/θ = (sa)/θ, for every s ∈ S and a/θ ∈ A/θ.

Throughout the paper our standard reference for category theory is [1] and
for universal algebra [6].

2. Algebraic properties of a radical in S-Pos

This section is devoted to introducing a preradical on S-Pos. We follow the
categorical methods used in [7] to define a preradical on S-Pos. In [7], the
authors work in a normal category with a zero object. They define a normal
preradical of the normal category C to be a functor assigning to every object
X ∈ C a normal subobject of X. This definition can be generalized to an
arbitrary category, but since we do not need the general version, we formulate
it just for the category of S-posets.

We denote the set of all congruences on an S-poset A by Con(A) and give
the following definition.

Definition 2.1. In the category S-Pos we define the following notions.

(i) A preradical (which may also be called a normal preradical) is an as-
signment r : A ⇝ r(A), assigning to each A ∈ S-Pos a congruence
r(A) ∈ Con(A) in such a way that every S-poset morphism f : A → B
induces the S-poset morphism r(f) : r(A) → r(B), meaning that
(f(a), f(a′)) ∈ r(B) if (a, a′) ∈ r(A), for every S-poset morphism
f : A → B. Note that r(A) and r(B) are, respectively, sub-S-posets of
A×A and B ×B, since r(A) ∈ Con(A), r(B) ∈ Con(B).

(ii) A preradical r is homomorphic whenever (a, a′) ∈ r(A) if and only if
(f(a), f(a′)) ∈ r(B), for every S-poset morphism f : A → B.

(iii) Given a subclass M of regular S-poset monomorphisms , a preradical
r is M-hereditary if r(f)−1(r(B)) = r(A), for every M-morphism f :
A → B. More explicitly, r(A) = {(a, a′) ∈ A × A | (f(a), f(a′)) ∈
r(B)}.

(iv) Given a subclass of S-poset epimorphisms E , a preradical r is E-cohere-
ditary if r(B) = r(f)(r(A)), for every E-morphism f : A → B.

(v) Finally, a preradical r is a radical if r(A/r(A)) = ∆A/r(A), for every
A ∈ S-Pos.

Remark 2.2. (i) Every epi-cohereditary preradical on S-Pos is a radical.
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(ii) Every homomorphic preradical on S-Pos is a radical.
To see (i), let r be an epi-coheredity preradical. We have to show that

r(A/r(A)) = ∆A/r(A), for every A ∈ S-Pos. To do so, consider the canonical
S-poset epimorphism π : A → A/r(A). Then we have r(A/r(A)) = π(r(A)),
by the hypothesis. So, (π(a), π(a′)) ∈ r(A/r(A)) if and only if (a, a′) ∈ r(A).
Thus, r(A/r(A)) = ∆A/r(A).

And to prove (ii), let r be a homomorphic preradical. Then, consider the
canonical S-poset epimorphism π : A → A/r(A), for every A ∈ S-Pos. Now,
since π is an S-poset epimorphism, we get the result analogously to the first
part.

Lemma 2.3. If r is a radical and θ ∈ Con(A) is included in r(A), for some
S-poset A, then r(A/θ) = r(A)/θ.

Proof. By the definition of a radical, we obtain the induced S-poset mor-
phism r(A) → r(A/θ) from the canonical S-poset epimorphism A → A/θ.
Hence, (a1, a2) ∈ r(A) implies that (a1/θ, a2/θ) ∈ r(A/θ). Now, since
(a1/θ, a2/θ) ∈ r(A)/θ means (a1, a2) ∈ r(A), we have (a1/θ, a2/θ) ∈ r(A/θ).
That is, r(A)/θ ⊆ r(A/θ).

For the converse inclusion, we consider the induced S-poset morphism
r(A/θ) → r(A/r(A)) = ∆A/r(A) from the S-poset morphism A/θ →
A/r(A) mapping every a/θ to a/r(A). Now, if (a1/θ, a2/θ) ∈ r(A/θ), then
(a1/r(A), a2/r(A)) ∈ r(A/r(A)). But, since r is a radical, r(A/r(A)) =
∆A/r(A) and hence (a1/r(A), a2/r(A)) ∈ ∆A/r(A). Namely a1/r(A) = a2/r(A).
Therefore, (a1, a2) ∈ r(A) and hence (a1/θ, a2/θ) ∈ r(A)/θ and r(A)/θ =
r(A/θ). □

With every preradical r in a category A, one can associate two classes of ob-
jects, namely r-torsion objects and r-torsion-free objects defined, respectively,
by

Tr = {A ∈ A | A ̸= ∅ and r(A) = ∇A},
Fr = {A ∈ A | r(A) = ∆A}.

Definition 2.4. An S-poset A is said to be a weak sub-S-poset of the S-
poset B, whenever there exists an S-poset monomorphism (not necessarily,
embedding) f : A → B.

Remark 2.5. The class Tr in S-Pos is closed under quotients and homomorphic
images, while Fr in S-Pos is closed under sub-S-posets, weak sub-S-posets, and
products.

To see this, first we show that Tr is closed under homomorphic images. To
do so, let f : A → B be an S-poset epimorphism with A ∈ Tr. Then, for every
b, b′ ∈ B, there exist a, a′ ∈ A such that b = f(a) and b′ = f(a′). But, since
r(A) = ∇A, we have (a, a′) ∈ r(A) and hence (b, b′) = (f(a), f(a′)) ∈ r(B).
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Now the closedness of Tr under quotients follows from the closedness of Tr
under homomorphic images, because A/θ is the image of the natural S-poset
epimorphism A → A/θ, for every θ ∈ Con(A).

Now, suppose f : A → B is a (regular) monomorphism and B ∈ Fr. Then,
for each (a, a′) ∈ r(A) we get (f(a), f(a′)) ∈ r(B) = ∆B . So f(a) = f(a′) and,
since f is a monomorphism, a = a′.

Suppose, finally, that {Ai}i∈I is a family of r-torsion-free objects. Then,
for each ((ai)i∈I , (a

′
i)i∈I) ∈ r(

∏
i∈I Ai), the projection S-poset morphism

πj :
∏

i∈I Ai → Aj gives (aj , a
′
j) ∈ r(Aj) = ∆Aj , for every j ∈ I. Hence,

(ai)i∈I = (a′i)i∈I and r(
∏

i∈I Ai) = ∆∏
i∈I Ai

.

Note 2.6. It is worth noting that for every A ∈ Tr and B ∈ Fr the set
Hom(A,B), of S-poset morphisms from A to B, is empty or if B has zero
elements, then it consists of the constant S-poset morphisms whose image is
a zero element in B. Indeed, if f : A → B is an S-poset morphism then
(f(a), f(a′)) ∈ r(B), for each (a, a′) ∈ A × A, since A ∈ Tr. Now r(B) = ∆B

implies that f(a) = f(a′), for every a, a′ ∈ A. That is, f is a constant S-poset
morphism whose image is a zero element.

Definition 2.7. (i) A class C of S-posets is called pretorsion-free if it is
closed under weak sub-S-posets and products.

(ii) A class C of S-posets is called pretorsion if it is closed under quotients
and coproducts.

Proposition 2.8. There exists a bijective correspondence between radicals of
S-Pos and pretorsion-free classes of objects of S-Pos.

Proof. Remark 2.5 shows that every radical induces a pretorsion-free class Fr.
Suppose, conversely, C is a pretorsion-free class of S-posets and A is an arbitrary
S-poset. Then, consider the set KA = {θ ∈ Con(A) | A/θ ∈ C} and take rC ,
assigning to every S-poset A the congruence

∩
KA ∈ Con(A). We show that

rC is a preradical. To do so, consider an S-poset morphism f : A → B.
Then, Ā = A/kerf is a weak sub-S-poset of B and every θ ∈ KB can be

restricted to θ|Ā ∈ Con(Ā). Now, we define the congruence θ̃ on A to be

θ̃ = {(a, a′) | (f(a), f(a′)) ∈ θ} and show that θ̃ ∈ KA. We note that kerf ⊆ θ̃

and A/θ̃ ≃ Ā/θ|Ā, which is a weak sub-S-poset of B/θ ∈ C. So, A/θ̃ ∈ C and

hence θ̃ ∈ KA. Therefore, rC(A) ⊆ θ̃, for every θ ∈ KB , which implies that
if (a, a′) ∈ rC(A) then (f(a), f(a′)) ∈ rC(B). It is clear that rC is a radical.
Because, every congruence θ ∈ KA/rC(A) corresponds to a congruence in KA,
by the Correspondence Theorem.

To complete the proof, we have to show that FrC = C, for every pretorsion-
free class C and r = rFr , for every radical r. The second one is an immediate
corollary of the next theorem, so we prove the first one. Indeed, for a given
pretorsion-free class C, each A ∈ C, since ∆A ∈ KA, we have rC(A) = ∆A and
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hence C ⊆ FrC . For the converse inclusion, let A ∈ FrC . Then rC(A) = ∆A,
which implies that ∆A =

∩
θ∈KA

θ. Now, since the canonical S-poset morphism

f : A →
∏

θ∈KA
A/θ has the kernel ∆A =

∩
θ∈KA

θ and C is closed under weak
sub-S-posets and products, we get the result. □

Theorem 2.9. For every preradical r on S-Pos, rFr is the smallest radical
greater than r under the inclusion order.

Proof. Given a preradical r, an S-poset A, and a congruence θ ∈ Con(A) with
r(A/θ) = ∆A/θ, consider the S-poset morphism r(A) → r(A/θ) = ∆A/θ,
induced by the canonical S-poset epimorphism A → A/θ. Then, for each
(a, a′) ∈ r(A), since r(A/θ) = ∆A/θ, we have a/θ = a′/θ. So, r(A) ⊆ θ,
for each θ ∈ KA and hence r(A) ⊆

∩
θ∈KA

θ = rFr (A). Now, suppose r̂ is a

radical greater than r and A is an S-poset. Then, r(A/θ) ⊆ r̂(A/θ), for each
θ ∈ Con(A). In particular, r(A/r̂(A)) ⊆ r̂(A/r̂(A)) = ∆A/r̂(A), since r̂ is a
radical. Therefore, r̂(A) ∈ KA and hence rFr (A) =

∩
θ∈KA

θ ⊆ r̂(A). □

3. Relations between the categories S-Set and S-Pos

In this section we are going to study the interrelationship between the cat-
egories of S-sets and S-posets. In fact, we construct a left adjoint for the
forgetful functor U : S-Pos → S-Set, the so-called ordering functor, where
S is a posemigroup. We then give the order desolator functor from S-Pos to
S-Set which plays an important role in the sequel. Although there is no ad-
joint situation between order desolator and ordering functors, in Theorem 3.9
and Corollary 4.3 we show that there is a good connection between these two
functors.

To do so, suppose S is a posemigroup. Then, we define an induced binary
relation ≤S by S on each S-set A as follows:

a ≤S b ⇐⇒ a = b or there exist s1, · · · , sn ∈ S and a1, · · · an ∈ A

such that

s1 ≤s2, s3 ≤s4, · · · sn−1 ≤sn, a = s1a1, s2a1 = s3a2, s4a2 = s5a3, · · · snan = b.

Remark 3.1. One can easily see that the binary relation ≤S is reflexive and
transitive but not necessarily antisymmetric. So, (A/∼,≤S) is a poset, where
a∼b if and only if a ≤S b and b ≤S a, for all a, b ∈ A, and a/∼ ≤S a′/∼ if
and only if a ≤S a′. Also, by a simple calculation, one can easily see that,
for each S-set over a posemigroup S, the poset (A/∼,≤S) together with the
natural action s(a/∼) := (sa)/∼, for each s ∈ S and a/∼ ∈ A/∼, constitutes
an S-poset.

Now, we have the following theorem.

Theorem 3.2. The forgetful functor U : S-Pos → S-Set has a left adjoint.
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Proof. To prove, we show that for every S-set A, the natural arrow ηA : A →
U(A/∼,≤S) mapping every a ∈ A to a/∼ is a U -universal arrow. Indeed, for
every S-set morphism f : A → U(B,≤), we define a map f̄ : (A/∼,≤S ) →
(B,≤) which maps every a/∼ to f(a) and show that f̄ is a unique S-poset
morphism which makes the following diagram commutative:

(3.1)

A

f
!!C

CC
CC

CC
CC
ηA // A/∼

f̄

��

B

First, we show that f̄ is order preserving, which implies that it is well-defined.
Suppose a ≤S b and a ̸= b. By the definition of ≤S , there exist s1, · · · , sn ∈ S
and a1, · · · an ∈ A such that:

s1 ≤ s2, s3 ≤ s4, · · · sn−1 ≤ sn, a = s1a1, s2a1 = s3a2, s4a2 = s5a3, · · · snan = b.

Hence we have,

f(a) = s1f(a1) ≤ s2f(a1) = s3f(a2) ≤ s4f(a2) = · · · snf(an) = f(b).

Now, if a/∼ = b/∼, meaning that a ≤S b and b ≤S a, then, since f̄ is order
preserving, we have f(a) ≤ f(b) ≤ f(a). Therefore, f(a) = f(b) and hence f̄
is well-defined.

Also, f̄ is equivariant, because f̄(s(a/∼)) = f̄((sa)/∼) = f(sa) = sf(a) =
sf̄(a/∼). So, f̄ is an S-poset morphism. The diagram (3.1) is commutative
because f̄ηA(a) = f̄(a/∼) = f(a), for every a ∈ A. And, finally, the uniqueness
of f̄ follows from the definition of f̄ . □

Notation 3.3. We denote the above obtained left adjoint functor of the forgetful
functor by F : S-Set → S-Pos and call it the ordering functor.

Remark 3.4. (i) The natural transformation η : Id → UF , assigning to
each A ∈ S-Set the S-poset morphism ηA : A → U(A/∼), is the unit
of the adjoint situation F ⊣ U .

(ii) The co-unit of the adjoint situation F ⊣ U has the identity function as
the underlying map.

In the sequel of this section, we consider another important functor, G : S-
Pos → S-Set, besides the forgetful functor which has a good relation with the
ordering functor, meaning that, there is a singleton G-solution set {µA : A →
GFA}, for each S-set A.

Let (A,≤) be an S-poset and αA be the smallest equivalence relation on A
containing the order of A. In fact, aαAb if and only if a connects to b by finitely
many edges with finitely many connectors c1, · · · , cn ∈ A as nods in the Hasse
diagram of the poset A. For instance, aαAb in the following.
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•c2
EEE

E

•a
DDD

D · · · •cn
DDD

D

•c1

��������
•b

The following remark is easily derived from the definition of αA and the
definition of S-posets.

Remark 3.5. (i) Given an S-poset A, the equivalence relation αA is a con-
gruence on A.

(ii) Given an S-poset A, the set A/αA together with the natural action
s(a/αA) := (sa)/αA, for each s ∈ S and a/αA ∈ A/αA, is an S-set.

Lemma 3.6. The assignment G : S-Pos → S-Set, assigning to every S-poset
A the S-set A/αA, is functorial.

Proof. Let f : A → B be an S-poset morphism. Then, G(f) : A/αA → B/αB,
mapping every a/αA to f(a)/αB, is an S-set morphism. Indeed, since f is order
preserving, f transfers the connectors between a and a′ in A to the connectors
between f(a) and f(a′). Also, G(f ◦ g) is clearly Gf ◦Gg. □

Note 3.7. There is a natural transformation from the forgetful functor to the
order desolator functor.

This is because, for every S-poset A, we define τA : UA → GA to be
τA(a) = a/αA. This mapping is equivariant, because τA(sa) = (sa)/αA =
sa/αA = sτA(a). Also, for every S-poset morphism f : (A,≤) → (B,≤), we
have the following commutative diagram.

U(A,≤) = A
τA //

Uf

��

G(A,≤) = A/αA

Gf

��

U(B,≤) = B
τB // G(B,≤) = B/αB

Indeed, Gf(τA(a)) = Gf(a/αA) = f(a)/αB = τB(Uf(a)), for every a ∈ A.

Definition 3.8. Let us call, the quotient functor of the forgetful functor, G
the order desolator functor.

Theorem 3.9. Let S be a posemigroup. Then, for every S-set A, the singleton

set containing the morphism µA = τ(A/∼) ◦ ηA : A → GFA = (A/∼,≤S)
α(A/∼)

,

mapping every a ∈ A to (a/∼)/α(A/∼), is a G-solution set, meaning that every
S-set morphism f : A → GB = B/αB factors through µA by an S-poset
morphism.
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Proof. Let f : A → B/αB be an S-set morphism. Then, we define
f̄ : (A/∼ ,≤S ) → (B,≤) by f̄(a/∼) = f(a). Completely analogous to the
proof of Theorem 3.2, one can see that the map f̄ is an S-poset morphism. Also,
for every a ∈ A, we have G(f̄) ◦ µA(a) = G(f̄)(a/∼/αA/∼) = f̄(a/∼) = f(a).
That is, f factors through µA. □

Note 3.10. Even though for every S-act A there exists a G-solution set, G is
not a right adjoint for the ordering functor, because G does not preserve small
limits (although it preserves some limits, see Theorem 3.11).

Limits of S-posets are formed on the level of S-sets. Specially, the terminal
S-poset (the product of the empty indexed family) is the singleton S-poset and
the product of a family of S-posets is their cartesian product, with componen-
twise action and order. Also, the equalizer of a pair f, g : A → B of S-poset
morphisms is given by E(f, g) = {a ∈ A | f(a) = g(a)}, with the action and
the order inherited from A.

Theorem 3.11. The order desolator functor preserves finite products.

Proof. Obviously G preserves the terminal object. So it is enough to show that
G(A×B) ≃ G(A)×G(B). To do so, define φ : G(A×B) → G(A)×G(B), map-
ping every ((a, b)/αA×B ∈ G(A × B) to (a/αA, b/αB) ∈ G(A) × G(B). First,
we show that the map φ is well-defined. Indeed, if (a, b)/αA×B = (a′, b′)/αA×B

then there are finitely many connectors, such as (c1, d1), · · · , (cn, dn), between
(a, b) and (a′, b′) in A×B. Of course, these connectors give rise to the existence
of the connectors c1, · · · , cn between a and a′ in A, and d1, · · · dn between b
and b′ in B. Meaning that

φ((a, b)/αA×B) = (a/αA, b/αB) = (a′/αA, b
′/αB) = φ((a′, b′)/αA×B).

Also, φ is one to one. Because, if

φ((a, b)/αA×B) = (a/αA, b/αB) = (a′/αA, b
′/αB) = φ((a′, b′)/αA×B),

then there are connectors ci, i = 1, . . . , n, between a and a′ in A, and dj ,
j = 1, . . . ,m, in B. These connectors can be transformed to the connectors
(ck, dk), k = 1, . . . ,max{m,n}, in A×B, by the reflexive property. Obviously,
φ is equivariant and onto. So, G(A×B) ≃ G(A)×G(B). Preserving the finite
product can be proved by induction. □

Although the order desolator functor preserves finite products, it does not
preserve equalizers, see the following example.

Example 3.12. Take S to be the one element posemigroup {e}. Then every
poset A can be considered as an S-poset with the trivial action, meaning that
ea = a, for every a ∈ A. Now consider the S-posets A and B with the trivial
action as follows:



A radical extension of the category of S-sets 1162

A B •a5

•2 •4 •a4

and •a2

EEE
E

•a3

yyy
y

•1 •3 •a1

Also, take the S-posets morphisms f, g : A → B to be f(i) = ai, for every
i = 1, . . . , 4, and g(1) = a3, g(2) = g(3) = a4, g(4) = a5. Then, we have
G(E(f, g)) = G(∅) = ∅, while E(G(f), G(g)) = {1/αa, 3/αA}.

4. S-Pos as a radical extension of S-Set

In the previous section we introduced two functors, the order desolator and
the ordering functors, between the categories S-Pos and S-Set. In this section,
we show that the category S-Pos is a radical extension of the category S-Set.
In fact, the order desolator functor gives rise to a radical in the category S-Pos
whose class of torsion-free objects is the pretorsion-free class generated from
the image of the ordering functor. To do so, we consider the assignment α,
assigning to each A ∈ S-Pos the congruence αA.

In the next theorem we see that α is a radical.

Theorem 4.1. The assignment α is a radical in S-Pos.

Proof. Clearly α is a preradial. So, to prove the result, it is enough to show
that α(A/αA) = ∆A/αA

, for every S-poset A. Consider the S-poset A/αA.
First, we note that the only order on A/αA is the inherent order of S, that
is b/αA ≤ b′/αA if there exist s1 ≤ s2 ∈ S and a ∈ A such that s1a/αA =
b/αA and b′/αA = s2a/αA. But, this implies that s1a ≤ s2a in A and hence
s1a/αA = s2a/αA. Therefore, the order on A/αA is ∆A/αA

, and therefore
α(A/αA) = ∆A/αA

. □

Here we give another good relationship between the ordering and the order
desolator functors. In fact, the torsion-free class associated to the radical α is
nothing but the pretorsion-free class F generated by the image of the ordering
functor F . Indeed, the image of the ordering functor F is not necessarily closed
under sub-S-posets and products and, by Remark 2.5, every pretorsion-free
class is closed under sub-S-posets and products. So, we consider the smallest
class F containing the image of F which is closed under taking sub-S-posets
and products, and give the next theorem.

Theorem 4.2. The radical rF is precisely the radical α.
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Proof. Applying Proposition 2.8, one can construct the radical rF mapping
each S-poset (A,≤) to the intersection of those congruences in Con(A) such
that the quotients of A over them belong to F . First, we note that αA is one of
these congruences. Indeed, A/αA = F (A/αA) = ((A/αA)/∼,≤S). The proof
of these equalities is completely analogous to the proof of Lemma 3.4.

Now, we show that αA is the smallest one among these congruences. To do
so, let θ ∈ Con(A) be such that A/θ ∈ F and a, b ∈ A be comparable with the
order in (A,≤). Then, since A/θ ∈ F and S-posets in F are considered as the
S-posets with the order ≤S , the classes a/θ and b/θ can not be comparable with
≤θ, unless a/θ = b/θ. Thus, for every two comparable elements a, b ∈ A we
have aθb. Now, transitivity of θ indicates that αA ⊆ θ. Therefore rF = α. □
Corollary 4.3. The torsion-free class Fα of α is the pretorsion-free class gen-
erated by the image of the ordering functor.

Proof. The result is obviously derived from Theorem 4.2 and Proposition 2.8.
□
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