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ABSTRACT. Let S-Set be the category of S-sets, that is sets equipped
with an action of a semigroup S on them. Also, let S-Pos be the category
of S-posets, that is posets together with the actions compatible with the
orders on them. In this paper we show that the category S-Pos is a
radical extension of S-Set; that is there is a radical on the category S-
Pos, the order desolator radical, whose torsion-free class is S-Set.

To do this, first we give a precise definition of a radical on the cat-
egory S-Pos and construct some functors between the above mentioned
categories and finally we show that S-Pos is a radical extension of S-Set.
Keywords: Radical, S-set, S-poset.
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1. Introduction

The category of S-sets as well as that of ordered algebraic structures, in
particular, the category S-Pos of partially ordered S-sets, have always been of
interest to mathematicians (see, for example, [2-5,9, 10]).

The purpose of the present paper is to give a new perspective of the category
S-Pos. In fact, we use the notion of a radical and demonstrate that S-Pos
may be intuitively, but reasonably and accurately, characterized as a radical
extension of S-Set. That is, there exists a radical, namely the order desolator
radical, on S-Pos whose torsion-free class is S-Set, as a subclass of S-Pos (see
Section 4).

Although the radical and the torsion theory for S-sets were introduced and
investigated by Verena Guruswami [3], to generalize this notion on S-Pos, we
follow and generalize the category theoretical view of M.M. Clementino, D.
Dikranjan and W. Tholen in [7]. In our investigations, it seems necessary to
define the radical in a more general manner than what is given in [7], because
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S-Pos is not necessarily a normal category. Indeed, as a topos, the category
of S-sets is Barr-exact and protomodular, but lacks a zero object.

In this paper, we first introduce a preradical and a radical on S-Pos and
examine the algebraic and the categorical properties of these notions. We then
introduce, in the third section, the free, or ordering, functor from S-Set to
S-Pos and the order desolator functor from S-Pos to S-Set and investigate
their relationship. Finally, in the last short section, we demonstrate our claim
that S-Pos is a radical extension of S-Set. Now we briefly recall the necessary
concepts needed in the sequel.

Recall that, for a semigroup S, a (left) S-set is a set A equipped with an
action Sx A — A such that, denoting the image of (s, a) by sa, (st)a = s(ta), for
every a € A and s,t € S. The category of all S-sets with action-preserving (or
equivariant) maps between them (f : A — B, f(sa) = sf(a)) will be denoted
by S-Set. We refer the readers to [9] for further information on the category
of S-sets.

A semigroup S is said to be a partially ordered semigroup (or simply, a
posemigroup) if it is a partially ordered set (poset) whose partial order is com-
patible with the binary operation; that is for all s,s1,s5 € 5,

s1 < 89 = 881 <ssy and s158 < s98.

Throughout this paper S is a posemigroup unless stated otherwise.
A poset (A, <) is called a (left) S-poset if A is a (left) S-set such that the
action of S satisfies

a<b=sa<sb and s<t= sa<ta,

for all a,b € A and s,t € S. In this paper, S-sets are all left S-sets. The
morphisms of S-posets are equivariant as well as order preserving maps and
they are called S-poset morphisms. The family of S-posets and the morphisms
between them form a category which is denoted by S-Pos. Definitions and
results about the category S-Pos can be found in [5].

A poset (B, <p) is said to be a sub-S-poset of an S-poset (A, <,) if B is a
sub-S-set of A and <p = <4 NB2.

A regular S-poset epimorphism is the coequalizer of a pair of S-poset mor-
phisms and dually a regular S-poset monomorphism is the equalizer of a pair
of S-poset morphisms. Similarly to [5], it is proved that an S-poset monomor-
phism f: A — B is regular if and only if f is an order-embedding; that is,

f(al) < f(ag) <~ a7 < as.

Given an S-set A, an equivalence relation 6 on A is called an S-set congruence
(or briefly a congruence on A) if afa’ implies (sa)f(sa’) for every a,a’ € A and
s € S. The diagonal congruence A4 on A is the set {(a,a)|a € A} and the all
congruence A X A is denoted by V 4. For any binary relation € on an S-poset
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A, one can define the relation <y on A as follows:
a<gb << Jar, - ,an,b1, 0 by a < a10by < -0 < apbby, <.

Then, an S-set congruence 6 on an S-poset A is an S-poset congruence if
and only if afb whenever a <g b <y a. Given an S-poset A and an S-poset
congruence 6 on A, the set A/ of all the equivalence classes together with
the order a/0 < a'/0 < a <y b constitutes an S-poset with the natural action
sa/0 = (sa)/0, for every s € S and a/6 € A/0.

Throughout the paper our standard reference for category theory is [1] and
for universal algebra [6].

2. Algebraic properties of a radical in S-Pos

This section is devoted to introducing a preradical on S-Pos. We follow the
categorical methods used in [7] to define a preradical on S-Pos. In [7], the
authors work in a normal category with a zero object. They define a normal
preradical of the normal category C to be a functor assigning to every object
X € C a normal subobject of X. This definition can be generalized to an
arbitrary category, but since we do not need the general version, we formulate
it just for the category of S-posets.

We denote the set of all congruences on an S-poset A by Con(A) and give
the following definition.

Definition 2.1. In the category S-Pos we define the following notions.

(i) A preradical (which may also be called a normal preradical) is an as-
signment r : A ~» r(A), assigning to each A € S-Pos a congruence
r(A) € Con(A) in such a way that every S-poset morphism f: A — B
induces the S-poset morphism r(f) : r(A) — r(B), meaning that
(f(a), f(a")) € r(B) if (a,a’) € r(A), for every S-poset morphism
f: A — B. Note that r(A4) and r(B) are, respectively, sub-S-posets of
A x A and B x B, since r(A) € Con(A4),r(B) € Con(B).

(ii) A preradical r is homomorphic whenever (a,a’) € r(A) if and only if
(f(a), f(a')) € r(B), for every S-poset morphism f: A — B.

(iii) Given a subclass M of regular S-poset monomorphisms , a preradical
r is M-hereditary if r(f) " (r(B)) = r(A), for every M-morphism f :
A — B. More explicitly, 7(A) = {(a,a’) € A x A | (f(a), f(a)) €
r(B)}-

(iv) Given a subclass of S-poset epimorphisms &, a preradical r is £-cohere-
ditary if r(B) = r(f)(r(A)), for every E-morphism f: A — B.

(v) Finally, a preradical r is a radical if 7(A/r(A)) = Aajpca), for every
A € S-Pos.

Remark 2.2. (i) Every epi-cohereditary preradical on S-Pos is a radical.
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(ii) Every homomorphic preradical on S-Pos is a radical.

To see (i), let r be an epi-coheredity preradical. We have to show that
r(A/r(A)) = Aajrcay, for every A € S-Pos. To do so, consider the canonical
S-poset epimorphism 7 : A — A/r(A). Then we have r(A/r(A)) = w(r(4)),
by the hypothesis. So, (w(a),n(a")) € r(A/r(A)) if and only if (a,a’) € r(4).
Thus, T(A/?“(A)) = AA/T(A)'

And to prove (ii), let » be a homomorphic preradical. Then, consider the
canonical S-poset epimorphism 7 : A — A/r(A), for every A € S-Pos. Now,
since 7 is an S-poset epimorphism, we get the result analogously to the first
part.

Lemma 2.3. If r is a radical and 6 € Con(A) is included in r(A), for some
S-poset A, then r(A/0) =r(A)/6.

Proof. By the definition of a radical, we obtain the induced S-poset mor-
phism r(A4) — r(A/#) from the canonical S-poset epimorphism A — A/6.
Hence, (a1,a2) € r(A) implies that (a1/6,a2/0) € r(A/6). Now, since
(a1/6,a2/0) € r(A)/0 means (a1,az2) € r(A), we have (a1/6,a2/6) € r(A/6).
That is, r(A)/0 C r(A/6).

For the converse inclusion, we consider the induced S-poset morphism
r(A/0) — r(A/r(A)) = Aujra) from the S-poset morphism A/0 —
A/r(A) mapping every a/0 to a/r(A). Now, if (a1/0,a2/0) € r(A/0), then
(a1/r(A),az2/r(A)) € r(A/r(A)). But, since r is a radical, r(A4/r(4)) =
A /r(a) and hence (a1/7(A), a2/r(A)) € Ay r(a). Namely a1 /r(A) = az/r(A).
Therefore, (a1,a2) € r(A) and hence (a1/6,a2/6) € r(A)/0 and r(A)/0 =
r(A/0). O

With every preradical r in a category A, one can associate two classes of ob-
jects, namely r-torsion objects and r-torsion-free objects defined, respectively,
by

T, ={Ac A| A+ and r(A) =V},
Fr={AcA|r(A)=A,}

Definition 2.4. An S-poset A is said to be a weak sub-S-poset of the S-
poset B, whenever there exists an S-poset monomorphism (not necessarily,
embedding) f: A — B.

Remark 2.5. The class 7, in S-Pos is closed under quotients and homomorphic
images, while F,. in S-Pos is closed under sub-S-posets, weak sub-S-posets, and
products.

To see this, first we show that 7, is closed under homomorphic images. To
do so, let f: A — B be an S-poset epimorphism with A € 7,.. Then, for every
b,/ € B, there exist a,a’ € A such that b = f(a) and V' = f(a’). But, since
r(A) = V4, we have (a,a’) € r(A) and hence (b,0') = (f(a), f(a')) € 7(B).
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Now the closedness of 7, under quotients follows from the closedness of 7,
under homomorphic images, because A/6 is the image of the natural S-poset
epimorphism A — A/0, for every 6 € Con(A).

Now, suppose f : A — B is a (regular) monomorphism and B € F,.. Then,
for each (a,a’) € r(A) we get (f(a), f(a')) € r(B) = Ap. So f(a) = f(a') and,
since f is a monomorphism, a = a’.

Suppose, finally, that {A4;};cr is a family of r-torsion-free objects. Then,
for each ((ai)icr,(aj)icr) € 7([l;e; As), the projection S-poset morphism
mi o [lier Ai = Aj gives (aj,a}) € 7(Aj) = Ay, for every j € I. Hence,
(ai)ier = (a})ier and r([[;e; Ai) = Ay, _, a,-

Note 2.6. It is worth noting that for every A € T, and B € F, the set
Hom(A, B), of S-poset morphisms from A to B, is empty or if B has zero
elements, then it consists of the constant S-poset morphisms whose image is
a zero element in B. Indeed, if f : A — B is an S-poset morphism then
(f(a), f(a')) € r(B), for each (a,a’) € A x A, since A € T,. Now r(B) = Ap
implies that f(a) = f(a’), for every a,a’ € A. That is, f is a constant S-poset
morphism whose image is a zero element.

Definition 2.7. (i) A class C of S-posets is called pretorsion-free if it is
closed under weak sub-S-posets and products.
(ii) A class C of S-posets is called pretorsion if it is closed under quotients
and coproducts.

Proposition 2.8. There exists a bijective correspondence between radicals of
S-Pos and pretorsion-free classes of objects of S-Pos.

Proof. Remark 2.5 shows that every radical induces a pretorsion-free class F,..
Suppose, conversely, C is a pretorsion-free class of S-posets and A is an arbitrary
S-poset. Then, consider the set K4 = {6 € Con(A) | A/6 € C} and take r¢,
assigning to every S-poset A the congruence (K4 € Con(A). We show that
r¢ is a preradical. To do so, consider an S-poset morphism f : A — B.
Then, A = A/kerf is a weak sub-S-poset of B and every § € Kp can be
restricted to 0|5 € Con(A). Now, we define the congruence 6 on A to be
0 = {(a,a’) | (f(a), f(a')) € 8} and show that 6 € K. We note that kerf C 0
and A/f ~ A/6| 5, which is a weak sub-S-poset of B/# € C. So, A/f € C and
hence 6 € K4. Therefore, re(A) C 0, for every 6 € Kp, which implies that
if (a,a’) € rc(A) then (f(a), f(a')) € r¢(B). It is clear that r¢ is a radical.
Because, every congruence ¢ € K4 /,.(4) corresponds to a congruence in K,
by the Correspondence Theorem.

To complete the proof, we have to show that 7., = C, for every pretorsion-
free class C and r = rg,, for every radical r. The second one is an immediate
corollary of the next theorem, so we prove the first one. Indeed, for a given
pretorsion-free class C, each A € C, since Ay € K4, we have r¢(A4) = A4 and
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hence C C F,.. For the converse inclusion, let A € F,.,. Then r¢c(A) = Ay,
which implies that Aq = [, i, 0- Now, since the canonical S-poset morphism
f A= Tlgex, A/0 has the kernel Ay = \ycxc, 0 and C is closed under weak
sub-S-posets and products, we get the result. O

Theorem 2.9. For every preradical v on S-Pos, rr, is the smallest radical
greater than r under the inclusion order.

Proof. Given a preradical r, an S-poset A, and a congruence 6 € Con(A) with
r(A/0) = Aajg, consider the S-poset morphism r(A) — r(A/0) = Ay,
induced by the canonical S-poset epimorphism A — A/f. Then, for each
(a,a’) € r(A), since r(A/0) = Ay, we have a/0 = a'/0. So, r(A) C 0,
for each 0 € K4 and hence r(A) C Nyex, & = r7.(A). Now, suppose 7 is a
radical greater than r and A is an S-poset. Then, r(A4/60) C #(A/0), for each
6 € Con(A). In particular, r(A/7(A)) C 7(A/7(A)) = Aaypa), since 7 is a
radical. Therefore, 7(A) € K4 and hence 77, (A) = Ny, 0 € 7(A). O

3. Relations between the categories S-Set and S-Pos

In this section we are going to study the interrelationship between the cat-
egories of S-sets and S-posets. In fact, we construct a left adjoint for the
forgetful functor U : S-Pos — S-Set, the so-called ordering functor, where
S is a posemigroup. We then give the order desolator functor from S-Pos to
S-Set which plays an important role in the sequel. Although there is no ad-
joint situation between order desolator and ordering functors, in Theorem 3.9
and Corollary 4.3 we show that there is a good connection between these two
functors.

To do so, suppose S is a posemigroup. Then, we define an induced binary
relation <g by S on each S-set A as follows:

a<gb < a=0> or there exist s1,---,s, € Sand a1, ---a, € A
such that
51 <52,83 <84, Sp_1 < 8p, @ = 81041, 5201 = 5302, S4A2 = 8503, - * Sy = b.

Remark 3.1. One can easily see that the binary relation <g is reflexive and
transitive but not necessarily antisymmetric. So, (A/~, <g) is a poset, where
a~b if and only if a <g b and b <g a, for all a,b € A, and a/~ <g a'/~ if
and only if a <g a’. Also, by a simple calculation, one can easily see that,
for each S-set over a posemigroup S, the poset (A/~, <g) together with the
natural action s(a/~) := (sa)/~, for each s € S and a/~ € A/~, constitutes
an S-poset.

Now, we have the following theorem.

Theorem 3.2. The forgetful functor U : S-Pos — S-Set has a left adjoint.
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Proof. To prove, we show that for every S-set A, the natural arrow 14 : A —
U(A/~,<g) mapping every a € A to a/~ is a U-universal arrow. Indeed, for
every S-set morphism f : A — U(B, <), we define a map f : (4/~,<g ) —
(B, <) which maps every a/~ to f(a) and show that f is a unique S-poset
morphism which makes the following diagram commutative:

Ai}A/N

(3.1) \ Js

B

First, we show that f is order preserving, which implies that it is well-defined.
Suppose a <g b and a # b. By the definition of <g, there exist s1,---,s, € S
and aq, - - a, € A such that:

51 < 89,53 < 84, 8p—1 < Sy, @ = 5101, 5201 = S302, 54042 = 5503, " * Spy = b.
Hence we have,

fla) = s1f(a1) < saf(ar) = s3f(az) < saf(az) = snf(an) = f(b).
Now, if a/~ = b/~, meaning that a <g b and b <g a, then, since f is order
preserving, we have f(a) < f(b) < f(a). Therefore, f(a) = f(b) and hence f
is well-defined.

Also, f is equivariant, because f(s(a/~)) = f((sa)/~) = f(sa) = sf(a) =
sf(a/~). So, f is an S-poset morphism. The diagram (3.1) is commutative
because fna(a) = f(a/~) = f(a), for every a € A. And, finally, the uniqueness
of f follows from the definition of f. O

Notation 3.3. We denote the above obtained left adjoint functor of the forgetful
functor by F': S-Set — S-Pos and call it the ordering functor.

Remark 3.4. (i) The natural transformation 7 : Id — UF, assigning to
each A € S-Set the S-poset morphism n4 : A — U(A/~), is the unit
of the adjoint situation F' 4 U.

(ii) The co-unit of the adjoint situation F' 4 U has the identity function as
the underlying map.

In the sequel of this section, we consider another important functor, G : S-
Pos — S-Set, besides the forgetful functor which has a good relation with the
ordering functor, meaning that, there is a singleton G-solution set {4 : A —
GF A}, for each S-set A.

Let (A, <) be an S-poset and a4 be the smallest equivalence relation on A
containing the order of A. In fact, aa4b if and only if a connects to b by finitely
many edges with finitely many connectors ¢y, -+, ¢, € A as nods in the Hasse
diagram of the poset A. For instance, ac4b in the following.
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The following remark is easily derived from the definition of a4 and the
definition of S-posets.

Remark 3.5. (i) Given an S-poset A, the equivalence relation a4 is a con-
gruence on A.

(ii) Given an S-poset A, the set A/ay together with the natural action
s(a/aa) = (sa)/aa, for each s € S and a/as € A/ag, is an S-set.

Lemma 3.6. The assignment G : S-Pos — S-Set, assigning to every S-poset
A the S-set Ajaa, is functorial.

Proof. Let f: A — B be an S-poset morphism. Then, G(f): A/as — B/ag,
mapping every a/aa to f(a)/ap, is an S-set morphism. Indeed, since f is order
preserving, f transfers the connectors between a and a’ in A to the connectors
between f(a) and f(a'). Also, G(f o g) is clearly Gf o Gg. O

Note 3.7. There is a natural transformation from the forgetful functor to the
order desolator functor.

This is because, for every S-poset A, we define 74 : UA — GA to be
Ta(a) = a/aas. This mapping is equivariant, because T4(sa) = (sa)/aas =
sa/as = sta(a). Also, for every S-poset morphism f: (A,<) — (B,<), we
have the following commutative diagram.

UA,<)=A—"23G(A,<)=Alax

Ufl lcf

U(B,<)=B—25G(B,<) = B/ap
Indeed, Gf(Ta(a)) = Gf(a/aa) = f(a)/ap = 75(Uf(a)), for every a € A.

Definition 3.8. Let us call, the quotient functor of the forgetful functor, G
the order desolator functor.

Theorem 3.9. Let S be a posemigroup. Then, for every S-set A, the singleton
set containing the morphism pa = Ta/vyona : A — GFA = %
mapping every a € A to (a/w)/a(A/N), is a G-solution set, meaning that every
S-set morphism f : A — GB = B/agp factors through pa by an S-poset
morphism.

7
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Proof. Let f : A — B/ap be an S-set morphism. Then, we define
f: (A/~,<s) — (B,<) by f(a/~) = f(a). Completely analogous to the
proof of Theorem 3.2, one can see that the map f is an S-poset morphism. Also,
for every a € A, we have G(f) o a(a) = G(f)(a/~/aa)~) = Fla/~) = f(a).
That is, f factors through pa. |

Note 3.10. Even though for every S-act A there exists a G-solution set, G is
not a right adjoint for the ordering functor, because G does not preserve small
limits (although it preserves some limits, see Theorem 3.11).

Limits of S-posets are formed on the level of S-sets. Specially, the terminal
S-poset (the product of the empty indexed family) is the singleton S-poset and
the product of a family of S-posets is their cartesian product, with componen-
twise action and order. Also, the equalizer of a pair f,g : A — B of S-poset
morphisms is given by E(f,g) = {a € A | f(a) = g(a)}, with the action and
the order inherited from A.

Theorem 3.11. The order desolator functor preserves finite products.

Proof. Obviously G preserves the terminal object. So it is enough to show that
G(Ax B) ~ G(A)xG(B). To do so, define ¢ : G(Ax B) = G(A) x G(B), map-
ping every ((a,b)/aaxp € G(A x B) to (a/aa,b/ap) € G(A) x G(B). First,
we show that the map ¢ is well-defined. Indeed, if (a,b)/aaxp = (a’,V)/aaxs
then there are finitely many connectors, such as (¢1,d1), -, (¢n, dy,), between
(a,b) and (a’,V’) in Ax B. Of course, these connectors give rise to the existence
of the connectors ci,--- ,c, between a and a’ in A, and d,---d, between b
and o’ in B. Meaning that

¢((a,b)/aaxp) = (a/aa,b/ap) = (d'/aa,b [ap) = o((d V) /aaxs).
Also, ¢ is one to one. Because, if
¢((a,b)/aaxp) = (a/aa,b/ap) = (d'/aa,b /ap) = o((d" V) /aaxs),

then there are connectors ¢;, i = 1,...,n, between a and o’ in A, and d;,
j =1,...,m, in B. These connectors can be transformed to the connectors
(ck,dr), k=1,...,max{m,n}, in A x B, by the reflexive property. Obviously,
¢ is equivariant and onto. So, G(A x B) ~ G(A) x G(B). Preserving the finite
product can be proved by induction. O

Although the order desolator functor preserves finite products, it does not
preserve equalizers, see the following example.

Example 3.12. Take S to be the one element posemigroup {e}. Then every
poset A can be considered as an S-poset with the trivial action, meaning that
ea = a, for every a € A. Now consider the S-posets A and B with the trivial
action as follows:
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A B °u
®) oy ®uy

and e L

N

o o3

Also, take the S-posets morphisms f,g: A — B to be f(i) = a;, for every
i =1,...,4, and g(1) = as,9(2) = g(3) = a4,9(4) = as. Then, we have
G(E(f,9)) = G(0) = 0, while E(G(f),G(g)) = {1/, 3/aa}.

4. S-Pos as a radical extension of S-Set

In the previous section we introduced two functors, the order desolator and
the ordering functors, between the categories S-Pos and S-Set. In this section,
we show that the category S-Pos is a radical extension of the category S-Set.
In fact, the order desolator functor gives rise to a radical in the category S-Pos
whose class of torsion-free objects is the pretorsion-free class generated from
the image of the ordering functor. To do so, we consider the assignment «,
assigning to each A € S-Pos the congruence o 4.

In the next theorem we see that « is a radical.

Theorem 4.1. The assignment « is a radical in S-Pos.

Proof. Clearly « is a preradial. So, to prove the result, it is enough to show
that a(A/aa) = Aaja,, for every S-poset A. Consider the S-poset A/ca.
First, we note that the only order on A/ay is the inherent order of S, that
is b/ag < b'/ay if there exist 1 < s3 € S and a € A such that sja/ay =
b/ay and b'/aa = saa/aa. But, this implies that sja < spa in A and hence
sia/ay = sza/as. Therefore, the order on A/as is Ayyq,, and therefore
a(A/aA):AA/aA. U

Here we give another good relationship between the ordering and the order
desolator functors. In fact, the torsion-free class associated to the radical « is
nothing but the pretorsion-free class F generated by the image of the ordering
functor F'. Indeed, the image of the ordering functor F' is not necessarily closed
under sub-S-posets and products and, by Remark 2.5, every pretorsion-free
class is closed under sub-S-posets and products. So, we consider the smallest
class F containing the image of F' which is closed under taking sub-S-posets
and products, and give the next theorem.

Theorem 4.2. The radical v is precisely the radical «.
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Proof. Applying Proposition 2.8, one can construct the radical r» mapping
each S-poset (A, <) to the intersection of those congruences in Con(A) such
that the quotients of A over them belong to F. First, we note that a4 is one of
these congruences. Indeed, A/ay = F(A/aa) = ((A/as)/~,<g). The proof
of these equalities is completely analogous to the proof of Lemma 3.4.

Now, we show that a4 is the smallest one among these congruences. To do
s0, let 8 € Con(A) be such that A/§ € F and a,b € A be comparable with the
order in (A, <). Then, since A/8 € F and S-posets in F are considered as the
S-posets with the order <g, the classes a/6 and b/6 can not be comparable with
<p, unless a/0 = b/f. Thus, for every two comparable elements a,b € A we
have afb. Now, transitivity of 6 indicates that ay C 6. Therefore rr = . 0O

Corollary 4.3. The torsion-free class F, of « is the pretorsion-free class gen-
erated by the image of the ordering functor.

Proof. The result is obviously derived from Theorem 4.2 and Proposition 2.8.
O
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