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ABSTRACT. Given a compact space X and a commutative Banach alge-
bra A, the character spaces of A-valued function algebras on X are in-
vestigated. The class of natural A-valued function algebras, those whose
characters can be described by means of characters of A and point eval-
uation homomorphisms, is introduced and studied. For an admissible
Banach A-valued function algebra A on X, conditions under which the
character space M(A) is homeomorphic to M(A) x M(A) are presented,
where 20 = C(X) N A is the subalgebra of A consisting of scalar-valued
functions. An illustration of the results is given by some examples.
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MSC(2010): Primary 46J10; Secondary 46J20.

1. Introduction and preliminaries

Let A be a commutative unital Banach algebra over the complex field C.
Every nonzero homomorphism ¢ : A — C is called a character of A. Denoted
by M(A), the set of all characters of A is nonempty and its elements are
automatically continuous [13, Lemma 2.1.5]. Consider the Gelfand transform
A = {a:a e A}, where a : 9M(A) — C is defined by a(¢) = ¢(a). The
Gelfand topology of M(A) is the weakest topology with respect to which every
a € A is continuous. Endowed with the Gelfand topology, M(A) is compact
and Hausdorff. By [13, Theorem 2.1.8], an ideal M in A is maximal if and only
if M = ker ¢, for some ¢ € M(A). For this reason, sometimes MM(A) is called
the mazximal ideal space of A. For more on the theory of commutative Banach
algebras see, for example, [5,0,13,19].

1.1. Function Algebras. Let X be a compact Hausdorff space and C'(X) be
the Banach algebra of all continuous functions f : X — C equipped with the
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The character space of vector-valued function algebras 1196

uniform norm || f||x = sup{|f(x)| : x € X}. A subalgebra 2 of C(X) is called a
function algebra on X if 2 separates the points of X and contains the constant

functions. If 2 is equipped with some complete algebra norm || -||, then 2 is
called a Banach function algebra. If the norm || -|| of 2 is equivalent to the
uniform norm || - || x, then 2 is called a uniform algebra.

Identifying the character space of a Banach function algebra 2 has been
always a problem of interest for mathematicians in this field. For every = € X,
the evaluation homomorphism e, : f — f(x) is a character of 2, and the map-
ping J : X — M(A), z — €, imbeds X homeomorphically as a compact subset
of M(A). If J is surjective, one calls A natural [6, Chapter 4]. In this case, the
character space 9 (2l) is identical to X. Note that every semisimple commuta-
tive Banach algebra A can be considered, through its Gelfand representation,
as a natural Banach function algebra on its character space Mt(A).

A relation between the character space 9(2) of a Banach function algebra
2l and the character space MM(2A) of its uniform closure A was revealed in [10]
as follows.

Theorem 1.1 (Honary [10]). The restriction map D(A) — M(A), ¥ — Pla,
is a homeomorphism if and only if || f|| < ||fllx, for all f € 2.

The above result appears to be very useful in identifying the character spaces
in a wide class of Banach function algebras. We establish an analogue of this
result for vector-valued function algebras in Section 3.

1.2. Vector-valued function algebras. Let A be a commutative unital Ba-
nach algebra, and let C(X, A) be the space of all A-valued continuous functions
on X. Algebraic operations and the uniform norm || - || x on C(X, A) are defined
in the obvious way.

Definition 1.2 (c.f. [3,15]). A subalgebra A of C(X, A) is called an A-valued
function algebra on X if (1) A contains the constant functions X — A, z — a,
for all a € A, and (2) A separates the points of X in the sense that, for every
pair x,y € X with x # y, and for every maximal ideal M of A, there exists
some f € A such that f(z) — f(y) ¢ M. If A is endowed with some algebra
norm ||| - || such that the restriction of || - ||| to A is equivalent to the original
norm of A and ||f|lx < ||f|l, for every f € A, then A is called a normed A-
valued function algebra on X. If the given norm is complete, then A is called
a Banach A-valued function algebra. If the given norm is equivalent to the

uniform norm || - ||x, then A is called an A-valued uniform algebra. When no
confusion can arise, we use the same notation || || for the norm of A.
Continuing the work of Yood [18], Hausner [9] proved that 7 is a character

of C(X, A) if, and only if, there exist a point € X and a character ¢ € 9t(A)
such that 7(f) = ¢(f(x)), for all f € C(X, A), whence M(C(X, A)) is home-
omorphic to X x M(A). (In this regard, see [1].) We call a Banach A-valued
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function algebra natural if, like C(X, A), its character space is identical to
X x 9M(A). For instance, in Example 4.1, we will see that the A-valued Lips-
chitz algebra Lip(X, A) is natural; see also [7,11]. Natural A-valued function
algebras are studied in Section 2.

1.3. Notations and conventions. Throughout, X is a compact Hausdorff
space, and A is a semisimple commutative unital Banach algebra. The unit
element of A is denoted by 1, and the set of invertible elements of A is denoted
by Inv(A). If f: X — C is a function and a € A, we write fa to denote the A-
valued function X — A, z — f(x)a. If 2 is a function algebra on X, we let AA
be the linear span of {fa : f € 2, a € A}, so that any element f € A is of the
form f = fia1 + -+ + frna, with f; € A and a; € A. Given an element a € A,
we use the same notation a for the constant function X — A given by a(x) = a,
for all x € X, and consider A as a closed subalgebra of C'(X, A). Since A has
a unit element 1, we identify C with the closed subalgebra C1 of A. Whence
every continuous function f : X — C can be considered as the continuous
A-valued function f1 :x — f(x)1. We drop 1 using the same notation f for
this A-valued function and adopt the identification C(X) = C(X)1 as a closed
subalgebra of C'(X, A). Finally, for a family M of A-valued functions on X, a
point z € X, and a character ¢ € M(A), we set

M(z) ={f(z) : feM}, SM]={pof:feM}
2. Natural vector-valued function algebras

Let A be an A-valued function algebra on X. Assume that M is a maximal
ideal of A, xy € X, and set

(2.1) M={feA: flxg) € M}.

The fact that M is an ideal of A is obvious. We prove that M is maximal. Take
a function g € A\ M so that g(z¢) ¢ M. Since M is maximal in A, there exist
a € M and b € A such that 1 = a + g(z0)b. Consider b as a constant function
of X into A and let f = 1 — gb. Then f(z9) = a € M so that f € M and
1 = f 4 gb which means that the ideal of A generated by M U {g} is equal to
A. Hence M is maximal in A.

Definition 2.1. An A-valued function algebra A on X is called natural on
X, if every maximal ideal M of A is of the form (2.1), for some zp € X and
M e M(A).

In case A = C, natural A-valued function algebras coincide with natural
(complex) function algebras.

Theorem 2.2. Let A be an A-valued function algebra on X. If M is a maximal
ideal in A and M(xg) # A, for some x¢ € X, then

(1) M(zo) is a mazimal ideal of A;



The character space of vector-valued function algebras 1198

(2) M(z) = A for x # xg;
B) M={feA: flxzg) € M}, where M = M(zp).

Proof. Tt is easily verified that M(xo) is an ideal. We show that M(z) is
maximal. Assume that a ¢ M(xp). Then a, as a constant function on X,
does not belong to M. Hence, the ideal of A generated by M U {a} is equal
to A meaning that 1 = f + ag, for some f € M and g € A. In particular,
1 = f(xo)+ag(xo) which implies that the ideal of A generated by M(zo)U{a}
is equal to A. Hence, M(z) is maximal.

Now, assume that z # xg. Since A separates the points of X (Definition
1.2), for the maximal ideal M(xg) in A, there is a function f € A such that
f(x) = f(zo) ¢ M(xo). Define g(s) = f(s) — f(x) so that g(xo) ¢ M(xo). This
implies that g ¢ M. Since M is maximal, there are h € M and k € A such that
h+ kg =1. Hence, 1 = h(z) € M(z) and M(z) = A. O

It is proved in [1] that the algebra C'(X, A) satisfies all conditions in Theorem
2.2. Therefore C'(X, A) is natural.

Corollary 2.3. Let A be an A-valued function algebra on X.

(1) The algebra A is natural if, and only if, for every proper ideal T in A,
there exists some xg € X such that I(xo) # A.

(2) IfZ is an ideal in A such that Z(xo) and Z(x1), for xg # x1, are proper
ideals in A, then T cannot be mazximal in A.

The next discussion requires a concept of zero sets. The zero set of a function
f X — Ais defined as Z(f) = {x : f(z) = 0}. This concept of zero set,
however, is not useful here in our discussion because, in general, the algebra A
may contain nonzero singular elements. Instead, the following slightly modified
version of this concept appears to be very useful.

Definition 2.4. For a function f: X — A, the singular set of f is defined to
be

(2.2) Zs(f)={x e X : f(x) ¢ Inv(A)}.
The following is an analogy of [6, Proposition 4.1.5 (i)].

Theorem 2.5. Let A be a Banach A-valued function algebra on X. Then A
is natural if, and only if, for each finite set {f1,..., fu} of elements in A with
Mj=1 Zs(fj) = 0, there exist g1,..., g, € A such that

Jig1 + -+ fogn = 1.

Proof. (=) Suppose that A is natural and, for a finite set {f1,..., fn} in A, as-
sume that Zs(f1)N- - -NZs(fr) = 0. Let Z be the ideal generated by {f1,..., fn}
If T # A, then, since A is natural, by Corollary 2.3, there exists a point o € X
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such that Z(z¢) # A. In particular, the elements f1(xo), ..., fn(xo) are all sin-
gular in A, which means that xg € Zs(f1)N---NZs(fy), a contradiction. There-
fore, Z = A whence there exist ¢1,...,9, € A such that figs +---+ fagn = 1.

(<) To show that A is natural, we take a maximal ideal M of A and, using
Corollary 2.3, we show that M(zg) # A, for some g € X. Assume, towards a
contradiction, that, for every x € X, there exists a function f, € M such that
fz(z) = 1. Set V, = f*(Inv(A)). Then {V, : z € X} is an open covering of
the compact space X. So there exist finitely many points z1,...,2, € X such
that X C V, U-- UV, . Then Zy(fy,)N---NZs(fz,) = 0. By the assumption,
there exist functions ¢1,...,gn € A such that fy, 91 +--- + fz, 9, = 1. Hence,
1 € M, which is a contradiction. O

Let f € A and suppose that Zs(f) = 0 so that f(X) C Inv(A). Since
the inverse mapping a — a~! of Inv(A) onto itself is continuous, the mapping
2+ f(z)7!, denoted by 1/f, is a continuous A-valued function on X. Hence
f is invertible in C(X, A). However, f may not be invertible in A. Let us call
A a full subalgebra of C(X, A) if every f € A that is invertible in C(X, A4) is
invertible in A. The following is an analogy of [2, Theorem 2.1].

Theorem 2.6. Let A be a Banach A-valued function algebra on X such that
A, the uniform closure of A, is natural. If 1/f € A whenever f € A and
Zs(f) =0, then A is natural.

Proof. We apply Theorem 2.5 to prove that A is natural. Let fi,..., f, be
elements in A such that Zs(f1) N---N Zs(f,) = 0. We prove the existence
of a finite set {g1,...,gn} of elements in A such that fig1 + -+ + fogn = 1.
Regarding fi,..., f, as elements of A, since A is natural, again by Theorem
2.5, there exist hy,...,h, in A such that fihy 4+ --- + fnh, = 1. For each hj,

there is some g; € A such that ||h; — g;||x < (Z?Zl Hfj||x)71. Thus

@3) [[1=" g = |2 fihs = D figsl| < D2 Iillxlns = gillx < 1.
j=1 j=1 j=1 j=1

Hence, for every z € X, f(zx) = f;j(2)g;(z) is an invertible element of A,
so that for the function f =) f;g;, which belongs to A, we have Zs(f) = 0.
By the assumption, there is a function g in A such that 1 = fg =" f;(g;9).
Now, Theorem 2.5 shows that A is natural. O

An application of the above theorem is given in Example 4.1.

Let A be a Banach A-valued function algebra. For every point z € X and
character ¢ € M(A) define

€209 A= C, g00(f) =ex(dof) =o(f(2))
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Then ¢, ¢ ¢ is a character of A with ker(e,0¢) = {f € A: f(x) € ker ¢}, which
of course is of the form (2.1). Define

(2.4) J: X xMA) = MA), (z,0) = ez

Theorem 2.7. The mapping J is a homeomorphism of X x M(A) onto a
compact subset of M(A). If A is natural, then IM(A) is homeomorphic to
X x M(A).

Proof. Take z € X, ¢ € M(A), and set 79 = £, 0¢. Let W be a neighbourhood
of 79 in M(A) of the form

W ={reMA) :|7(fi) —10(fi)] <&, 1 <i<mn},
where f1,..., f, € A. Take

U={yeX:|fily) - filx)| <e/2,1<i<n},
V ={¢ e M(A) : [¢(fi(x)) — o(fi(z))| <&/2,1 <i <nj.
Then U is a neighbourhood of = in X and V is a neighbourhood of ¢ in 9t(A),

so that U x V is a neighbourhood of (z,¢) in X x M(A). If (y,¢) e U xV
then, for every i (1 <1i < n),

[Y(fi(y)) — o(fi(@))] < [(fi(y)) — »(fs(2))] + [(fi(z)) — ¢(fi(x))]
<[l fi(y) = fi(x)| +e/2<e/2+¢/2 =e.

This shows that €, ¢ € W and thus J is continuous. Finally, if A is natural
then every maximal ideal of A is of the form (2.1) which means that every
character 7 € M(A) is of the form 7 =€, ¢ ¢, for some z € X and ¢ € M(A).
Hence, J is a surjection and thus a homeomorphism. O

3. Characters on vector-valued function algebras

We turn to a more general case where a vector-valued function algebra may
not be natural. Let A be a Banach A-valued function algebra. We show that,
under certain conditions, the character space M(A) is identical to M (A) x
M(A), where A = C(X) N A is the subalgebra of A consisting of scalar-valued
functions. To this end, we should restrict ourself to the class of admissible
algebras. If f € A and ¢ € M(A), it is clear that ¢ o f € C(X); it is not,
however, clear whether the A-valued function (¢o f)1 belongs to A. In fact, [3,
Example 2.4] shows that it may very well happen that (¢ o f)1 ¢ A.

Definition 3.1 ([3]). The A-valued function algebra A is called admissible if
(3.1) {(po fll: fe A, p € MA)} C A.
Note that A is admissible if, and only if, ¢[A]1 C A, for all ¢ € M(A).
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Admissible vector-valued function algebras exist around in abundant. Some
typical examples are C(X, A), Lip(X, A), P(K, A), R(K, A), etc. Tensor prod-
ucts of the form 2A ® A, where 2 is a (Banach) function algebra on X, can
be seen as admissible A-valued function algebras. (More details are given in
Example 4.4).

During this section, we assume that A is admissible and set 2 = AN C(X).
Then 2 is the subalgebra of A consisting of all complex functions in A, it forms
a complex function algebra by itself, and 24 = ¢[A], for all ¢ € MM(A). Our
aim is to give a description of maximal ideals in A. To begin, take a character
¢ € M(A) and a maximal ideal M of 2, and set

(3.2) M={feA:pofeM}

Then M is a maximal ideal of A. One way to see this (though it can be seen
directly) is as follows. Take ¢ € () with M = ker ¢ and define

Ypog:A—=C, Poo(f)=1v(dof)
Note that ¥ (¢ o f) is meaningful since ¢ o f € 2. The functional 1) ¢ ¢ is a

character of A with ker(¢ ¢ ¢) = M. Hence M is a maximal ideal of A. The
main question is whether any maximal ideal M of A is of the form (3.2).

Lemma 3.2. A mazimal ideal M of A is of the form (3.2) if and only if
GM] # A for some ¢ € M(A).

Proof. Tf M is of the form (3.2) then clearly ¢[M] # 2. Conversely, assume
that ¢[M] # 2 for some ¢ € M(A). Then ¢[M] is an ideal of 2. We show that
it is maximal. If g ¢ ¢[M], then g = g1 (as an A-valued function on X) does
not belong to M. Since M is maximal in A, the ideal generated by M U {g}
is equal to A. This implies that 1 = f + gh, for some f € M and h € A.
Since pog =g, we get 1 = ¢po f + g(¢ o h). This means that the ideal of A
generated by ¢[M] U {g} is equal to 2. Thus, ¢[M] is maximal. Set M = ¢[M]
and My = {f € A: ¢pof € M}. Then M C M; and both M and M; are
maximal ideals. Hence, M = Mj. (|

If M = ker 7, for some 7 € MM(A), then M is of the form (3.2) if and only if
T =1 o ¢, for some ¥ € M(A) and ¢ € M(A). Let us extend the mapping J in
(2.4) to M(A) x M(A) as follows.

(3.3) J: MA) x M(A) = M(A), I(,0) =vo¢.
The mapping is injective for if 1) o ¢ = 9’ o ¢’ then
¢(a) = P((a)) =¥’ (¢'(a)) = ¢'(a) (a € A),
V() =v(o(f) =" (¢' () =¢'(f) (fe),

which implies that ¢ = ¢’ and ¢ = 1’. The main question is whether J is
surjective. If 7 € MM(A) then ¢ = 7|4 € M(A) and ¢ = 7]y € M(A). The
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question is whether the equality 7 = 1 ¢ ¢ holds true; of course, it does hold if
M) # 2.

Theorem 3.3. If the mapping J in (3.3) is a surjection, then it is a homeomor-
phism and, therefore, the character space IM(A) is identical to M(A) x M(A).

Proof. Suppose that g is a surjection (an thus a bijection). Since both the
domain and the range are compact Hausdorff spaces, it suffices to prove that
J is open. Take ¢y € M(A), ¢ € M(A) and set 19 = J(o, o) = o © dg. Let
U and V be neighborhoods of ¢y and ¢q of the following form

U={eMA): [v(f) —vo(f)l <er (fe€F)}
V={¢eMA):|g(a) - ¢ola)] <e2 (a€F)},
where F; and F5 are finite sets in 2 and A, respectively. Take F' = Fy U F5 as
a finite set in A, ¢ = min{ey,es} and set
W ={reMA) :|7(f) —no(f)| <e (feF)}

Then W is a neighborhood of 7y in M(A) and W C J(U x V). Hence J is
open. [l

The rest of this section is devoted to investigating conditions under which J
is surjective.

Theorem 3.4 (P). For a character T € M(A) with M = kerT and ¢ = 7|4,
the following are equivalent.

(i) p[M] # 2.
(ii) M is of the form (3.2) with M = ¢[M].

(vi) T =1 o ¢, for some ¢ € M(A).

Proof. The equivalence (i) < (ii) is just Lemma 3.2. The implication (ii) =
(iii) is clear. To see the implication (iii) = (iv), let ¢ = f — (¢ o f)1. Then
¢og = 0 and thus g € M and 7(g) = 0. Hence, 7(¢of) = 7(f). The implication
(iv) = (iii) is clear.

To prove (iii) < (v), we note that f(X) C M if and only if po f = 0. In
fact, f(X) C M means that, for every z € X, the element f(x), as a constant
function of X into A, belongs to M. This, in turn, means that 7(f(z)) =
o(f(z)) =0, for all z € X, which means that ¢o f = 0.

To prove (iii) = (vi), first note that A being admissible implies that

A=g[A] ={oof:feA}
Define ¢ : 2 — C by ¥(¢ o f) = 7(f). This is well-defined for if po f = ¢gog

then, by the assumption, f — g € M which in turn implies that 7(f) = 7(g).
Obviously, ¢ € M) and 7 = ¢ ¢ .
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Finally, we prove that (vi) = (i). Towards a contradiction, assume that
¢[M] = 2. Then ¢po f =1, for some f € M. Hence 1 = (1) = ¢(¢po f) =
7(f) = 0 which is absurd. 0

Convention. We say that ‘A has property P’ if every M € 9(A) satisfies one
(and hence all) of conditions in Theorem 3.4. Hence A has P if and only if the
mapping J in (3.3) is surjective.

Let A denote the uniform closure of A in C(X, A). The restriction map

(3.4) MA) = M(A), T Tla,

is one-to-one and continuous with respect to the Gelfand topology [10]. We

write MM(A) = M(A) if it is a homeomorphism.

Proposition 3.5. If A has P then A has P. If A has P and ||f|| < ||f|lx, for
all f € A, then A has P.

Proof. Suppose that A has P. Take 7 € M(A), set 7 = 7|4 and ¢ = 7|4 = 7|4.
Since A has P, by Theorem 3.4 (iv), 7(¢ o f) = 7(f), for all f € A. Given
f € A, there is a sequence {f,} in A such that ||f, — f|lx — 0. Hence,
lpo fn—¢o fllx — 0, and thus

T(dof)= lim 7(¢o fp) = lim 7(¢o f) = lim 7(fn) = lim 7(f) =7(f)-
Again, by Theorem 3.4 (iv), we see that A has P.

Now, assume that A has P, and || f|| < ||f|lx, for all f € A. Take 7 € M(A)
and ¢ = 7|4. Extend 7 to a character 7 : A — C (this is possible since
71l < I f]lx, for all f € A). Note that still we have ¢ = 7|4. Since A satisfies
P, we have 7(¢ o f) = 7(f), for all f € A. This implies that (¢ o f) = 7(f),
for all f € A, and thus A has P. O

The following is a vector-valued version of Theorem 1.1.

Theorem 3.6. For an admissible Banach A-valued function algebra A with
A=C(X)NA, let A and A be the uniform closures of A and A, respectively.
Consider the following statements:

() M(A) = M(A).

@) £ < Ifllx, for all f € A.

(iil) IfIl < Ifllx, for all f €2

(iv) Mm(A) = M(A).
Then (i) < (ii) = (iii) & (iv). If A satisfies P, then (iil) = (ii).

Proof. The equivalences (i) < (ii) and (iii) < (iv) follow from the main theo-
rem in [10]. The implication (ii) = (iii) is obvious, because A C A.
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Assume that A satisfies P, and || f]| < ||f||x, for all f € 2. Fix a function
f € A and take an arbitrary character 7 € M(A). Since A has P, we have
T =1 ¢ ¢, where 1) = 7|9 and ¢ = 7|4. Since ¢ o f € A, we have

m(H)l = [e(po I < @0 Il < llpo fllx < I llx.
Hence || f|| < ||f]lx, for all f € A. O

4. Examples
To illustrate the results, we devote this section to some examples.

Example 4.1. Let (X, p) be a compact metric space. A function f: X — A
is called an A-valued Lipschitz function if
(4.1) L(f)sup{'fm_f(y)l:z,yEX,:c7éy}<oo.

plz,y)

The space of A-valued Lipschitz functions on X is denoted by Lip(X, A). For
any f € Lip(X, A), the Lipschitz norm of f is defined by || f||z = || fllx + L(f)-
This makes Lip(X, A) an admissible Banach A-valued function algebra on X
with Lip(X) = Lip(X, A) N C(X), where Lip(X) = Lip(X,C) is the classical
complex Lipschitz algebra on X.

The algebra Lip(X) satisfies all conditions in the Stone-Weierstrass Theorem
and thus it is dense in C(X). On the other hand, by [9, Lemma 1], C(X)A
is dense in C(X, A) and thus Lip(X)A is dense in C(X, A). Since Lip(X, A)
contains Lip(X)A, we see that Lip(X, A) is dense in C(X, A).

It is easy to verify that if f € Lip(X,A) and Zs(f) = 0, then 1/f €
Lip(X, A). Since C(X, A) is natural, Theorem 2.6 now implies that Lip(X, A)
is natural. By Theorem 2.7, M(Lip(X, A)) is homeomorphic to X x M(A). See
also [7] and [11].

Example 4.2. Assume that A = C", for some positive integer n. Then, for
every admissible Banach A-valued function algebra A on X, the mapping J in
(3.3) is surjective and thus M (A) is identical to M(A) x W(C™).

To see this, we show that A satisfies condition (i) of Theorem 3.4. Note that
M(C™) = {m1,...,m}, where m; : C™ — C is the projection on i-th component.
Assume M is an ideal in A and 1 € m;[M], for all i = 1,...,n. Hence, for every
i, there is some f; € M such that m; o f; = 1. Let {ey,...,e,} be the standard
basis of C™. Then e;, as a constant function of X into A, belongs to A. Since
M is an ideal, we have 1 = e f1 + - -+ enfn € M. Hence, M = A and M
cannot be maximal.

If ¥ ={1,...,n}, then C" = C(X). The above example states that, given
any admissible Banach C'(X)-valued function algebra, we have Mt(A) = M(A) x
M(C(X)). If X is an arbitrary compact Hausdorff space, it is unknown whether
the result still holds for any admissible Banach C'(X)-valued function algebra.
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But, the following shows that it does hold for admissible C'(X)-valued uniform
algebras.

Example 4.3. Assume that A = C(X), for some compact Hausdorff space X.
Then, for every admissible A-valued uniform algebra A on X, the mapping J
in (3.3) is surjective, and thus M (A) = M(A) x M(C(X)).

To see this, first we show that A is isometrically isomorphic to C(X,%).
Take a function f € A. Then f(z), for every x € X, is a function in C(X).
Define f : X — A by f(€)(z) = f(x)(€). In fact, f(€) = ¢¢ o f where ¢ is
the evaluation character of A = C(X) at &, and, since A is admissible, f )
belongs to A. Now, define T : A — C(X,A) by Tf = f. It is easily verified
that T is an algebra homomorphism, and

Iflx = sup [|f(z)]| = sup sup | f(z)(&)| = sup [ F(E)] = || fl|x-
T€X TEX EEX cex

Since the range of T' contains all elements of the form g1h1+- - -+ g, hy, where
n €N, g; € C(X)and h; € 2, and these functions are dense in C(X,2), we have
T surjective. It follows that T is an isometric isomorphism. By [9, Theorem],
M(C(X,2)) is identical to M(A) x X', which means that MM (A) is identical to
M(A) x M(A).

Example 4.4 (Tensor Products). Let 2 be a Banach function algebra on X
and consider the algebraic tensor product 2® A. There exists, by [5, Theorem
42.6], a linear operator T : A @ A — 2AA such that

(4.2) T(i fi® ai) = ifiai-
i=1 i=1

The operator T is an algebra isomorphism so that 2 ® A can be seen as
an admissible A-valued function algebra on X. We identify every element
[ € A® A with its image T'f as an A-valued function on X. Let ||-|, be
an algebra cross-norm on 2A ® A so that the completion 2 @7 A is a Banach
algebra. The mapping T extends to an isometric isomorphism of 2 @W A onto
a Banach A-valued function algebra on X. For example, if || - || is the injective
tensor norm, then 2 ®, A is isometrically isomorphic to the uniform closure
AA of AA and || f||e = || f]|x, for all f € A A.

It is proved in [4] that

(1) A®, A is an admissible Banach A-valued function algebra on X.
(2) T f € AB, A and 6 € A then do f € A and [éo f] < 6] -

We now show that every 7 € 9)?(91@714) is of the form 7 = )o@, with ¢ = 7|4
and 1 = 7|g. Since AR A is dense in 2[@714, it is enough to show that 7 = ¥ o¢
on AR A. First, note that every f € A® A can be seen, through the isomorphism
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(4.2), as f = fia1 + -+ + fnan. Hence, gpo f = ¢(a1)fi + -+ &(an) frn and
T(f) =7(frar + - + foan)
=7(fu)r(ar) + -+ 7(fa)7(an)
=v(f1)¢(ar) + - + P (fn)d(an)
=p(p(ar) fr + -+ + d(an) fn)
=1(¢o f).

This proves that 7 = 9 o¢ on A® A and thus 7 = ¢o¢ on Ql<§7 A. We conclude
that MM(A &, A) = IM(A) x M(A). This result, however, can be derived from
the following more general result due to Tomiyama [17].

Theorem 4.5 ([17]). Suppose that A and B are commutative Banach alge-
bras. If A &X\)AY B is a Banach algebra for a cross-norm =, then IMM(A @’v B) is
homeomorphic to M(A) x M(B).
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