d\;}‘u&‘i O
ISSN: 1017-060X (Print) %%5 ISSN: 1735-8515 (Online)
% 4

ATHEMATICAL,

Bulletin of the

Iranian Mathematical Society

Vol. 43 (2017), No. 5, pp. 1227-1235

Title:

A study on dimensions of modules

Author(s):

E. Momtahan and M. Motamedi

Published by the Iranian Mathematical Society
http://bims.ims.ir




Bull. Iranian Math. Soc.
Vol. 43 (2017), No. 5, pp. 1227-1235
Online ISSN: 1735-8515

A STUDY ON DIMENSIONS OF MODULES

E. MOMTAHAN* AND M. MOTAMEDI

(Communicated by Fariborz Azarpanah)

ABSTRACT. In this article we study relations between some algebraic op-
erations such as tensor product and localization from one hand and some
well-known dimensions such as uniform dimension, hollow dimension and
type dimension from the other hand. Some minor applications to the ring
C(X) are observed.
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1. Introduction

In this article, by R, we mean a commutative ring with identity unless oth-
erwise stated and all modules are assumed to be unitary. By C'(X), we always
mean the ring of all real valued continuous functions over a completely regu-
lar space, with pointwise addition and multiplication. For undefined concepts
and terminologies on C(X) see [10]. This article is concerned with uniform
dimension, hollow dimension and type dimension. The first two dimensions are
quite well known and the reader can find a rich literature about them. See [11]
and [16] for undefined terms and concepts on uniform dimension and hollow
dimension respectively (infinite uniform dimension has been introduced in [6]).

Type dimension has been independently introduced in [18] and [5] as a type
analog of uniform dimension (see [9] for a systematic study of type dimension
and all related concepts). A module A is called atomic if A # 0 and for
any z,y € A\ {0}, 2R and yR have non-zero isomorphic submodules. It is
obvious that every uniform module is atomic but the converse is not true. The
abelian group @NOZP, is atomic but has no finite uniform dimension. We should
emphasize here that the concept of atomic modules defined in [14] is used for a
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different class of modules. Two modules A and B are called orthogonal, written
A1 B, if they do not have non-zero isomorphic submodules. Modules A and B
are parallel, denoted as Al||B, if for any (0) # V C A, there exist (0) #aR CV
and (0) # bR C B with aR = bR, and dually, for any (0) # W C B, there
exist (0) # aR C W and bR C A such that aR = bR. The type dimension
of a module M, denoted by t.dimM, is the finite or infinite cardinal number
defined by

t.dimM = sup{|/| : 3®;er K; < R; for all i # j, K; LK},

where |I| denotes the cardinality of the set I (see [8, p. 15]). If in this definition
all orthogonality restrictions are omitted, we obtain the definition of uniform
dimension.

2. When is u.dim(M ® N) = u.dimM - u.dimN ?

Let F be a field and V', W two finite dimensional vector spaces. It is well-
known that

(2.1) dim(V @p W) =dimV - dim W.

Knowing that uniform dimension, hollow dimension and type dimension can
be considered as generalizations of dimension of vector spaces, we can substitute
these dimensions with dimension of vector spaces and ask whether the relation
(2.1) still holds for modules over commutative rings.

In the next section we review the literature around the topic. Hence, some
results which seems to be folklore are stated and proved.

2.1. Uniform dimension and tensor product. As we mentioned in the
introduction one of our aims in this work is to study those rings over which
for certain modules M and N we have u.dim(M ®r N) = u.dimM - u.dimN.
Putting M = R, then R®r N = N, we need R to be a uniform ring. Therefore,
from the very beginning we suppose that R is a domain. To ensure that (M ®
N) # 0, we restrict ourselves to torsion-free modules over a domain. The next
lemma is well-known.

Lemma 2.1. Let R be a domain, M and N two non-zero torsion free R-
modules, then M ®r N is non-zero.

Infinite uniform dimension of a module M defined as the supremum of all
cardinals k such that M contains the direct sum of & nonzero submodules (see
[6]). Let R be a domain and M and N be two torsion free modules (with infinite
uniform dimension) over R. Is there any relation between u.dim(M ®p N) and
u.dimM -u.dimN, where by product we mean product of two infinite cardinals.
The next proposition gives a positive answer to this question.

Proposition 2.2. Let R be an integral domain and M, N two (non-zero)
torsion free R-modules. Then u.dim(M ®r N) = u.dimM - u.dimN.
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Proof. Let K be the quotient field of R. It is easy to verify that u.dimM =
[M®RrK : K] (see [11, Chapter 3, p. 94, Exercise 4]). As much as, (MQrN)®pr
K2 (M®rK)®g(N®gK), we have u.dim(M @r N) = [(M @r N)®@g K) :
Kl=[(M@rK)Qr (N®r K) : K| = (M ®r K) : K][(N®r K) : K] =
u.dimM - u.dimV. O

Corollary 2.3. Let R be a domain and M, N two torsion free R-modules.
Then M ®g N is uniform if and only if M and N are uniform.

The concept of an attained cardinal and its relation with inaccessible cardi-
nals has been considered in [6]. A cardinal number « is attained in M if M
contains a direct sum of o nonzero submodules. If « is not a limit cardinal,
i.e., if it is of the form Ng + 1, for some ordinal 3, then « is attained in M.
An infinite cardinal « is called regular if «; < « for i € I with |I| < «a im-
plies > a; < a; otherwise it is called singular. An uncountable, regular, limit
cardinal is said to be inaccessible.

Corollary 2.4. Owver an integral domain R, the uniform dimension of every
torsion free module is attained (even if it is inaccessible).

Proof. Let M be a torsion free module and K be the field of fractions of R.
We have already observed that u.dimM = u.dim(M ®g K). The right side is
the dimension of the K-vector space M ®pr K, and hence is attained. (|

3. C(X) and type dimension

In this section we characterize basic concepts such as orthogonal ideals,
parallel ideals and atomic ideals related to type dimension in C(X). We first
characterize parallel and orthogonal ideals in C(X). Moreover, we characterize
atomic ideals of C'(X).

Before characterizing atomic ideals in C(X) we need a lemma. Let I be an
ideal in C(X) and B C X. In the sequel we denote A(I) = (., Z(f) and

Mp ={f € C(X)|BC Z(f)}, where Z(f) = f~*{0}.
Lemma 3.1. Let f € C(X). Then

(1) Ann(f) = Max\z(f)) -
(2) A(Ann(f)) = Nheann(p)A(h) = clx (X \ Z(f)).

Proof. (1). Let g € Ann(f), we have fg = 0 and this implies that Z(f)UZ(g) =
X, ie, X\ Z(f) C Z(g). Since Z(g) is a closed set, we have clint(X \ Z(f)) C
Z(g), that is g € Myx\z(s)).- Now let g € My(x\z(s)). This means that
c(X\Z(f)) € Z(g). Thatis X = Z(f)UZ(g) = Z(fg) or equivalently fg = 0.
(2). We know that A(Ann(f)) = ;e ann(s) Z(9) hence X\NA(I) = Ugeann(s) (X\
Z(g)). Now if f € Ann(f), then fI = (0). That is for every g € I; Z(f) U
Z(g) = X, ie., X\ Z(g) € Z(f). This means that Uye ann(p) (X \ Z(9)) € Z(f),
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and this is equal to X\(;cann(s) Z(9) € Z(f). Hence cl(X\A(Ann(f)) € Z(f)

or equivalently f € Mcy(x\A(Ann(f))-
O

Corollary 3.2. In C(X), annihilators are always strongly z-ideals and closed
(i.e. intersection of mazimal ideals).

Proposition 3.3. Let X be a completely reqular space and I an ideal in C(X).
Then the following conditions are equivalent.
(1) Iis atomic;

(2) for every0+# f,ge I, fg #0;
(3) for every f,g € I\ {0}, there exists 0 £ h € (f) N (g);
(4) I is uniform;
(5) Iis minimal (simple submodule).
Proof. (1) = (2). Let I be atomic and 0 # f,g € I. On the contrary, suppose
that fg = 0. This shows that (f)(g) = (0). Hence there are no non-zero
ideals H C (f) and K C (g) such that K =2 H. Thus Ann(H) = Ann(K) and
HK C (f)(g9) = (0). Therefore H? = (0) and hence H = (0), is a contradiction.
(2) = (1). Let for every non-zero f,g € I, fg # 0. This means that Z(f) U
Z(g) & X. Now let € X \ (Z(f)U Z(g)). Since X is a completely regular
space, there exists non-zero h € C'(X) such that h(z) = 1. Hence Z(f)UZ(g) C
intxZ(h),i.e., hA0and h € (f)N(g). Hence 0 # (h) C (f) and 0 # (h) C (g).
(2) = (3). On the contrary, suppose that (f) N (g) = (0), this implies that
(f)(g) = (0) and hence fg =0, a contradiction.
(3) = (4). Just follow the definition of uniform module.
(4) < (5). It was proved in [3].
(5) = (1). The verification is immediate.

0

Corollary 3.4. Let X be a completely reqular space. Then the following con-
ditions are equivalent in C(X).

(1) C(X) is atomic;

(2) C(X) is a domain;

(3) X is a singleton.

The next proposition deals with orthogonality in C'(X).

Proposition 3.5. Let X be a completely regular space and I,J two ideals in
C(X). Then the following conditions are equivalent.

(1) ILJ;

(2) 1J = (0).
Proof. (1) = (2). Let IJ # (0). Then there are f € I and g € J such that

fg # 0 (or equivalently Z(f)U Z(g) # X). If (f) = (g) we have nothing to
prove (we get a contradiction). So suppose that (f) 2 (¢g) which means that
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intZ(f) # intZ(g). Since Z(f)U Z(g) & X, there exists h € C(X) such that
Z(f)UZ(g) CintZ(h) and h # 0. Therefore h € (f) and h € (g), which imply
that (h) C I and (h) C J (In fact we have shown that I N J = (0)).

(2) = (1). By contrary, suppose that there are (0) # K < I and (0) # H < J
such that K = H. This last term implies that Ann(K) = Ann(H), hence
IH = (0) and we have I C Ann(K). That is IK = (0), hence K? = (0)
implying that K = (0), a contradiction. O

Remark 3.6. By the same argument as in the proof of part (2) = (1) above,
one can show that, in any reduced ring, I N J = (0) if and only if I L J.

Corollary 3.7. Let R be a commutative reduced ring. Then
uw.dimR = t.dimR.

Recall that when I]|J, we have for every 0 # K C I, K is not perpendicular
to J and also for every 0 # T C J, T is not perpendicular to I. We use this
equivalent definition for parallel ideals in the following.

Proposition 3.8. Let I,.J be two ideals in C(X). Then the following condi-
tions are equivalent.

(1) I|J;

(2) Ann(I) = Ann(J);

(3) intA(I) = intA(J).

Proof. (2) <= (3). is well-known.
(1) = (2). By contrary suppose that there exists a non-zero K C I such
that K 1J, we have KJ = (0). This implies that Ann(J) NI = (0) and hence
Ann(J) C Ann([). Similarly, Ann(/) C Ann(J).
(2) <= (1). Now by contrary suppose that I }f J, i.e., there exists 0 # K < T
such that K 1.J. By the above proposition, this implies that K'J = (0). That is
K C Ann(J) and hence K C Ann(7I) which means that KT = (0) and therefore
K? = (0), but in C(X), this means that K = (0), a contradiction.

|

4. When is h.dim(M ®g N) = h.dimM - h.dimN?

To answer the aforementioned question, we need to consider some natural
restrictions. Again, from R®pr M = M and the fact that over R, at least for a
good class of modules, one expects to have h.dim(M®zN) = h.dimM -h.dimN,
one concludes that h.dimR = 1. Hence it is not surprising, if as one of our
assumptions in this section we suppose that R is a local ring.

Our second natural restriction comes from the well-known observation that
over a local ring R, for any two non-zero finitely generated modules M and N,
M ®gr N = 0 implies that M = 0 or N = 0 (an application of Nakayama’s
lemma). Bearing these facts in mind, we may rephrase our initial question,
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over a local ring R as follows: when is h.dim(M ®r N) = h.dimM - h.dimN,
for any two finitely generated R-modules M and N7

Since over a local ring, for finitely generated modules, flatness, projectiv-
ity and freeness are all equivalent, we may first observe this fact for finitely
generated free R-modules.

Lemma 4.1. Let R be a local ring and M, N two finitely generated free R-
modules. Then h.dim(M ®r N) = h.dimM - h.dimN.

Proof. Without loss of generality we may suppose that M = R™ and N = R™.
From [4, 5.4.(1)], we know that h.dimR™ = n and h.dimR™ = m. On the other
hand, R" ® R™ = R™ and therefore h.dim(R" ® g R™) = nm. This shows
that h.dim(M ®r N) = h.dimM - h.dimN. O

Proposition 4.2. Let R be a local ring and M and N be finitely generated
R-modules with finite hollow dimension. Then h.dim(M ®gr N) < h.dimM -
h.dimN.

Proof. Without loss of generality, we suppose that M = Rjﬂ' and N = %m. It
is well-know that M @ N = RT" QR %m = %, where C' is the submodule

of R™ @ R™ generated by all elements 2’ ® y and © ® v’ with z € R™, 2/ € A,
y € R™, 3y € B. Now the hollow dimension of factor modules is less or equal
to the hollow dimension of the module itself. Therefore h.dim(M ®r N) =
hdim(£ @p £ = £8e10) < h dim(R" @k R™) = h.dimR" - h.dimR™ =
nm. O

Corollary 4.3. Let R be a local ring and M, N two finitely generated R-
modules. If M and N are hollow modules, then M Qr N is hollow module.

5. Localization and uniform dimension

In this section, our main concern is the relation between localization and
uniform dimension. First, we begin with a useful fact.

Lemma 5.1. Let R be a domain and M be a torsion free R-module and P be
a prime ideal in R. Then Mp as Rp-module has finite uniform dimension n if
and only if u.dimM = n.

Proof. First recall that torsion freeness is a local property over integral domains
([2, p. 45, Problem 13]). By [2, Proposition 3.5], we have

Rp®r M = Mp
Now by Proposition 2.2, we may conclude that Mp has uniform dimension
n if and only if M has uniform dimension n. U

For a ring, it is possible that localization at prime ideals are all fields and
hence with uniform dimension 1, but the ring itself has no finite uniform di-
mension. Now we may ask when is the converse true 7
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Proposition 5.2. Let R be a ring and u.dimR = (3. Then for every prime
ideal P of R, u.dimRp < f3.

Proof. On the contrary, suppose that there exists a prime ideal P such that
u.dimRp = A > . Then A is the supremum of all the independent families of
ideals in Rp. Bringing back these families to R by contraction, one may get
a supremum over all the contract families. But this supremum must be larger
than 8, a contradiction. O

The reader is reminded that R is semilocal if and only if R has finite hollow
dimension. The next result and its corollary are generalizations of this fact.

Theorem 5.3. Let R be a ring, h.dimR = |Max(R)| = « and u.dimR = §. If
B is attained, then the following statements are equivalent:

(1) B<a;

(2) wdimRp < « for each prime ideal P of R;

(3) w.dimRys < « for each mazimal ideal M of R.

Proof. (1)==(2). By Proposition 5.2, u.dimRp < § and hence u.dimRp < a.
(2)==(3). is evident.

(3)=(1). On the contrary, suppose that 5 > «. Since there exists an infinite
direct sum A in R, with 8 summands and R has only o maximal ideals, by the
generalized pigeon hole principal, there is some maximal ideal M containing
summands of A. Now localizing R at M, one gets a contradiction by observing
that Rjs contains a direct sum of § summands, while u.dimRy; < a < p. O

Corollary 5.4. Let R be a semilocal ring such that every localization at a max-
tmal ideal has finite uniform dimension. Then R has finite uniform dimension.

Remark 5.5. Let A be the Souslin number of X. It is easy to see that A < [8X].
Now by Theorem 5.3, u.dimC(X)p < |5X]| for every prime ideal P.

5.1. Localization and type dimension. We begin with a lemma whose proof
is straightforward.

Lemma 5.6. Suppose that by e and ¢ we mean usual extension and contraction.
Then we have:

(1) If ILJ, then I¢LJ¢;

(2) If A°L B¢, then ALB.

Using this lemma and the same argument as in the proof of Proposition 5.7
we have:

Proposition 5.7. Let R be a ring and t.dimR = B. Then for every prime
ideal P of R, t.dimRp < (3.
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5.2. Partial answers to some questions. In [1, p. 10, Question 4], it has
been asked for the characterization of all the ring extensions R C T such that
u.dimR = u.dim7". Then the authors of [1] answered the question in a positive
way when T is the total classical ring of quotient of R. In [7], J. Dauns and M.
Motamedi proved that if T is either a normalizing extension of R or T' = R[x],
then u.dimR = u.dim7. For finite uniform dimensional case these questions
were answered by R. Shock in [17] (for T' = R]z]) and by C. Lanski in [15] (for
a normalizing extension).

Furthermore, in [1, p. 12, Question 1], the following question was asked by
the authors: what are the topological spaces X such that u.dimC(X)p < A, for
all prime ideals P in C(X), where A is a given cardinal number. Concerning this
question one can use Proposition 5.7 to give a partial answer. For those cardinal
numbers A, with u.dimC(X) = ¢(X) < A, the above inequality is correct for
every topological space. So the question can be reformulated by this restriction
that A < ¢(X). An algebraic interpretation of this new reformulation is that,
when do localizations of a ring R, at prime ideals have uniform dimension
strictly less than u.dimR 7
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