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Abstract. Semilinear stochastic evolution equations with multiplicative

Poisson noise and monotone nonlinear drift in Hilbert spaces are consid-
ered. The coefficients are assumed to have linear growth. We do not
impose coercivity conditions on coefficients. A novel method of proof for
establishing existence and uniqueness of the mild solution is proposed.

Examples on stochastic partial differential equations and stochastic delay
differential equations are provided to demonstrate the theory developed.
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1. Introduction

Consider the stochastic evolution equation

(1.1) dXt = AXtdt+ f(t,Xt)dt+ g(t,Xt−)dWt +

∫
E

k(t, ξ,Xt−)Ñ(dt, dξ),

on a Hilbert space, where Wt is a cylindrical Wiener process and Ñ(dt, dξ) is
a compensated Poisson random measure. We assume f is semi-monotone and
g and k are Lipschitz and have linear growth. In section 2 the assumptions
on coefficients are stated precisely. The purpose of this article is to prove the
existence and uniqueness of the solution of this equation.

The special cases of equation (1.1) have been studied by several authors.
For the case that all the coefficients are Lipschitz see [5] for Wiener noise, [10]
for general martingale noise, and [1, 15] for the case of jump noise. In the
non-Lipschitz case there are two main approaches. The first approach is the
variational approach in which the coefficients satisfy certain monotonicity and
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Continuous dependence on coefficients for stochastic evolution equations 1288

coercivity properties. For this approach see [12, 14] and [16] for Wiener noise,
and [6] for general martingales. The second approach is the semigroup ap-
proach to semilinear stochastic evolution equations with monotone drift. This
approach has first appeared in deterministic context in [2] and [9] and has been
extended to stochastic evolution equations in [20] and [22]. There are other
works with this approach, e.g the exponential asymptotic stability of solutions
in the case of Wiener noise has been studied in [8], generalizing the previous
results to stochastic functional evolution equations with coefficients depending
on the past path of the solution is done in [7], the large deviation principle for
the case of Wiener noise is studied in [4]. A limiting problem of such equations
arising from random motion of highly elastic strings has been considered in [19].
Finally, the stationarity of a mild solution to a stochastic evolution equation
with a monotone nonlinear drift and Wiener noise is studied in [23].

Another related article is [13] which considers monotone nonlinear drift and
multiplicative Poisson noise on certain function spaces and proves the existence,
uniqueness and regular dependence of the mild solution on initial data. They
impose an additional positivity assumption on the semigroup and the drift
term is the Nemitsky operator associated with a real monotone function. On
the other hand, they don’t assume growth conditions on drift term. Their
idea is to regularize the monotone nonlinearity f by its Yosida approximation
fλ(x) = λ−1(x− (I + λf)−1(x)).

The semigroup approach to semilinear stochastic evolution equations with
monotone nonlinearities has an advantage relative to the variational method
since it does not require the coercivity. There are important examples, such
as stochastic partial differential equations of hyperbolic type with monotone
nonlinear terms, for which the generator does not satisfy the coercivity property
and hence the variational method is not directly applicable to these equations.
Pardoux [14] has developed a new theory for the application of the variational
method to second order hyperbolic equations. But as is shown in Example 4.2,
this problem can be treated directly in semigroup setting.

The main contribution of this article is Theorem 3.3 in Section 3 which
shows the existence and uniqueness of the mild solution for equation (1.1). In
Section 2 the precise assumptions on coefficients are stated. In Section 4 we will
provide some concrete examples to which our results apply. These examples
consist of semilinear stochastic partial differential equations and a stochastic
delay differential equation.

We will use the notion of stochastic integration with respect to cylindrical
Wiener process and compensated Poisson random measure. For this definition
and properties see [1] and [15].
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2. The assumptions

Let H be a separable Hilbert space with inner product ⟨ , ⟩. Let St be a
C0 semigroup on H with infinitesimal generator A : D(A) → H. Furthermore
we assume the exponential growth condition on St holds, i.e. there exists a
constant α such that ∥St∥ ≤ eαt. If α = 0, St is called a contraction semigroup.
We denote by LHS(K,H) the space of Hilbert-Schmidt mappings from a Hilbert
space K to H.

Let (Ω,F ,Ft,P) be a filtered probability space. Let (E, E) be a measurable
space and N(dt, dξ) a Poisson random measure on R+ ×E with intensity mea-
sure dtν(dξ). Our goal is to study equation (1.1) in H, whereWt is a cylindrical

Wiener process on a Hilbert space K and Ñ(dt, dξ) = N(dt, dξ)−dtν(dξ) is the
compensated Poisson random measure corresponding to N . We assume that
N and Wt are independent. We also assume the following,

Hypothesis 2.1. (a): (Semi-monotonicity) f(t, x, ω) : R+×H×Ω → H is
measurable, Ft-adapted, demicontinuous with respect to x and there
exists a constant M such that

⟨f(t, x, ω)− f(t, y, ω), x− y⟩ ≤M∥x− y∥2,
(b): g(t, x, ω) : R+ ×H × Ω → LHS(K,H) and k(t, ξ, x, ω) : R+ × E ×
H × Ω → H are predictable and there exists a constant C such that

∥g(t, x, ω)− g(t, y, ω)∥2LHS(K,H)+

∫
E

∥k(t, ξ, x)−k(t, ξ, y)∥2ν(dξ) ≤ C∥x− y∥2,

(c): There exists a constant D such that

∥f(t, x, ω)∥2 + ∥g(t, x, ω)∥2LHS(K,H) +

∫
E

∥k(t, ξ, x)∥2ν(dξ) ≤ D(1 + ∥x∥2),

(d): X0(ω) is F0 measurable and square integrable.

Definition 2.2. By a mild solution of equation (1.1) with initial condition X0

we mean an adapted càdlàg process Xt that satisfies

(2.1) Xt = StX0 +

∫ t

0

St−sf(s,Xs)ds+

∫ t

0

St−sg(s,Xs−)dWs

+

∫ t

0

∫
E

St−sk(s, ξ,Xs−)Ñ(ds, dξ).

Because of the presence of monotone nonlinearity in our equation, the usual
inequalities for stochastic convolution integrals are not applicable to equa-
tion (1.1). For this reason we state the following inequality.

Theorem 2.3 (Itô type inequality, Zangeneh [22]). Let Zt be an H-valued
càdlàg locally square integrable semimartingale. If

Xt = StX0 +

∫ t

0

St−sdZs,
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then

∥Xt∥2 ≤ e2αt∥X0∥2 + 2

∫ t

0

e2α(t−s)⟨Xs−, dZs⟩+
∫ t

0

e2α(t−s)d[Z]s,

where [Z]t is the quadratic variation process of Zt.

3. The main result

Our proof for the existence of a mild solution relies on an iterative method
which in each step requires solving a deterministic equation, i.e. an equation
in which ω appears only as a parameter. The following theorem proved in
Zangeneh [20] and [21] guarantees the solvability of such equations and the
measurability of the solution with respect to parameter.

Let (Ω,F ,Ft,P) be a filtered probability space and assume f satisfies Hy-
pothesis 2.1(a) and there exists a constant D such that ∥f(t, x, ω)∥2 ≤ D(1 +
∥x∥2) and assume V (t, ω) is an adapted process with càdlàg trajectories and
X0(ω) is F0 measurable.

Theorem 3.1 (Zangeneh, [20] and [21]). With assumptions made above, the
equation

Xt = StX0 +

∫ t

0

St−sf(s,Xs, ω)ds+ V (t, ω)

has a unique measurable adapted càdlàg solution Xt(ω). Furtheremore

∥Xt∥ ≤ ∥X0∥+ ∥V (t)∥+
∫ t

0

e(α+M)(t−s)∥f(s, SsX0 + V (s))∥ds.

Remark 3.2. Note that the original theorem is stated for evolution operators
and requires some additional assumptions, but those are automatically satisfied
for C0 semigroups. (See Curtain and Pritchard [3, page 29, Theorem 2.21]).

Theorem 3.3 (Existence and Uniqueness of the Mild Solution). Under the
assumptions of Hypothesis 2.1, equation (1.1) has a unique square integrable
càdlàg mild solution with initial condition X0.

This theorem has been stated without proof in [18].

Lemma 3.4. It suffices to prove Theorem 3.3 for the case that α = 0.

Proof. Define

S̃t = e−αtSt, f̃(t, x, ω) = e−αtf(t, eαtx, ω), g̃(t, x, ω) = e−αtg(t, eαtx, ω),

k̃(t, ξ, x, ω) = e−αtk(t, ξ, eαtx, ω).

Note that S̃t is a contraction semigroup. It is easy to see that Xt is a mild
solution of equation (1.1) if and only if X̃t = e−αtXt is a mild solution of the

equation with coefficients S̃, f̃ , g̃, k̃. □
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Proof of Theorem 3.3. Uniqueness. According to the lemma, we can assume
α = 0. Assume that Xt and Yt are two mild solutions with same initial condi-
tions. Subtracting them we find

Xt − Yt =

∫ t

0

St−sdZs,

where

dZt = (f(t,Xt)− f(t, Yt))dt+ (g(t,Xt−)− g(t, Yt−))dWt

+

∫
E

(k(t, ξ,Xt−)− k(t, ξ, Yt−))dÑ.

Applying Itô type inequality (Theorem 2.3) for α = 0 to Xt − Yt we find

∥Xt − Yt∥2 ≤ 2

∫ t

0

⟨Xs− − Ys−, dZs⟩+ [Z]t.

Taking expectations and noting that integrals with respect to cylindrical Wiener
processes and compensated Poisson random measures are martingales, we find
that

E∥Xt − Yt∥2 ≤ 2

∫ t

0

E⟨Xs− − Ys−, f(s,Xs)− f(s, Ys)⟩ds+ E[Z]t,

where

E[Z]t =
∫ t

0

E∥g(s,Xs)− g(s, Ys)∥2ds+
∫ t

0

∫
E

E∥k(s, ξ,Xs)− k(s, ξ, Ys)∥2ν(dξ)ds.

Note that for a càdlàg function the set of discontinuity points is countable,
hence when integrating with respect to Lebesgue measure, they can be ne-
glected. We therefore neglect the left limits in integrals with respect to the
Lebesque measure henceforth. Using assumptions of Hypothesis 2.1(a) and
2.1(b) we find that

E∥Xt − Yt∥2 ≤ (2M + C)

∫ t

0

E∥Xs − Ys∥2ds.

Using Gronwall’s lemma we conclude that Xt = Yt, almost surely.
Existence. It suffices to prove the existence of a solution on a finite interval

[0, T ]. Then one can show easily that these solutions are consistent and give a
global solution. We define adapted càdlàg processes Xn

t recursively as follows.
Let X0

t = StX0. Assume Xn−1
t is defined. Theorem 3.1 implies that there

exists an adapted càdlàg solution Xn
t of

(3.1) Xn
t = StX0 +

∫ t

0

St−sf(s,X
n
s )ds+ V n

t ,
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where

V n
t =

∫ t

0

St−sg(s,X
n−1
s− )dWs +

∫ t

0

∫
E

St−sk(s, ξ,X
n−1
s− )Ñ(ds, dξ).

We wish to show that {Xn} converges and the limit is the desired mild solution.
This is done by the following lemmas.

Lemma 3.5.

E sup
0≤t≤T

∥Xn
t ∥2 <∞.

Proof. We prove by induction on n. By Theorem 3.1 we have the following
estimate,

∥Xn
t ∥ ≤ ∥X0∥+ ∥V n

t ∥+
∫ t

0

eM(t−s)∥f(s, SsX0 + V n
s )∥ds.

Hence,

sup
0≤t≤T

∥Xn
t ∥2 ≤ 3∥X0∥2+3 sup

0≤t≤T
∥V n

t ∥2+3 sup
0≤t≤T

(

∫ t

0

eM(t−s)∥f(s, SsX0+V n
s )∥ds)2,

where by Cauchy-Schwartz inequality we find

≤ 3∥X0∥2 + 3 sup
0≤t≤T

∥V n
t ∥2 + 3Te2MT

∫ T

0

∥f(s, SsX0 + V n
s )∥2ds,

and by Hypothesis 2.1(c) we have

≤ 3∥X0∥2 + 3 sup
0≤t≤T

∥V n
t ∥2 + 3Te2MT

∫ T

0

D(1 + ∥SsX0 + V n
s ∥2)ds

≤ 3∥X0∥2 + 3 sup
0≤t≤T

∥V n
t ∥2 + 3DTe2MT

∫ T

0

(1 + 2∥X0∥2 + 2∥V n
s ∥2)ds

= 3DT 2e2MT + (3 + 6DT 2e2MT )∥X0∥2 + (3 + 6DT 2e2MT ) sup
0≤t≤T

∥V n
t ∥2.

Hence for completing the proof it suffices to show that E sup
0≤t≤T

∥V n
t ∥2 <∞.

Applying [10, Theorem 1.1] we find,

E sup
0≤t≤T

∥V n
t ∥2 ≤ CE

(∫ T

0

∥g(s,Xn−1
s )∥2HSds+

∫ T

0

∫
E

∥k(s, ξ,Xn−1
s )∥2ν(dξ)ds

)
,

where by Hypothesis 2.1(c),

≤ CE
∫ T

0

D(1 + ∥Xn−1
s ∥2)ds)

which is finite by induction Hypothesis. The basis of induction follows directly
from Hypothesis 2.1(d). □
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Lemma 3.6. For 0 ≤ t ≤ T we have,

(3.2) E sup
0≤s≤t

∥Xn+1
s −Xn

s ∥2 ≤ C0C
n
1

tn

n!
,

where C1 = 2C(1 + 2C2
1)e

4MT and C0 = E sup
0≤s≤T

∥X1
s − X0

s∥2. (Note that by

Lemma 3.5, C0 <∞.)

Proof. We prove by induction on n. The statement is obvious for n = 0.
Assume that the statement is proved for n− 1. We have,

(3.3) Xn+1
t −Xn

t =

∫ t

0

St−s(f(s,X
n+1
s )− f(s,Xn

s ))ds+

∫ t

0

St−sdMs,

where

Mt =

∫ t

0

(g(s,Xn
s−)− g(s,Xn−1

s− ))dWs

+

∫ t

0

∫
E

(k(s, ξ,Xn
s−)− k(s, ξ,Xn−1

s− ))Ñ(ds, dξ).

Applying Itô type inequality (Theorem 2.3), for α = 0, we have

(3.4) ∥Xn+1
t −Xn

t ∥2 ≤ 2

∫ t

0

⟨Xn+1
s− −Xn

s−, f(s,X
n+1
s )− f(s,Xn

s )⟩ds︸ ︷︷ ︸
At

+ 2

∫ t

0

⟨Xn+1
s− −Xn

s−, dMs⟩︸ ︷︷ ︸
Bt

+[M ]t.

For the term At, the semi-monotonicity assumption on f implies

(3.5) At ≤M

∫ t

0

∥Xn+1
s −Xn

s ∥2ds

We also have

E[M ]t =

∫ t

0

E∥g(s,Xn
s )− g(s,Xn−1

s )∥2ds

+

∫ t

0

∫
E

E∥k(s, ξ,Xn
s )− k(s, ξ,Xn−1

s )∥2ν(dξ)ds,

where by Hypothesis 2.1(b),

(3.6) ≤ C

∫ t

0

E∥Xn
s −Xn−1

s ∥2ds.
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Applying Burkholder-Davies-Gundy inequality ([15, Theorem 3.50]), for p =
1, to term Bt we find,

E sup
0≤s≤t

|Bs| ≤ C1E
(
[B]

1
2
t

)
≤ C1E

(
sup

0≤s≤t
(∥Xn+1

s −Xn
s ∥)[M ]

1
2
t

)
,

where C1 is the universal constant in the Burkholder-Davies-Gundy inequality.
Applying Cauchy-Schwartz inequality we find,

(3.7) ≤ 1

4
E sup

0≤s≤t
∥Xn+1

s −Xn
s ∥2 + C2

1E[M ]t.

Now, taking supremums and then expectation on both sides of (3.4) and sub-
stituting (3.5), (3.6) and (3.7), we find

(3.8) E sup
0≤s≤t

∥Xn+1
s −Xn

s ∥2 ≤ 2M

∫ t

0

E∥Xn+1
s −Xn

s ∥2ds

+ C(1 + 2C2
1)

∫ t

0

E∥Xn
s −Xn−1

s ∥2ds

+
1

2
E( sup

0≤s≤t
∥Xn+1

s −Xn
s ∥)2.

The last term in the right hand side could be subtracted from the left hand
side but for this subtraction to be valid it should be finite which is guaranteed
by Lemma 3.5. After subtraction we find,

E sup
0≤s≤t

∥Xn+1
s −Xn

s ∥2 ≤ 4M

∫ t

0

E∥Xn+1
s −Xn

s ∥2ds+2C(1+2C2
1)

∫ t

0

E∥Xn
s −Xn−1

s ∥2ds.

Now let hn(t) = E sup
0≤s≤t

∥Xn+1
s −Xn

s ∥2. Hence,

hn(t) ≤ 4M

∫ t

0

hn(s)ds+ 2C(1 + 2C2
1)

∫ t

0

hn−1(s)ds.

Note that by Lemma 3.5, hn(t) is bounded on [0, T ]. Hence we can use
Gronwall’s inequality for hn(t) and find

hn(t) ≤ C1

∫ t

0

hn−1(s)ds,

where by induction hypothesis,

≤ C1

∫ t

0

C0C
n−1
1

sn−1

(n− 1)!
ds = C0C

n
1

tn

n!
,

which completes the proof.
□
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Returning to the proof of Theorem 3.3, we see that since the right hand side
of (3.2) is a convergent series, {Xn} is a cauchy sequence in L2(Ω,F ,P;L∞([0, T ];

H)) and hence converges to a process Xt(ω). By choosing a subsequence they
converge almost sure uniformly with respect to t, and since {Xn

t } are adapted
càdlàg, so is Xt.

It remains to show that Xt is a solution of (2.1). It suffices to show that
the terms on both sides of equation (3.1) converge to the corresponding terms
of (2.1). We know already that Xn

t → Xt in L2([0, T ] × Ω;H). Moreover,
by [10, Theorem 1.1] we have,

E∥
∫ t

0

St−sg(s,X
n
s−)dWs −

∫ t

0

St−sg(s,Xs−)dWs∥2

≤ CE
∫ t

0

∥g(s,Xn
s )− g(s,Xs)∥2ds

≤ CC

∫ t

0

E∥Xn
s −Xs∥ds→ 0,

and

E∥
∫ t

0

∫
E

St−sk(s, ξ,X
n
s−)dÑ −

∫ t

0

∫
E

St−sk(s, ξ,Xs−)dÑ∥2

≤ CE
∫ t

0

∫
E

∥k(s, ξ,Xn
s )− k(s, ξ,Xs)∥2ν(dξ)ds

≤ CC

∫ t

0

E∥Xn
s −Xs∥ds→ 0.

Hence the terms of V n
t converge to the corresponding terms of (2.1). Finally

we show that the term containing f in (3.1) converges in the weak sense to
corresponding term in (2.1). If x ∈ H,
(3.9)

E⟨x,
∫ t

0

St−s(f(s,X
n
s )− f(s,Xs))ds⟩ = E

∫ t

0

⟨S∗
t−sx, f(s,X

n
s )− f(s,Xs)⟩ds.

By demicontinuity of f , the integrand on the right hand side converges to 0
for almost every (s, ω) ∈ [0, t] × Ω. On the other hand, by Hypothesis 2.1(c),
the integrand is dominated by a constant multiple of ∥x∥(1 + ∥Xs∥ + ∥Xn

s ∥)
where ∥Xn

s ∥ → ∥Xs∥ pointwise almost everywhere and in L1([0, T ]×Ω), hence
by dominated convergence theorem we conclude that right hand side of (3.9)
tends to 0. Hence Xt is a mild solution of (1.1). □

4. Some examples

In this section we provide some concrete examples of semilinear stochas-
tic evolution equations with monotone nonlinearity and multiplicative Poisson
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noise. The examples consist of stochastic partial differential equations of par-
abolic and hyperbolic type and a stochastic delay differential equation. We
show that these examples satisfy the assumptions of equation (1.1) and hence
one can apply Theorem 3.3 to them.

Example 4.1 (Stochastic reaction-diffusion equations with multiplicative Pois-
son noise). In this example we consider a class of semilinear stochastic evolution
equations with multiplicative Poisson noise. Let D be a bounded domain with
a smooth boundary in Rd. Consider the equation,

(4.1){
du(t) = Au(t)dt+ f(u(t, x))dt+ ηu(t)dt+

∫
E
k(t, ξ, u(t−, x))Ñ(dt, dξ)

u(0) = u0,

where A is the generator of a C0 semigroup on L2(D), f : R → R is a continuous
decreasing function with linear growth and k : [0, T ] × E × R × Ω → R is
measurable and satisfies the Lipschitz condition

E
∫
E

|k(s, ξ, u)− k(s, ξ, v)|2µ(dξ) ≤ C|u− v|2,

and the linear growth condition

E
∫
E

|k(s, ξ, u)|2µ(dξ) ≤ D(1 + |u|2),

and u0 ∈ L2(D). We show that equation (4.1) satisfies the assumptions of
equation (1.1). Let H = L2(D). We denote the Nemitsky operator associated
with a function f : R → R by the same symbol. Since f and k are continuous
and have linear growth, by [17, Theorem 10.58], the associated Nemitsky oper-
ators define continuous operators from L2(D) to L2(D) and have linear growth.
Verifying the other assumptions is straight forward.

Example 4.2 (Second order stochastic hyperbolic equations with Lévy noise).
In this example we consider a hyperbolic SPDE with Lévy noise. Let D be a
bounded domain with a smooth boundary in Rd. Consider the initial boundary
value problem,

(4.2)


∂2u
∂t2 = ∆u− 3

√
∂u
∂t +u(t−, x)∂Z∂t on [0,∞)×D

u = 0 on [0,∞)× ∂D
u(0, x) = u0(x) on D.
∂u
∂t (0, x) = 0 on D,

where Z(t) is a real valued square integrable Lévy process and u0(x) ∈ L2(D)
is the initial condition. One can replace − 3

√
x by any continuous decreasing

real function with linear growth.
Let H1(D) be the Sobolev space of weakly differentiable functions on D with

derivative in L2(D) and let H = H1(D)× L2(D).
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Note that ∆ is self adjoint and negative definite on L2. Moreover, we have

D((−∆)
1
2 ) = H1(D).

Hence by [15, Lemma B.3], the operator

A =

(
0 I
∆ 0

)
generates a C0 semigroup of contractions on H.

Let K = E = R. We also define for (u, v) ∈ H and ϕ ∈ K and ξ ∈ E,

f(u, v) =

(
0

− 3
√
v(x)

)
, g(u, v) = 0, k(ξ, u, v) =

(
0

u(x)ξ

)
.

Hence equation (4.2) can be written as

dX(t) = AX(t)dt+ f(X(t))dt+ g(X(t−))dWt +

∫
E

k(ξ,X(t−))Ñ(dt, dξ).

We claim that f , g and k satisfy Hypothesis 2.1. The continuity of f , g and
k follow as in example 4.1. The other conditions are straightforward.

Example 4.3 (Stochastic delay equations). In this example we consider a
stochastic delay differential equation in R. The case of Lipschitz coefficients,
have been studied before in [15]. We have replaced Lipschitzness of f by the
weaker assumption of semi-monotonicity.

Consider the following equation,

(4.3)

{
dx(t) =

(∫ 0

−1
x(t+ θ)dθ

)
dt− 3

√
x(t)dt+ x(t)dZt

x(θ) = sin(πθ), θ ∈ (−1, 0],

where Zt is a real valued square integrable Lévy process. We show that this
equation satisfies the assumptions of equation (1.1). The term − 3

√
x can be

replaced by any continuous decreasing real function with linear growth and the
initial condition can be replaced with any function in L2((−1, 0]).

Let H = R× L2((−1, 0]) and define the operator A on H by

A

(
u
v

)
=

( ∫ 0

−1
v(θ)dθ
∂v
∂θ

)
.

According to Da Prato and Zabczyk [5, Proposition A.25], the operator A with
domain

D(A) =

{(
u
v

)
∈ H : v ∈W 1,2(−1, 0), v(0) = u

}
generates a C0 semigroup St on H. Let K = E = R and let Ñ be the compen-

sated Poisson random measure associated with Zt. Define for

(
u
v

)
∈ H and
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ξ ∈ R,

f(u, v) =

(
− 3
√
u

0

)
, g(u, v) = 0, k(ξ, u, v) =

(
ξu
0

)
.

It is easy to verify that f , g and k satisfy Hypothesis 2.1. Now, if we let

X(t) =

(
x(t)
xt

)
where xt(θ) = x(t+ θ) for θ ∈ (−1, 0], then equation (4.3) can be written as

dX(t) = AX(t)dt+ f(X(t))dt+ g(X(t−))dWt +

∫
E

k(ξ,X(t−))Ñ(dt, dξ)

with initial condition

X(0) =

(
ψ(0)
ψ

)
.
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