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ABSTRACT. In this paper we investigate the dilations of completely posi-
tive definite representations of C*-dynamical systems with abelian groups
on Hilbert C*-modules. We show that if (A, G, «) is a C*-dynamical sys-
tem with G an abelian group, then every completely positive definite
covariant representation (7, ¢, E) of (A, G, a) on a Hilbert C*-module E
admits an unitary dilation (%, 3, E).
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1. Introduction

Hilbert C*-modules are generalizations of Hilbert spaces by allowing the
inner products to take values in C*-algebras rather than in the field of com-
plex numbers. Hilbert C*-modules are very useful in the fields of operator
theory, operator K-theory, group representation theory, Morita equivalence of
C*-algebras, etc.

Definition 1.1 ([7]). Let A be a C*-algebra. An inner product A-module is a
linear space E which is a right .A-module, together with a map (z,y) — (z,y) :
E x E — A such that

(i) (z,oy + B2) = alz,y) + Blz,2) (2,y,2€ E,a,f€C),

(i) (z,ya) = (z,y)a (2,y € E,a € A),

(iii) (y,z) = (z,9)" (v,y € E),

(iv) (x,x) > 0;if (x,2) =0 then x =0 (z € E).
An inner product A-module which is complete with respect to the norm || - ||
defined by ||z|| = ||(x,z)||2 is called a Hilbert A-module.
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Given two Hilbert A-modules FE and F, we denote by L(E, F') the set of all
bounded A-linear maps t : E — F' for which there is a map t* : F' — FE such
that

(tx,y) = (x,t"y), Ve € E,y€F.

Namely, L(E, F) is the set of all adjointable homomorphisms from E to F. For
convenience, we write L(E) for L(E, E).

Let G be a group, E a Hilbert C*-module over a C*-algebra B, then a map
¢ : G — L(E) is completely positive definite means that for every finite set of
elements g1, ga,- -, gn € G, the operator matrix [¢(g; *g;)] is positive.

A C*-dynamical system is a triple (A, G, ), where A is a C*-algebra, G
is a group and « : G — Aut(A) is a group homomorphism. Furthermore, if
G is a topological group, « is required to be continuous under the point-norm
topology, i.e., g — a(g)(a) from G to A is continuous for all a € A. Let
FE be a Hilbert C*-module over a C*-algebra B, a covariant representation of
a C*-dynamical (A,G,«) on E is a pair (7, ¢), where 7 : A — L(F) is a
representation of A4 and ¢ : G — L(FE) is a representation of G, which satisfy

(L.1) P(g)m(a(g)(a)) = (a)d(g)

for all a € A and all g € G. If ¢ is completely positive definite (resp. unitary),
(m, @) is called completely positive definite (resp. unitary).

If T is an operator on a Hilbert space H, an operator S on a Hilbert space
KC O H is called a dilation of T if PyS*|y = T* for all k > 0. By a result of
Sarason [14], S is a dilation of T if and only if H is a semi-invariant subspace of
K and PyS|y =T. If Ais an algebra and ¢ : A — B(H) is a representation of
A on a Hilbert space H, then a representation 1 : A — B(K) of A on a Hilbert
space K containing H is a dilation of ¢, if ¢(a) = Pyt(a)|y for all a € A.

Dilation theory is a classical theory in operator theory with extensive ap-
plications. Sz.-Nagy’s dilation theorem [2] is a central result in the dilation
theory of contractions, which says that every contraction on a Hilbert space H
has a unitary dilation. Since the work of Sz.-Nagy, many mathematicians did
a lot of nice work. Ando [1] generalized Sz.-Nagy’s dilation theorem to a pair
of commuting contractions, he proved such a pair has a commuting dilation.
However, Ando’s dilation theorem can not be generalized any further, Varopou-

los [20] showed that it fails for a triple of commuting contractions. However,
in the case of row contraction T' = [Ty, T5, - - , T,], where ||T'|| < 1, considered
as an operator in B(H(™, H), the Frazho-Bunce dilation theorem [3,4] shows

that there is a minimal dilation to a row isometry. For more, see also [13].
Stinespring’s theorem for completely positive maps on C*-algebras is another
essential result in dilation theory which is a natural generalization of the GNS
theorem. Following this way, many mathematicians considered the dilation
of a group or semigroup of completely positive maps, i.e., the so called CP-
semigroup. For example, Muhly and Solel [3-10], Pandiscia [12], Shalit [15,16],
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Skalski [17], Skeide [18] and Solel [19]. In [8], Muhly and Solel studied the
dilations of covariant representations of C*-correspondences, and in [10], they
studied the dilations of C'P-semigroups via the dilations of covariant represen-
tations of a C*-correspondence. They showed there exists a one-to-one corre-
spondence between the set of C'P-maps and the set of covariant representations
of a C*-correspondence.

It is interesting to ask whether the dilation of every covariant representation
of a C*-dynamical system is again covariant? In [11], Muhly and Solel studied
this problem for C*-dynamical systems (A, «), with a a endomorphism of A.
They established coisometry and unitary dilations of a contractive covariant
representation of (A, «). Joita, Costache, and Zamfir [6] extended the result of
Muhly and Solel [11] to representations on Hilbert C*-modules.

The purpose of this paper is to establish the unitary dilations of covariant
representations of C*-dynamical systems with groups rather than a single endo-
morphism. In order to do this we need to focus on the case where the covariant
representation is completely positive definite and the group is abelian. Now we
give two lemmas we will use, which are fundamental in the theory of Hilbert
C*-modules.

Lemma 1.2 ([7, Lemma 4.1]). Let E be a Hilbert A-module and let t be a
bounded A-linear operator on E. The following conditions are equivalent:

(i) t is a positive element of L(E),

(i) (z,tx) >0 for all x in E.
Lemma 1.3 ([7, Theorem 3.5]). Let A be a C*-algebra, let E, F be Hilbert A-

modules and let u be a linear map from E to F. Then the following conditions
are equivalent:

(i) u is an isometric, surjective A-linear map,
(ii) w is a unitary element of L(E, F).

2. Main results

Theorem 2.1. Let (A, G, «) be a C*-dynamical system with an abelian group
G, and let (m,p) be a covariant completely positive definite representation of
(A, G,a) on a Hilbert C*-module E over a C*-algebra B. Then there exists
a Hilbert C*-module E over B, a unitary covariant representation (%,p) on
E and an adjointable isometric operator W : E — E such that ran(E) is a
complemented submodule of E and

(2.1) m(a) =W R(a)W,  o(g) = W*g(g)W
forallae A,g€@q.

Proof. Firstly, we give the construction of £ which is similar to the proof of [5,
Proposition 3.1]. Let K(G, FE) be the vector space of all finitely supported
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functions from G to E. Define a right module action on K(G, E) by B as
(22) (fb)(g9) = f(9)b, VfeK(G,E),geG,beDB,

and define a sesquilinear function on K (G, E) as

(23)  (fi.fo) = Z (fi(91), (g1 ' 92) f2(92)) B, Vf1, fo € K(G,E).

91,92€G

By the fact that ¢ is completely positive definite and Lemma 1.2, we obtain
that (f,f) > 0 for all f € K(G,FE). And by the definition of completely
ple)  (9)
elg™) le)
element in G, so p(g)* = ¢(g7 1), and so

positive map, for every g € G, [ } is positive, where e is the unit

(for 1) = D (falgr) elgr " 92) f1(92)E

91,92€G

= Z (091 92) f1(92), (1))

91,92€G

— Z <f1(gz),w(gflg2)*f2(91)>*E

91,92€G

- Z (f1(g2), (g5 " 92) ") falg1)) i

91,92€G

= Z (f1(92), (95 '91) f2(91))

91,92€G

= > {(filgr), (91 ' 92) f2(92)) o

91,92€G

= (f1. f2)".

Hence (-,-) is a pre-inner product on K(G, E). It is apparent that N = {f €
K(G,E) : (f, f) =0} is a submodule of K (G, E). Let E be the completion of
K(G, E)/N with respect to the induced inner product, then E is a Hilbert B-
module. We denote by f the equivalent class in K (G, F) /N with representation

element f. Now we proceed the proof in four steps.
Step 1. For each g € G, define $(g) on K(G, E)/N as

@(9)(f) = &(9)y,

where $(g9)s : G — E defined as ¢(g)¢(g') = f(g7'g') for all ¢ € G. Tt is
not hard to check ¢(g) is B-linear and surjective on K (G, E)/N. Fixed g € G,
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then

WP = (29)(f), e9)(f)
= (o(9)rP(9)s)
= Z (flg™ 1), (g1 " 92) (9 92))

91,92€G

= Y (flgt g, e((g g) g 92)) F g 2))

g91,92€G

= (LD
= |71

|

I2(g)(

<

So ¢(g) is an isometric surjective B-linear map on K (G, E)/N, and so can be
extended to an isometric surjective B-linear map on E , we denote it still by
¢(9). R

By Lemma 1.3, ¢(g) € L(E) is unitary. It is not hard to check that
&(g9192) = @(g1)p(g2) for all 1,92 € G. Therefore, ¢ : g — &(g) is a uni-
tary representation of G on F.

Step 2. Let g € G,z € E, denote by o, , the function in K (G, E) defined

as
0 g#g
N )
Og,w(g)_{ T g/:g,
for all ¢’ € G. Recall that every f € K(G, FE) is finitely supported, then there
exists a unique set of g1, 92, -+, gn, 1, X2, - ,xy such that
n
(2.4) f= Zagi,xw
i=1

where the elements g; are distinct with each other and we call (2.4) the canonical
form of f. For each a € A, define

#(a): K(G, E)/N — K(G, E)/N

by #(a)(f) = fo forall f =37 04 2. € K(G, E), where

n

falg') =Y _mlalg; t9™) (@) (0g,.(9")

i=1
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for all ¢’ € G. Tt is not hard to check that 7(a) is B-linear. Now we show that
#(a) is continuous. For all f € K(G, E)/N with f =", 0gi zis

17 (@)(DIF = [I(Fa; fa)
1{fas fa)l

- | = et

_ | v Zﬂ P @) )l ") ol

_ Z<w<a<gi><a>><mi>7¢<gi1gj>7r<a<gj><a>><xj>>H.

i,j=1
Let A= [¢(g; '9;)],
T = diag(m(a(g1)(a)), m(a(g2)(a)), - -+, m(a(gn)(a))),
and X = (v1,22, - ,x,)7. By (1.1), we obtain that
m(a(g:)(a)p(g; " 95) = elg; " gj)m(a(g;)(a)),
from which it follows that AT = T'A, so T*AT = AsT*T Az < ||T||2A and so
(far fa) = (X, T*ATX) < (X, |T|PAX) = |T|*(X, AX) = | T||*(f, f)-

Hence, ||(fa, fo)ll < ITI(f, /), and ||7(a)(F)Il < [T f]. Therefore, 7(a) is
continuous on K (G, E). It can be extended naturally to a continuous B-linear
operator on E, we also denote the extended operator by 7(a). Now we prove

that & : @ — 7(a) is a representation of A on F. It is apparent that 7 is linear.
Put g, 27,0452, € K(G, E)/N, then for any a € A,

(Coren, T(@)g002) = (091,01, Tga,m(alga)(a))(@2))

= (w1, 091 g2)m(a(g2)(a)) (22))
(z1,7(a(g1)(a))p(gy 'g2)(x2))
(m(e(g1)(a"))(x1), (g7 ' g2)(22))

(2'5) = <ﬁ-(a*)ag1,11nagz7w2>'

Since 7(a) and 7(a*) are linear, it follows from (2.5) that
(7(a")(F), f2) = (F1, 7(a)(f2))

forall f1, f» € K(G, E)/N. Furthermore, for every yi,ys € E, (7(a*)(y1),y2) =
(y1,7(a)(y2)). Hence, (a”) = 7(a)". Slmllarly, #(ab) = 7(a)7(b). Therefore,

7 is a representation of A on F.
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Step 3. We show that (#,¢) is a covariant representation of (A, G, «).
Commutativity of G' will be used in this step. Put a € A and g € G, then for
any f € K(G,E)/N with f =" 0gizi

#(a)2(9)(f) = 7(a)p(9)s = (2(9) f)as
-1 _-1,2

where (9(g)f)a maps g’ to Y217, m(e(g; g 9"*)(a))(0gii(9™"g")) for all ¢’ €
G. While,

@(9)7(a(9)(a)(F) = 2(9) (Fatg)@) = P(9) furyiars

where
@(g)fa(g)(a) (g/) = foz(g)(a) (gilg/)

= > mlalg; (979 (al9)(@)(0g.a(97"9)

1

.
Il

(alg; 979" (@))(0g,2: (97" 9))

I
NE

1

.
Il

for all ¢’ € G, since G is Abelian. Hence, 7(a)@(g) = ¢(9)7(a(g)(a)).
Step 4. Define W : E — E as W(z) = 0., for all z € E, where e is the
unit element in the group G. Then

”W(x)HQ = (0e2,0c,0) = Z <06,m7¢(9f192)06,z> = ”xHQv
91,92€G

so W is an isometry. A direct calculation shows that W € L(E, E) and W*W =
I. Since the range ran(E) of E is closed, then by [7, Theorem 3.2], ran(F) is
complemented. Now for any a € A,z € F,

T(a)W(z) = #(a)oen

= Oe¢,n(a)x

= Wn(a)(z),
so m(a) = W*i(a)W for all a € A. It is clear that

(Teo(9)e = Og,2) e p(g)e — Tg,z) = 0,

for all g € G. This yields G; ;(g)z = g2, 50 Wo(g)(z) = $(g)W(z) and so

p(g) = W*p(g)W.
0

Remark 2.2. If we do not distinguish E and W (E), then E is a submodule of E,
and it is not difficult to see that 7 and ¢ are dilations of 7 and ¢ respectively.
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