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ABSTRACT. Assume that A is a Banach algebra. We define the f—topology
and the y—topology on the space QM. (A*) of all bounded extended left

quasi-multipliers of A*. We establish further properties of (QM¢;(A*),~)

when A is a C*—algebra. In particular, we characterize the y—dual of

QM (A*) and prove that (QMe;(A*),~)*, under the topology of bounded

convergence, is isomorphic to A***.
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1. Introduction

The notion of a quasi-multiplier is a generalization of the notion of a mul-
tiplier on a Banach algebra and was introduced by Akemann and Pedersen [3]
for C*-algebras. McKennon [13] extended the definition to a general complex
Banach algebra A with a bounded approximate identity (b.a.i., for brevity) as
follows. A bilinear mapping m : A x A — A is a quasi-multiplier on A if

m(ab, cd) = am(b,c)d (a,b,c,d € A).
Let QM (A) denote the set of all bounded quasi-multipliers on A. It is showed
in [13] that QM (A) is a Banach space for the norm
[[m| = sup{lim(a, b)[; a,b € A, [lal] = [|bl]| = 1}-

For some classical Banach algebras, the Banach space of quasi-multipliers may
be identified with some other known spaces or algebras. For instance, by [13,
Corollary of Theorem 22|, one can identify QM (L'(G)), where G is a locally
compact Hausdorff group, with the measure algebra M (G).

In [1] we extended the notion of quasi-multipliers to the dual of a Banach
algebra A whose second dual has a mixed identity. We considered algebras
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satisfying a weaker condition than Arens regularity. Among others we proved
that for an Arens regular Banach algebra A with a b.a.i., QM,(A*) (see the
definition below) is isometrically isomorphic to A**. We also proved some re-
sults concerning Arens regularity of the Banach algebra QM,.(A*) of all bilinear
and bounded right quasi-multipliers of A*. In this paper, we define extended
left (right) quasi-multipliers on the dual of a Banach algebra. We establish
some properties of QM,;(A*) of all bounded extended left quasi-multipliers
of A*. In particular, we characterize the y—dual of QM,;(A*) and prove that
(QM_(A*),v)*, under the topology of bounded convergence, is isomorphic to
A***.

Before we state our main results the basic notation is introduced. We mainly
adopt the notation from the monograph [6]. The reader is referred to this book
for some results used in this paper, as well.

For a Banach space X, let X* be its topological dual. The pairing between X
and X* is denoted by (-, -). We always consider X naturally embedded into X **
through the mapping =, which is given by (r(z),&) = ({,z) (z € X, £ € X*).
Let A be a Banach algebra. It is well known that on the second dual A** there
are two algebra multiplications called the first and the second Arens product,
respectively. Since in the paper we use mainly the first Arens product, we recall
its definition. Let a € A, £ € A*, and F, G € A™ be arbitrary. Then one
defines £-a and G- £ by (£-a,b) = (£,ab) and (G-£,b) = (G,£-b), where b e A
is arbitrary. Now, the first Arens product of F' and G is an element F' < G in
A** which is given by (F < G,&) = (F,G - &), where £ € A* is arbitrary. The
second Arens product, which we denote by >, is defined in a similar way.

The space A** equipped with the first (or second) Arens product is a Banach
algebra. When A** is endowed with < we denote the algebra by A%*. Similarly,
AZ* is the algebra obtained with A** endowed with the second Arens product
>. Since F'<da = Fraand a<F = a> F hold for all a € A and F € A** the
algebra A is a subalgebra of A%* and AZ*. It is said that A is Arens regular if
the equality F'<G = F>G holds for all F, G € A*™*, ie., when A%* = AZ*. For
example, every C*-algebra is Arens regular, see [5].

An element F in the second dual A** is said to be a mixed identity if it is a
right identity for the first and a left identity for the second Arens product. Note
that A** has a mixed identity if and only if A has a b.a.i. By [6, Proposition
2.6.21], an element E € A** is a mixed identity if and only if E-{ =¢ =¢- E,
for every £ € A*. If the equality A*A = A*, (AA* = A*) holds, then we say
A* factors on the left (right). If both equalities A*A = AA* = A* hold, then
we say that A* factors.
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2. Main results

Let A be a complex Banach algebra. Note that A* is a Banach A}*-A-
bimodule and a Banach A-A}*-bimodule. But in general it is not a Banach
A%r-AZ*-bimodule.

Definition 2.1. Let A be a complex Banach algebra. Consider A* as a Banach
A%*-A-bimodule. A bilinear map

m: A x A¥ — A*
is a left quasi-multiplier of A* if
(2.1) m(F <G, &) =F -m(G,§) and m(F,&-a) =m(F,€)-a

hold for all a € A, £ € A* and F,G € A*™*.
Consider A* as a Banach A-AZ*-bimodule. A bilinear map

m: A" x A — A*
is a right quasi-multiplier of A* if
(2.2) m(&FrG)=m({,F)-G and m(a-§F)=a-m(§,F)
hold for all a € A, £ € A* and F,G € A*.
Let QM,.(A*) (respectively, QM;(A*)) be the set of all bounded right (re-
spectively, left) quasi-multipliers of A*.

Although in our investigation we do not assume Arens regularity of A, we
usually have to assume that A satisfies the following weaker condition.

Definition 2.2. A Banach algebra A is weakly Arens regular if
(F-§)-G=F-(£-G) (F. GeA™ £cA)

Of course, every Arens regular Banach algebra is weakly Arens regular.
However, the class of weakly Arens regular Banach algebras is larger. It con-
tains, for instance, every Banach algebra A which is an ideal in its second dual.
Namely, in this case, we have

(F-&)-G,a) =(r(a),(F-&)-G)=(Gv>mn(a),F-& ={(G>m(a)) < F,E)
=(G>(n(a) aF),§) =(m(a) < F,£-G) = (F- (£ G),a)  (a €A,
for arbitrary F, G € A* and £ € A*. Note that a unital Banach algebra is
weakly Arens regular if and only if it is Arens regular.

It is not hard to see that A* is a Banach A%*-AZ*-bimodule if and only if A
is weakly Arens regular.

Definition 2.3. Let A be a weakly Arens regular Banach algebra. Consider
A* as a Banach A}*-Af*-bimodule. A bilinear map

m: A x A" — A*
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is an extended left quasi-multiplier of A* if
(2.3) m(F <G, &) =F -m(G,§) and m(F,{-G)=m(F,§) -G

hold for all £ € A* and F,G € A**.
Similarly, a bilinear map

m: A" x A — A*
is an extended right quasi-multiplier of A* if
(2.4) mEF>G)=m(,F)-G and m(G-&F)=G-m(§,F)
hold for all £ € A* and F,G € A**.

Let QM. (A*) (respectively, QM. (A*)) denote the set of all bounded ex-
tended right (respectively, left) quasi-multipliers of A*.

Proposition 2.4. If A is a weakly Arens reqular Banach algebra, then a map
m: A* x A* — A* is an extended left quasi-multiplier of A* if and only if it
18 a left quasi-multiplier of A*.

Proof. Tt is obvious that every extended left quasi-multiplier is a left quasi-
multiplier. For the converse observe that for all G € A** and £ € A* the
mapping G — £ - G is weak*-weak* continuous. Indeed, assume that a net
{ba}acr C A converges to G in the weak* topology. Then for each x € A,

Hm(E - by, x) = Um(E, by - ) = (€, limbyz) = (£, G - )
It follows that for each F' € A** we have
m(F,&-G) =m(F,lim(§ - by)) = imm(F, € - by) = lim(m(F,€) - by)
=m(F,¢) -limb, = m(F,§) - G,
which means that m is an extended left quasi-multiplier of A*. O

A simple computation shows that if A is a weakly Arens regular Banach
algebra, then the products

Hem(G,&) =m(G.H-¢),  mxH(G&)=m(GaH,E)
(me QM;(A*), He A*™ £ A", Ge A™)

make QM (A*) a two-sided A%*-bimodule. Moreover, it is a Banach space
with respect to the norm

|Im[| = sup{[|m(&, F)l[; €A™, FeA™, || <1, [[F|| <1}
Beside the norm topology, there are two other useful topologies on QM;(A*).
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Definition 2.5. Let A be a weakly Arens regular Banach algebra. The strict
topology B on QM. (A*) is defined as the locally convex topology which is
given by the seminorms

m — ||mx F|| (FeA™, me QM. (A")).

The quasi-strict topology v on QM,;(A*) is defined as the locally convex topol-
ogy which is given by the seminorms

m = [[m(F§l  (§€ A, FeA™, meQM(A")).
Let 7 denote the topology on QM. (A*) generated by the norm.

Proposition 2.6. If A is a weakly Arens reqular Banach algebra such that
A = (AZ*)z, theny C 8 C 7.

Proof. Let a net {mq}tacr C QM (A*) converge to m € QM (A*) in the
topology 3 and let & € A* be arbitrary. Since A%* = (A%*)?, for arbitrary
F € A** there exist G, H € A** such that FF = G < H. It follows, by the
definition of the topology S, that ||mq * H — m * H|| — 0. Thus

[lma (F, &) = m(F, §)|| = [[ma(G < H,&) —m(G < H,)l
= |l(ma * H)(G, &) — (m* H)(G,§)|| = 0,

which means that {mg}eer converges to m in the topology ~. It is obvious
that 8 C 7. O

Corollary 2.7. If A is a weakly Arens reqular Banach algebra such that A**
has a mized identity, then v C 8 C 7.

Proof. Since A** has a mixed identity we have A%* = (A%*)2. O

Recall that a map T : A* — A* is a left multiplier of A* if
TE-F)=T()-F,

forall € € A*, F € A**. With M;(A*) we denote the space of all bounded linear
left multipliers of A*.

Theorem 2.8. Let A be a weakly Arens regular Banach algebra. Then
(i) the space (QMei(A”),) is complete;
(ii) if A** has a mized identity of norm one, then (QM (A*), 8) is complete.

Proof. (i) Let {maq}aecr be a y-Cauchy net in QM (A*). Then, for arbitrary
£ € A* and F € A**, we have a Cauchy net {m,(F, £) }aer in the norm topology
of A*. Let m(F,§) = lim, mq(F, ). It is obvious that in this way we have
defined a bilinear mapping m on A* x A** satisfying condition (2.3). Also by
uniform boundedness principle ([11, p. 172] and [7, p. 489]), m is bounded and
therefore m € QM (A*).

(ii) Let {maq}acr be a f—Cauchy net in QM (A*). For each F' € A**, the
mapping T : A* — A* which is given by T8(§) = mq(F, &) defines elements in
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M;(A*). Define a mapping p : M;(A*) — QM (A*) by pr(F, &) = F - T¢. Tt is
easy to show that pre = mg*F' It follows from the definition of the —topology
that {pra }aer is a Cauchy net in the norm of QM,;(A*). By [I, Theorem 2.3], p
is an isometry and therefore {72} is a Cauchy net in the norm of M;(A*). By the
completeness of M;(A*), there exists Tp € M;(A*) such that ||T% — Tr|| — 0.
Since v C B the net {mq }aer is a Cauchy net in 7 topology. By the first part
of this theorem, (QM;(A*),7) is complete. Hence there exists m € QM,;(A*)
such that

liglma(F, &) =m(F,§) forall £€ A* and F € A™.
For each G € A**,
pr(G.€) = lim pry (G.€) = lim(me, » F)(G,€) = limme (G < F\)
=m(GaF, &) =(mxF)(G,E).
It follows that
|lma * F'—m = F|| = ||prg — pre|l = [|TF — Tr|| = 0,

which implies that m is the S—limit of the net {mq}acr, i-e., QM (A*) is
complete in S topology. O

Theorem 2.9. Let A be a weakly Arens regular Banach algebra.

(i) (QMg(A*),7) and (QM(A*),~) have the same bounded sets.
(ii) If A™ has a mized identity, then (QM(A*),7), (QMg(A*),7) and
(QMi (A*), B) have the same bounded sets.

Proof. (i) Since v C 7, each T—bounded set is y—bounded. On the other hand,
let H be a y—bounded subset of QM,;(A*). Then for each £ € A* and F € A**,
there exists a real number r = r(F, &) > 0 such that

(2.5) Im(F&)l| <r
for all m € H. For each £ € A* and m € H, define M, : A** — A* by
Me(F) :=m(F,§) (FeA™).
Consider the family H = {M¢ : m € H}. By (2.5), for each G € A**,
IMe(G)[| = [Im(G, )| < 7(G,€) (m € H).

Hence, H is pointwise bounded. By the principle of uniform boundedness, there
exists a constant ¢ = ¢(F') > 0 such that

(2.6) IMyl| < ¢ (m e H).
Consider the family P = {p,, : m € H} of semi-norms on A* defined by

Pm(§) = [[Me|| = sup [|[Me(F)|| = sup [[m(F,&)|| (€€ A").
llel<1 lgli<1
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In the following we prove that p,, is continuous on A* for each m. Let {&,} C
A* be a sequence in A* converging to £y € A*, then

[Pm(&n) = Pm(80)] < Pm(En — o) = sup |[Me, ¢, (F)]|
IFlI<1

= sup [[m(F,&n = &)l =0,
[I1Fl<1
which implies that p,, is continuous. It follows from (2.6) that the family P is
pointwise bounded. Hence, by [3, p. 142], there exist a closed B(&y,r) = {£ €
A* 1 ||€=¢&o]| < r} and a constant Ky such that p,,(§) < Ko for all f € B(&o, 7).
For ¢ € A* with ||¢|| < 1, we have

pufe) = PO =80 L (e g) 4 paen)) < 20
This implies that
2K,
Imil= s [m(EOl = sup pa(e) < K0
[EII<L,|IF[I<1 lgl<1 r

and so the set H is T—bounded, as required.

(H) Sincea Y Cc ﬂ Cc T, by (Z)a (QMBZ(A*)a7)7 (QMGZ(A*)vT) and (QMGI(A*)vﬂ)
have the same bounded sets. O

For the remainder of this section we assume that A is a C*—algebra. We
characterize the y—dual of QM (A*).

Theorem 2.10. Let A be a C*—algebra. Then
(QMEZ(A*)a'y)* = {f B f € (QMEZ(A*)aT)*7F S A**}a

where
(f-F)(m):={(f,mxF) (m € QM. (A")).

Proof. Let f € (QM(A*), 7)*. It is obvious that for each F' € A** the mapping
f F is a linear functional. Let us prove that f - F' is y—continuous. Assume
that m € QM,;(A*) is arbitrary. Since f is 7—continuous, given € > 0, there is
0 > 0 such that |(f, m)| < e whenever ||m|| < 6. Consider the y—neighborhood
of 0 in QM. (A*) given by

N(F,0) ={m € QM. (A") : [lm* F|| <d}.
Let m € N(F,J). Now,
((f - F)(m)| = [{f;m* F)| <e.

Hence f - F is y—continuous.

Conversely, suppose that g € (QMg(A*),v)*. Since v C 7 we have g €
(QM(A*),7)*. Every C*-algebra A is (weakly) Arens regular and its second
dual A** is a unital von Neumann algebra, hence Arens regular, as well. By
[1, Theorem (2.6)], QM (A*) is Arens regular and so (QM(A*), 7)* factors



Quasi-multipliers 1330

(see [14]). Also by [1, Theorem (2.5)], QM (A*) is isomorphic to A**. Therefore
there exist f € (QMy(A*),7)* and F € A** such that g = f - F. O

For each H € A**, define p(H) € QM (A*) by

[p(H)|(F, &) =(F<H)-¢ forall{ € A*, F € A*™.
Lemma 2.11. If A is an Arens reqular Banach algebra with a bounded approz-
imate identity, then ¢ : A** — QM. (A*) is an isomorphism.
Proof. Let m € QM. (A*). In order to prove that ¢ is onto, we show that for
all F, H,G € A** one has
m*(H<F,G)=H<am"(F,QG)

where m* : A** x A** — A** is an extension of m. Let £ € A*. Then

(m*(H < F,G),&) = (H<F,m(G,§)) = (F,m(G,§) - H) = (F,m(G,§ - H))

— (m*(F,G),¢ - H) = (H am*(F,G),€),

Let E be the mixed identity in A** and suppose that £ € A*, F € A** and
x € A are arbitrary. Then

(p(m*(E, E))(F,&),x) = (Fam™(E, E)) - & x) = (Fam*(E, E),{ - x)

= (m*(F,E),§ x) = (F,m(E,¢§ - x))

= (F,m(E,§) - x) = (z < F,m(E,£))
Now, let us prove that ¢ is one to one. Assume that ¢(H) = 0. Then for each
& € A*, one has

H-¢=(E-H) £=0.
Which implies that for each x € A,
<H,§;C> = <H§,£L‘> =
Since, A is Arens regular, A* factors. Thus H = 0. O
Definition 2.12. Let A be a Banach algebra. The topology of bounded con-
vergence u on (Q M (A*),~)* is defined as the linear topology which has a base
of neighborhoods of 0 consisting of all sets of the form
M(D,G) ={f € (QMa(A"),7)" : f(D) C G},

where D is a y—bounded subset of (QM;(A*),~v) and G is a neighborhood of
0.

The topology v on (QM(A*),~)* is defined as the linear topology which
has a base of neighborhoods of 0 consisting of all sets of the form

N(D,G) ={f € (@Ma(A"),7)" : f(D) C G},

where D is a norm-bounded subset of (QM;(A*),7) and G is a neighborhood
of 0.
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Theorem 2.13. Let A be a C*—algebra. Then ((QMe(A*),~)*,u) is isomor-
phic to A***.

Proof. Since v C 7 we have (QM(A*),v)* C (QM(A*),7)*. By Theorem
2.9, v and 7 have the same bounded sets in QM (A*), it follows that the
topology u coincides with the norm topology v on (QMg(A*),~)*. There-
fore (QMe1(A*),v)*,u) is a normed subspace of ((QM¢(A*),7)*,v). We will
show that ((QMe(A*),~)*,u) is isomorphic to the subspace ((¢(A**),7)*,v)
of (QMg(A*),7)*,v). Consider the map ¢ which maps each element g €
((QMg(A*),v)*,u) onto its restriction to @(A**), that is, g|lp(A**). Since
~v C 7, for each g € (QM(A*),v)*, the map 1(g) is T—continuous. It is clear
that v is linear. Suppose that ¥(g) = 0. Then g(p(H)) = 0 for all H € A**. By
Lemma 2.11, the mapping ¢ is onto. Hence, g(m) = 0 for all m € QM (A*)
which means that ¢ is one to one. Assume that f € (p(A**),7)*. It is easy to
see that p(A**) is an Arens regular Banach algebra. Hence, by using the same
arguments as those in the proof of Theorem 2.10, there exist h € (¢(A**),7)*
and F' € A** such that f = h-F. By Hahn-Banach theorem, h can be extended
to an element h € (QM,;(A*),7)*. Then, by Theorem 2.10, the functional h- F
belongs to (QM;(A*),v)*. Also, for all G € A**, we have

U(h-F)(p(G)) = (h- F)(@(G)) = (h, o(G) * F) = (h, o(F G))
= (h,o(F 1 G)) = (h,p(G) * F) = (h - F)(p(G))
= f((G)).
Therefore ¢(h - F) = f and so ¢ is onto. O

Example 2.14. Let H be a Hilbert space and let A = K(H), the algebra of
all compact operators on H. The dual of the space of compact operators is the
space of trace-class operators, C1(H). The second dual of A is B(H). Since
K(H) is a C*-algebra we have ((QMg(C1(H)),v)*,u) = (B(H))*.

Example 2.15. Let A = ¢o(N), the space of all complex sequences which
converge to 0. The dual of ¢q is I; and its second dual is [o,. Since ¢ is a
C*—algebra, by Theorem 2.13, ((QMc;(11),7)*,u) = ba(N, 2N, 11), the space of
all finitely additive finite signed measure which are absolutely continuous with
respect to the counting measure p equipped with the total variation norm.
Since the space l is isometrically isomorphic to C(SN), where SN is the
Stone-Cech compactification of N, one can identifies ((QMc(l1),7)*,u) also
with the dual C'(SN)*.
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