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Abstract. In this work, we derive insensitive bounds for various perfor-
mance measures of a single-server retrial queue with generally distributed
inter-retrial times and Bernoulli schedule, under the special assumption
that only the customer at the head of the orbit queue (i.e., a FCFS disci-

pline governing the flow from the orbit to the server) is allowed to occupy
the server. The methodology is strongly based on stochastic comparison
techniques. Instead of studying a performance measure in a quantitative
fashion, this approach attempts to reveal the relationship between the

performance measures and the parameters of the system. We prove the
monotonicity of the transition operator of the embedded Markov chain
relative to strong stochastic ordering and increasing convex ordering. We
obtain comparability conditions for the distribution of the number of cus-

tomers in the system. Bounds are derived for the stationary distribution
and some simple bounds for the mean characteristics of the system. The
proofs of these results are based on the validation of some inequalities for
some cumulative probabilities associated with every state (m,n) of the

system. Finally, the effects of various parameters on the performance of
the system have been examined numerically.
Keywords: Retrial queues, performance measures, stochastic orders,

monotonicity, simulation.
MSC(2010): Primary: 60K25; Secondary: 60E15, 60K10.

1. Introduction

Retrial queueing systems or systems with repeated attempts are character-
ized by the requirement that customers finding the service area busy must join
the retrial group and retry for service at random intervals. Retrial queues have
been widely used to model many practical problems in telephone switching
systems, telecommunication networks and computers competing to gain ser-
vice from a central processing unit, etc. Moreover, retrial queues are also used
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as mathematical models of several computer systems: packet switching net-
works, collision avoidance star local area networks, cellular mobile networks.
A review of the main results can be found in [3, 16,31].

Priority mechanisms are an invaluable scheduling method that allows cus-
tomers to receive different qualities of service. Service priority is clearly today
a main feature of the operation of almost any manufacturing system. The
role of quality and service performance are crucial aspects in customer percep-
tions, and firms must dedicate special attention to them when designing and
implementing their operations. For this reason, the priority queue has received
considerable attention in the literature [12,13,15].

In almost all the literature for retrial queues, the retrial times are assumed to
be exponentially distributed and the results about the retrial queues with non-
exponential retrial time are very limited. The main difficulty for analyzing the
system with non-exponential retrial times is due to the fact that the model must
keep track of the elapsed retrial time for each of possibly a very large number
of customers [1, 2]. The first investigation on the M/G/1 retrial queue with
general retrial times is due to Kapyrin [21], who assumed that each customer
in the orbit generates a stream of repeated attempts that are independent of
the customer in the orbit and state of the server. However, this methodology
was found to be incorrect by Falin [14]. Subsequently, Yang et al. [30] have
developed an approximation method to obtain the steady state performance for
the model of Kapyrin. The order relation for GI/G/1 retrial queue with PH-
retrial times and a stability condition for BMAP/PH/s/s + K retrial queue
with PH-retrial times are considered in Liang and Kulkarni [20] and He et
al. [18], respectively. Later, Gómez-Corral [17] discussed extensively an M/G/1
retrial queue with FCFS discipline and general retrial times. Atencia and
Moreno [4], analyze an M/G/1 retrial queue with Bernoulli schedule where the
retrial times are governed by an arbitrary distribution and only the customer
at the head of the orbit is allowed for access to the server, a blocked customer
can become of high or low priority according to his choice; so if customers had
a cost per unit time in each group, we could research the optimal decision in
the sense of minimizing the expected total cost per unit time.

Because of complexity of retrial queueing models, analytic results are gen-
erally difficult to obtain. In contrast, there are a great number of numerical
and approximation methods which are of practical importance. One important
approach is monotonicity which can be investigated using the stochastic com-
parison method based on the general theory of stochastic orders. Stochastic
comparison methods have been used to produce bounds and approximations for
queue length processes, waiting times and busy period distributions in many
queueing systems. For the detailed results and references about the comparison
methods and their applications, see Stoyan [27] and especially, for a construc-
tive method, see Bhaskaran [5], Müller and Stoyan [24] and Massey [23].
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Monotonicity properties of queueing systems have become an interesting
subject recently. One monotonicity property has been considered by Liang and
Kulkarni [20], in which they study how the retrial time distribution affects the
system congestion. Khalil and Falin [22] investigate some monotonicity proper-
ties ofM/G/1 retrial queues with exponential retrial times relative to stochastic
ordering, convex ordering and Laplace ordering. Liang [19] considers a retrial
queue which consists of an orbit with infinite capacity, a service station, and
a queue with finite capacity. He shows that if the hazard rate function of the
retrial times distribution is decreasing, then stochastically longer service time
or less servers will result in more customers in the system. Boualem et al. [8]
investigate some monotonicity properties of an M/G/1 queue with constant re-
trial policy in which the server operates under a general exhaustive service and
multiple vacation policy relative to strong stochastic ordering and convex or-
dering. Boualem et al. [9] consider a qualitative analysis to investigate various
monotonicity properties for an M/G/1 retrial queue with classical retrial policy
and Bernoulli feedback. The results obtained allow us to place in a prominent
position the insensitive bounds for both the stationary distribution and the
conditional distribution of the stationary queue of the considered model. Re-
cently, Boualem et al. [10] investigate various monotonicity properties of a
single server retrial queue with FCFS orbit and general retrial times using the
mathematical method based on stochastic comparisons of Markov chains in
order to derive performance indice bounds. Bounds are derived for the mean
characteristics of the busy period, number of customers served during a busy
period, number of orbit busy periods and waiting times. Boualem [6] addresses
monotonicity properties of the single server retrial queue with no waiting room
and server subject to active breakdowns, that is, the service station can fail
only during the service period. The obtained results give insensitive bounds for
the stationary distribution of the considered embedded Markov chain related
to the model in the study. Numerical illustrations are provided to support the
results. Boualem et al. [7] introduce a new analytical approach, namely a qual-
itative analysis, which is another field of own interest to establish insensitive
stochastic bounds on some performance measures of a single server queue with
classical retrial policy and service interruptions by using the monotonicity and
comparability approach relative to the convex ordering.

This paper looks at a particular retrial queue with Poisson arrivals, gen-
eral service distribution, retrial times under a Bernoulli schedule that are
distributed according to a general distribution that has finite moments, and
the special assumption that only the customer at the head of the orbit queue
is allowed to occupy the server. The waiting room is assumed to be unlim-
ited and the service discipline FCFS, with priority given to waiting customers
over retrial customers. The performance characteristics of such a system are
available in explicit form, where the main probabilistic descriptors have been
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obtained [4]. However, the obtained results are cumbersome (they include in-
tegrals of Laplace transform, solutions of functional equations, etc.) and are
not very exploitable from the application point of view (e.g. performance eval-
uation), so in the present study, we consider the model from the viewpoint of
stochastic orders (strong stochastic order, increasing convex order and Laplace
order), in which the characterization is based on the pointwise comparison of
the indefinite integral of distribution function. The proposed approach is quite
different from that given by Atencia and Moreno [4], in the sense that it pro-
vides from the fact that we can come to a compromise between the role of
these qualitative bounds and the complexity of resolution of some complicated
systems where some parameters are not perfectly known. Besides, the obtained
bounds (lower and upper) in this paper are easy to calculate and seem to be
good approximations for performance measures of the considered system.

The rest of the paper is organized as follows. In the next Section, we describe
the considered queueing system. In Section 3, we introduce some pertinent
definitions and notions of stochastic orders. In Section 4, we present some
lemmas that will be used in what follows. Section 5 focusses on monotonicity of
the transition operator of the embedded Markov chain and gives comparability
conditions of two transition operators. Stochastic bounds for the stationary
number of customers in the system are discussed in Section 6. In Section 7, we
provide insensitive bounds for the mean characteristics of the system. The last
Section is devoted to the practical aspect.

2. The mathematical model

We consider a single-server retrial queue in which external customers arrive
according to a Poisson stream with rate λ > 0. Upon arrival, customers ex-
amine the availability of the server. If an arriving customer finds the server
idle, he commences his service immediately. Otherwise, the arriving customer
either with probability p enters the retrial group (called orbit) or with comple-
mentary probability q (= 1− p) joins the waiting space (called priority queue),
where he waits to be served. We will assume that only the customer at the
head of the orbit is allowed for access to the server. If the server is busy upon
retrial, the customer joins the orbit again. Such a process is repeated until the
customer finds the server idle and gets the requested service at the time of a
retrial. Successive inter-retrial times of any customer follow an arbitrary law
with common probability distribution function A(x), Laplace-Stieltjes Trans-
form (LST) αA(s) and nth moments αn. The service times are independently
and identically distributed with probability distribution function B(x), LST
βB(s) and nth moments βn. Moreover, we suppose that inter-arrival times,
retrial times and service times are mutually independent.

At an arbitrary time t, the system can be described by means of the Markov
process

X(t) = (C(t), Q1(t), Q2(t), ξo(t), ξ1(t)),
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where

• C(t) =

{
0, if the server is free,
1, if the server is busy.

• Q1(t) and Q2(t) are the number of customers in the priority queue and
in the orbit respectively.

• ξo(t) represents the elapsed retrial time, if C(t) = 0, Q1(t) = 0 and
Q2(t) > 0.

• ξ1(t) corresponds to the elapsed time of the customer currently being
served, if C(t) = 1.

From the model description, it is clear that the evolution of our retrial queue
is described in terms of alternating sequence of idle and busy periods for the
server. After each service, the server becomes free only when the priority queue
is empty; then the next customer to be served is determined by a competition
between an exponential law of rate λ and the general retrial time distribution
(that is, a possible new arrival and the one, if any, at the head of the orbit
compete for service). This is the main difference with classical waiting lines
without retrials.

Let tl be the time of the lth departure, Q1,l = Q1(tl−0) and Q2,l = Q2(tl−0)
the number of customers in the priority queue and in the orbit respectively
just before the time tl. For Q1,l and Q2,l we have the following fundamental
recursive equations

(2.1) Q1,l =

{
Q1,l−1 − 1 + w1,l, if Q1,l−1 ≥ 1,
w1,l, if Q1,l−1 = 0,

(2.2) Q2,l =

 Q2,l−1 + w2,l, if Q1,l−1 ≥ 1,
Q2,l−1 − bl + w2,l, if Q1,l−1 = 0 and Q2,l−1 ≥ 1,
w2,l, if Q1,l−1 = 0 and Q2,l−1 = 0,

where w1,l and w2,l are the number of customers arriving at the priority queue
and the orbit respectively during the lth service time, and

bl =

{
1, if the lth served customer proceeds from the orbit,
0, otherwise.

We will denote by

(2.3) km,n =

∞∫
0

(λqx)m

m!

(λpx)n

n!
e−λxdB(x),

the joint distribution of the number of customers who arrive at the priority
queue and the orbit during a service time.

It is easy to prove that

(2.4) k(z1, z2) =
∞∑

m=0

∞∑
n=0

km,nz
m
1 zn2 = βB(λ− λqz1 − λpz2).
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The inequality ρ < αA(λ)(p + qαA(λ))
−1 is a necessary and sufficient con-

dition for ergodicity, where ρ = λβ1 is the load of the system [4].
The previous comments imply that the sequence of random variables Xl =

(Q1,l, Q2,l), l ∈ N forms a Markov chain with N2 as state space, which is
the embedded chain for our queueing system. It is not difficult to see that
Xl = (Q1,l, Q2,l), l ∈ N is irreducible and aperiodic.

The one-step transition probabilities of the chain {Xl, l ∈ N} is defined in
the following formulae (see [4]):
(2.5)

p(j,m)(i,n) =


ki,n, if j = 0,m = 0,
[1− αA(λ)] ki,n−m + αA(λ)ki,n−m+1, if j = 0, 1 ≤ m ≤ n,

αA(λ)ki,0, if j = 0,m = n+ 1,
ki−j+1,n−m, if 1 ≤ j ≤ i+ 1, 0 ≤ m ≤ n,
0, otherwise.

3. Stochastic orders and ageing notions

Stochastic ordering is useful for studying internal changes of performance
due to parameter variations, to compare distinct systems, to approximate a
system by a simpler one, and to obtain upper and lower bounds for the main
performance measures of systems.

First, let us recall some stochastic orders and ageing notions which are most
pertinent to the main results to be developed in this paper.

3.1. Definitions of some univariate stochastic orders.

Definition 3.1. For two non-negative random variables X and Y with densi-
ties f and g and cumulative distribution functions F and G, respectively, let
F = 1−F and G = 1−G denote the survival functions. X is said to be smaller
than Y in:

(1) Usual stochastic order (≤st) iff F (x) ≤ G(x), ∀x ≥ 0.

(2) Increasing convex ordering (≤icx) iff
+∞∫
x

F (u)d(u) ≤
+∞∫
x

G(u)d(u).

(3) Laplace ordering (≤L) iff
+∞∫
0

e−sxdF (x) ≥
+∞∫
0

e−sxdG(x), ∀s ≥ 0.

If the random variables of interest are of discrete type and ω = (ωn)n≥0,
ν = (νn)n≥0 are the corresponding distributions, then the above definitions
can be given in the following form:

(1) ω ≤st ν iff ωm =
∑

n≥m ωn ≤ νm =
∑

n≥m νn, ∀m.

(2) ω ≤icx ν iff ωm =
∑

n≥m

∑
k≥n ωk ≤ νm =

∑
n≥m

∑
k≥n νk, ∀m.

(3) ω ≤L ν iff
∑

n≥0 ωnz
n ≥

∑
n≥0 νnz

n, ∀z ∈ [0, 1].
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3.2. Some multivariate extensions. Multi-dimensional stochastic processes
are used for the modeling of complex systems such as queueing networks. Since
a direct analysis of such systems is very difficult, stochastic comparison has been
a standard tool in their analysis and there has been an increasing interest on
this technique in the last years [11,29].

In this section we recall some multivariate extension of the stochastic orders
considered in the previous section.

Definition 3.2. Given two random vectors X and Y , we say that X is less
than Y in:

(1) Multivariate stochastic order iff E[ϕ(X)] ≤ E[ϕ(Y )],
(2) Multivariate increasing convex order iff E[ϕ(X)] ≤ E[ϕ(Y )],
(3) Multivariate Laplace ordering iff E[exp{−STX}] ≥ E[exp{−STY }],

for all S ∈ Rn
+ and for all increasing function ϕ : Rn 7→ R, for which the

previous expectations exist.

Definition 3.3. LetX be a positive random variable with distribution function
F :

(1) F is HNBUE (Harmonically New Better than Used in Expectation)
iff F ≤icx F ∗,

(2) F is of class L iff F ≥L F ∗,

where F ∗ is the exponential distribution function with the same mean as F .

The ageing classes are linked by the inclusion chain:

NBU ⊂ NBUE ⊂ HNBUE ⊂ L.
For a comprehensive discussion on these stochastic orders and their applica-
tions, one may refer to [23,25–28].

4. Preliminary results

This section presents several useful lemmas which will be used later in es-
tablishing the main results in Section 5.

Now, let Σ(1) and Σ(2) be two M/G/1 retrial queues with general retrial

times and Bernoulli schedule defined by λ(1), p(1), B(1), k
(1)
m,n and λ(2), p(2), B(2),

k
(2)
m,n, respectively.

Lemma 4.1. (1) If λ(1) ≤ λ(2), p(1)=p(2) and B(1) ≤st B
(2), then {k(1)m,n}≤st

{k(2)m,n}.
(2) If λ(1) ≤ λ(2), p(1) = p(2) and B(1) ≤icx B(2), then {k(1)m,n} ≤icx {k(2)m,n}.

Proof. By definition,

k
(i)

m,n =
∑
l≥m

∑
k≥n

k
(i)
l,k =

+∞∫
0

∑
l≥m

∑
k≥n

(λ(i)q(i)x)l

l!

(λ(i)p(i)x)k

k!
e−λ(i)xdB(i)(x),
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k
(i)

m,n =
∑
j≥m

∑
h≥n

k
(i)

j,h =
∑
j≥m

∑
h≥n

∑
l≥j

∑
k≥h

k
(i)
l,k, i = 1, 2.

To prove that {k(1)m,n} ≤s {k(2)m,n}, we have to establish the usual numerical
inequalities

k
(1)

m,n =
∑
l≥m

∑
k≥n

k
(1)
l,k ≤ k

(2)

m,n, (for ≤s=≤st),

k
(1)

m,n =
∑
j≥m

∑
h≥n

k
(1)

j,h ≤ k
(2)

m,n, (for ≤s=≤ icx).

(1) Consider the function

fm,n(x, λ, p) =
∑
l≥m

∑
k≥n

(λqx)l

l!

(λpx)k

k!
e−λx

=
∑
l≥m

(λqx)l

l!
e−λqx

∑
k≥n

(λpx)k

k!
e−λpx.

This is an increasing function with respect to λ and x.
With the help of [27, Theorem 1.2.2] and by monotonicity of fm,n(x, λ, p) with
respect to λ, one can find that

∞∫
0

fm,n(x, λ
(1), p(1))dB(1)(x) ≤

∞∫
0

fm,n(x, λ
(1), p(1))dB(2)(x)

≤
∞∫
0

fm,n(x, λ
(2), p(2))dB(2)(x).

(2) Consider also f̄m,n(x, λ, p) =
∑
j≥m

∑
h≥n

fj,h(x, λ, p).

This is an increasing function with respect to λ and an increasing and convex
function with respect to x.

Similarly, with the help of [27, Theorem 1.3.1] and by monotonicity of
f̄m,n(x, λ, p) with respect to λ, we obtain the result. □

Lemma 4.2. If λ(1) ≤ λ(2), p(1) = p(2) and B(1) ≤L B(2), then {k(1)m,n} ≤L

{k(2)m,n}.

Proof. We have

k(i)(z1, z2) =
∑
m≥0

∑
n≥0

k(i)m,nz
m
1 zn2 = βB(i)(λ(i) − λ(i)q(i)z1 − λ(i)p(i)z2), i = 1, 2,

where k(i)(z1, z2) be the corresponding probability generating function of the
joint distributions of the number of customers who arrive at the priority queue
and the orbit during a service time in the ith system, i = 1, 2.
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Let λ(1) ≤ λ(2), p(1) = p(2) and B(1) ≤L B(2). To prove that {k(1)m,n} ≤L

{k(2)m,n}, we have to establish that

(4.1) βB(1)(λ(1)−λ(1)q(1)z1−λ(1)p(1)z2) ≥ βB(2)(λ(2)−λ(2)q(2)z1−λ(2)p(2)z2).

The inequality B(1) ≤L B(2) implies that βB(1)(s) ≥ βB(2)(s) for all s ≥ 0.
In particular, for s = λ(1) − λ(1)q(1)z1 − λ(1)p(1)z2 we have

(4.2) βB(1)(λ(1)−λ(1)q(1)z1−λ(1)p(1)z2) ≥ βB(2)(λ(1)−λ(1)q(1)z1−λ(1)p(1)z2).

The function λ− λqz1 − λpz2 is increasing in λ.
Since any Laplace transform is a decreasing function, λ(1) ≤ λ(2) and p(1) =
p(2), implies that

(4.3) βB(2)(λ(1)−λ(1)q(1)z1−λ(1)p(1)z2) ≥ βB(2)(λ(2)−λ(2)q(2)z1−λ(2)p(2)z2).

By transitivity, (4.2) and (4.3) give (4.1). □

5. Monotonicity properties of the embedded Markov chain

Now we study monotonicity properties of the embedded Markov chain {Xl, l
∈ N} relative to the strong stochastic ordering ≤st and the increasing convex
ordering ≤icx.
Let T be the transition operator of our embedded Markov chain {Xl, l ∈ N},
which associates to every distribution ϕ = (ϕ(j,m)), a distribution Tϕ = (δi,n)
such that δi,n =

∑
j

∑
m

ϕ(j,m)p(j,m)(i,n) (where p(j,m)(i,n) are one-step transition

probabilities of the considered chain).

Theorem 5.1. The transition operator of the embedded Markov chain {Xl, l ∈
N} is monotone with respect to the order ≤st, that is, for any two distributions
ϕ(1) and ϕ(2), the inequality ϕ(1) ≤st ϕ

(2) implies that Tϕ(1) ≤st Tϕ
(2).

Proof. From [27], the transition operator T is monotone with respect to ≤st if
and only if

(5.1) p(j−1,m−1)(i,n) ≤ p(j,m)(i,n) for all i, n, j > 0 and m > 0.

To prove (5.1), we have

p(j,m)(i,n) =
∞∑
l=i

∞∑
h=n

p(j,m)(l,h) =
∞∑
l=i

∞∑
h=n

kl−j+1,h−m.
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Consequently,

p(j,m)(i,n) − p(j−1,m−1)(i,n) =
∞∑
l=i

∞∑
h=n

kl−j+1,h−m −
∞∑
l=i

∞∑
h=n

kl−j+2,h−m+1

=

∞∑
l=i

[
kl−j+1,n−m +

∞∑
h=n+1

kl−j+1,h−m

]
−

∞∑
l=i

∞∑
h=n

kl−j+2,h−m+1

= ki−j+1,n−m +
∞∑

l=i+1

∞∑
h=n+1

kl−j+1,h−m −
∞∑
l=i

∞∑
h=n

kl−j+2,h−m+1

= ki−j+1,n−m ≥ 0.

Finally, T is monotone with respect to the stochastic ordering (≤st). □

Theorem 5.2. The transition operator of the embedded Markov chain {Xl, l ∈
N} is monotone with respect to ≤icx, that is, for any two distributions ϕ(1) and
ϕ(2), the inequality ϕ(1) ≤icx ϕ(2) implies that Tϕ(1) ≤icx Tϕ(2).

Proof. The transition operator T is monotone with respect to ≤icx if and only
if

(5.2) 2p(j,m)(i,n) ≤ p(j−1,m−1)(i,n) + p(j+1,m+1)(i,n), ∀i, n, and j > 0,m > 0.

To prove (5.2), we have

p(j,m)(i,n) =
∞∑
l=i

∞∑
h=n

p(j,m)(l,h) =
∞∑
l=i

∞∑
h=n

kl−j+1,h−m.

Thus,

p(j−1,m−1)(i,n) + p(j+1,m+1)(i,n) − 2p(j,m)(i,n) =

=
∞∑
l=i

∞∑
h=n

kl−j+2,h−m+1 +
∞∑
l=i

∞∑
h=n

kl−j,h−m−1 − 2
∞∑
l=i

∞∑
h=n

kl−j+1,h−m

=
∞∑
l=i

∞∑
h=n

kl−j+2,h−m+1 + ki−j,n−m−1 −
∞∑
l=i

∞∑
h=n

kl−j+1,h−m

= ki−j,n−m−1 − ki−j+1,n−m = ki−j,n−m−1 ≥ 0.

Finally, T is monotone with respect to the increasing convex ordering. □

In particular, this theorem implies that if at time t = 0 the system was
empty then the number of customers in the system, at departure times, form
a monotonically increasing sequence with respect to the above orderings.

Remark 5.3. The operator T is not monotone with respect to the Laplace order-
ing (≤L). Indeed, for a distributions ϕ(1) = (1, 0, 0, ...) and ϕ(2) = (0, 1, 0, ...),
we have ϕ(1) ≤L ϕ(2) but Tϕ(1) ≰L Tϕ(2).
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Now we add the transition operators T (1) and T (2) to models Σ(1) and Σ(2),
respectively. Theorems 5.4–5.5 give comparability conditions of two transition
operators.

Theorem 5.4. If λ(1) ≤ λ(2), p(1) = p(2), A(1) ≤L A(2) and B(1) ≤s B(2),
where ≤s is either ≤st or ≤icx, then T (1) ≤s T

(2), that is, for any distribution
ϕ, one has T (1)ϕ ≤s T

(2)ϕ.

Proof. The demonstration is based on [27, Theorem 4.2.3]. We want to estab-
lish that

(5.3) p
(1)
(j,m)(i,n) ≤ p

(2)
(j,m)(i,n), ∀i, n, 0 ≤ j ≤ i+ 1, 0 ≤ m ≤ n, (for ≤s=≤st),

(5.4) p
(1)
(j,m)(i,n) ≤ p

(2)
(j,m)(i,n), ∀i, n, 0 ≤ j ≤ i+ 1, 0 ≤ m ≤ n, (for ≤s=≤icx).

To prove inequality (5.3), we have
Case 1: If j = m = 0, then we have

(5.5) p
(1)
(0,0)(i,n) =

∑
l≥i

∑
h≥n

p
(1)
(0,0)(l,h) = k

(1)

i,n ≤ k
(2)

i,n = p
(2)
(0,0)(i,n).

Case 2: If 1 ≤ j ≤ i+ 1 and 0 ≤ m ≤ n, then we obtain
(5.6)

p
(1)
(j,m)(i,n) =

∑
l≥i

∑
h≥n

p
(1)
(j,m)(l,h) = k

(1)

i−j+1,n−m ≤ k
(2)

i−j+1,n−m = p
(2)
(j,m)(i,n).

Inequalities (5.5)-(5.6) follow from Lemma 4.1 (for ≤s=≤st).
Case 3: If j = 0 and 1 ≤ m ≤ n, then we get

p
(1)
(0,m)(i,n) =

∑
l≥i

∑
h≥n

p
(1)
(0,m)(l,h)

= (1− αA(1)(λ(1)))k
(1)

i,n−m + αA(1)k
(1)

i,n−m+1

= (1− αA(1)(λ(1)))[k
(1)
i,n−m + k

(1)

i,n−m+1] + αA(1)k
(1)

i,n−m+1

= (1− αA(1)(λ(1)))k
(1)
i,n−m + k

(1)

i,n−m+1.(5.7)

Since λ(1) ≤ λ(2) and A(1) ≤L A(2), then αA(1)(λ(1)) ≥ αA(2)(λ(2)) and

p
(1)
(0,m)(i,n) ≤ (1− αA(2)(λ(2)))k

(1)
i,n−m + k

(1)

i,n−m+1.

Moreover, we have

(1− αA(2)(λ
(2)))k

(1)
i,n−m + k

(1)
i,n−m+1 = (1− αA(2)(λ

(2)))k
(1)
i,n−m + αA(2)(λ

(2))k
(1)
i,n−m+1.

By Lemma 4.1 (for ≤s=≤st), we have k
(1)

m,n ≤ k
(2)

m,n, ∀m ≥ 0, n ≥ 0.
Finally, we get:

p
(1)
(0,m)(i,n) ≤ (1− αA(2)(λ(2)))k

(2)

i,n−m + αA(2)(λ(2))k
(2)

i,n−m+1 = p
(2)
(0,m)(i,n).
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Following the technique above and using Lemma 4.1 ( for ≤s=≤icx), we estab-
lish inequality (5.4). □

Theorem 5.5. If λ(1) ≤ λ(2), p(1) = p(2), A(1) ≤L A(2) and B(1) ≤st B(2),
then T (1) ≤L T (2), that is, for any distribution ϕ, we have T (1)ϕ ≤L T (2)ϕ.

Proof. To prove that T (1)ϕ ≤L T (2)ϕ, we have to establish the usual numerical
inequality

(5.8) φ(1)(z1, z2) ≥ φ(2)(z1, z2),

where φ(z1, z2) =
∑
i≥0

∑
n≥0

δi,nz
i
1z

n
2 .

Let ϕ = (ϕ(j,m)) be a distribution and Tϕ = δ = {δi,n}, where

δi,n =
∑
j≥0

∑
m≥0

ϕ(j,m)p(j,m)(i,n)

=
∑
j≥0

ϕ(j,0)p(j,0)(i,n) +
∑
j≥0

∑
m≥1

ϕ(j,m)p(j,m)(i,n)

= ϕ(0,0)p(0,0)(i,n) +
∑
j≥1

ϕ(j,0)p(j,0)(i,n) +
∑
j≥0

∑
m≥1

ϕ(j,m)p(j,m)(i,n)

= ϕ(0,0)ki,n +
∑
j≥1

ϕ(j,0)ki−j+1,n +
∑
j≥0

∑
m≥1

ϕ(j,m)p(j,m)(i,n)

= ϕ(0,0)ki,n +
∑
j≥1

ϕ(j,0)ki−j+1,n + ϕ(0,0)p(0,0)(i,n) +

n∑
m=1

ϕ(0,m)p(0,m)(i,n)

+
∑
j≥1

n∑
m=0

ϕ(j,m)p(j,m)(i,n) + ϕ(0,n+1)p(0,n+1)(i,n) −
∑
j≥0

ϕ(j,0)p(j,0)(i,n).

After algebraic manipulation, we obtain

δi,n = [1− αA(λ)]
n∑

m=1,n ̸=0

ϕ(0,m)ki,n−m + αA(λ)
n∑

m=1

ϕ(0,m)ki,n−m+1

+

i+1∑
j=1

n∑
m=0

ϕ(j,m)ki−j+1,n−m + ϕ(0,n+1)αA(λ)ki,0 + ϕ(0,0)ki,n.

Let k(z1, z2) =
∑
i≥0

∑
n≥0

ki,nz
i
1z

n
2 and ϕ(z1, z2) =

∑
i≥0

∑
n≥0

ϕ(i, n)zi1z
n
2 be the gener-

ating functions of (ki,n) and (ϕ(i, n)), respectively, and the auxiliary generating
functions are defined by

ϕ(z2) =
∑
n≥0

ϕ(0, n)zn2 , k(z1) =
∑
i≥0

ki,0z
i
1.
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Taking into account the previous generating functions, the generating function
of Tϕ is given by

φ(z1, z2) =
∑
i≥0

∑
n≥0

δi,nz
i
1z

n
2

= ϕ(0,0)k(z1, z2) + [1− αA(λ)]
∑
i≥0

∑
n≥1

n∑
m=1

ϕ(0,m)ki,n−mzi1z
n
2

+αA(λ)
∑
i≥0

∑
n≥0

n∑
m=1

ϕ(0,m)ki,n−m+1z
i
1z

n
2

+
∑
i≥0

∑
n≥0

i+1∑
j=1

n∑
m=0

ϕ(j,m)ki−j+1,n−mzi1z
n
2

+αA(λ)
∑
i≥0

∑
n≥0

ϕ(0,n+1)ki,0z
i
1z

n
2

=
αA(λ)

z2
k(z1)ϕ(z2) + k(z1, z2)αA(λ)ϕ(0,0)

+k(z1, z2)

[
ϕ(z1, z2)

z1
+

ϕ(z2)

z2
{z2 + (1− z2)αA(λ)}

]
.

If the conditions of Theorem 5.5 are fulfilled, then k(1)(z1, z2) ≥ k(2)(z1, z2) by
Lemma 4.2 and (1− z2)αA(1)(λ(1)) ≥ (1− z2)αA(2)(λ(2)), ∀ z2 ∈ [0, 1]. One can
see that inequality (5.8) takes place. □

6. Stochastic bound for the stationary distribution

Suppose once more that we have two models Σ(1) and Σ(2) as defined in the

previous section. Let {X(1)
l , l ∈ N}, {X(2)

l , l ∈ N} be the corresponding embed-

ded Markov chains as well as their stationary distributions {π(1)
(i,n)}, {π

(2)
(i,n)},

respectively.

Theorem 6.1. The inequalities λ(1) ≤ λ(2), p(1) = p(2), A(1) ≤L A(2) and

B(1) ≤s B
(2), where ≤s is either ≤st or ≤icx, imply that {π(1)

(i,n)} ≤s {π(2)
(i,n)}.

Proof. By Theorem 5.4, the inequalities λ(1) ≤ λ(2), p(1) = p(2), A(1) ≤L A(2)

and B(1)(x) ≤s B
(2)(x), imply that T (1) ≤s T

(2), i.e. for any distribution ϕ we
have the following inequality

(6.1) T (1)ϕ ≤s T
(2)ϕ.

According to Theorem 5.1 and Theorem 5.2, the operator T (2) is monotone,

i.e. for any two distributions ϕ
(2)
1 , ϕ

(2)
2 such that ϕ

(2)
1 ≤s ϕ

(2)
2 , we have

(6.2) T (2)ϕ
(2)
1 ≤s T

(2)ϕ
(2)
2 .
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Moreover, from (6.1), one can obtain

(6.3) T (1)ϕ(1) ≤s T
(2)ϕ(1).

There exists a probability ϕ
(2)
1 such that the inequality

(6.4) T (2)ϕ(1) ≤s T
(2)ϕ

(2)
1 ,

takes place.
From (6.2)-(6.4), for any two distributions ϕ(1), ϕ(2) one can obtain the fol-

lowing result

T (1)ϕ(1) ≤s T
(2)ϕ(2).

Therefore,

T (1)ϕ
(1)
(i,n) = P (Q

(1)
1,l = i, Q

(1)
2,l = n) ≤s P (Q

(2)
1,l = i, Q

(2)
2,l = n) = T (2)ϕ

(2)
(i,n),

when l −→ ∞, we have {π(1)
(i,n)} ≤s {π(2)

(i,n)}. □

Based on Theorem 6.1 we can establish insensitive stochastic bounds for the
stationary distribution of the number of customers in the system.

Theorem 6.2. If in the M/G/1 retrial queue with general retrial times and
Bernoulli schedule, the service time distribution B(x) is HNBUE and the retrial
time distribution is of class L, then {π(i,n)} ≤icx {π∗

(i,n)}, where {π∗
(i,n)} is the

stationary distribution of the number of customers in the M/M/1 retrial queue
with exponential retrial times and Bernoulli schedule with the same parameters
as those of the M/G/1 retrial queue with general retrial times and Bernoulli
schedule.

Proof. Denote by Σ(1) our system defined in Section 2 (ie. M/G/1 retrial queue
with general retrial times and Bernoulli schedule) with parameters A(1) ≡
A, B(1) ≡ B, λ(1) = λ, p(1) = p, α

(1)
1 = α1 and β

(1)
1 = β1.

On the other hand, let Σ(2) an auxiliary M/M/1 retrial queue with exponen-
tial retrial times and Bernoulli schedule having the same arrival rate λ(2) = λ,

retrial rate α
(2)
1 = α1, probability p(2) = p and mean service β

(2)
1 = β1 as in

Σ(1) system, but with B(2) ≡ B∗ and A(2) ≡ A∗ where,

B∗(x) =

{
1− e−

x
β1 , if x ≥ 0,

0, if x < 0.

A∗(x) =

{
1− e−

x
α1 , if x ≥ 0,

0, if x < 0.

If B(x) is HNBUE, then B(x) ≤icx B∗(x) and, if A is of class L, then A ≤L

A∗.
Moreover, the following conditions of Theorem 6.1 are satisfied:

λ(1) = λ(2), p(1) = p(2), B(1)(x) ≤icx B(2)(x) and A(1)(x) ≤L A(2)(x).
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Thus, the stationary distribution in the M/G/1 retrial queue with general
retrial times and Bernoulli schedule is less than the corresponding distribu-
tion in the M/M/1 retrial queue with exponential retrial times and Bernoulli
schedule, if B(x) is HNBUE and A(x) is of class L. □

7. Bounds for the mean characteristics of the system

In this section, we show how the theoretical results obtained in the previous
section can be used to derive some bounds for the mean characteristics of our
considered model. To do so, consider two models Σ(1) and Σ(2) as defined
previously. Let E(N2), E(N), W2 and W be the mean number of customers
in the retrial group, the mean number of customers in the system, the mean
waiting time in the retrial group and the mean time a customer spends in
the system (including the service time) respectively. The explicit expressions
for these performance measures were obtained in the literature by Atencia and
Moreno [4]. That is, under the condition ρ < αA(λ)(p+qαA(λ))

−1, the authors
have given the following results:

E(N2) =
λp

2(1− ρq)

2β1(1− ρq)[1− αA(λ)] + λβ2[p+ qαA(λ)]

αA(λ)− [p+ qαA(λ)]ρ
.

E(N) = ρ+
λ2β2

2(1− ρ)
+

p[1− αA(λ)]

αA(λ)− [p+ qαA(λ)]ρ

[
ρ+

λ2pβ2

2(1− ρ)(1− ρq)

]
.

W2 =
2β1(1− ρq)[1− αA(λ)] + λβ2[p+ qαA(λ)]

2(1− ρq)[αA(λ)− [p+ qαA(λ)]ρ]
.

W = β1 +
λβ2

2(1− ρ)
+

p[1− αA(λ)]

αA(λ)− [p+ qαA(λ)]ρ

[
β1 +

λpβ2

2(1− ρ)(1− ρq)

]
.

Theorem 7.1. If λ(1) ≤ λ(2), p(1) = p(2), B(1) ≤s B(2) and A(1) ≤L A(2),
then

E(N (1)) ≤ E(N (2)), and E(N
(1)
2 ) ≤ E(N

(2)
2 ),

where ≤s is one of the symbols ≤st, ≤icx, ≤L.

Proof. The quantities E(N) and E(N2) are increasing with respect to λ, β1 and
β2, and decreasing with respect to αA(.). Under conditions of Theorem 7.1, we
obtain the desired inequalities. Recall that X ≤s Y implies E(Xn) ≤ E(Y n)
for all n. □

Theorem 7.2. If λ(1) ≤ λ(2), p(1) = p(2), B(1) ≤st B(2) and A(1) ≤L A(2),
then

W
(1)
2 ≤ W

(2)
2 , and W (1) ≤ W (2).

Proof. The quantities W2 and W are increasing with respect to λ, β1 and β2,
decreasing with respect to αA(.). Under the conditions of Theorem 7.2 we
obtain the desired inequalities. □
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Theorem 7.3. For any M/G/1 retrial queue with general retrial times and
Bernoulli schedule

(7.1) E(N) ≤ ρ+
λ2β2

2(1− ρ)
+

p[1− e−λα1 ]

e−λα1 − [p+ qe−λα1 ]ρ

[
ρ+

λ2pβ2

2(1− ρ)(1− ρq)

]
.

If A and B are of class L, then the mean number of customers in the system
is bounded as follows

(7.2) E(N)Lower ≤ E(N) ≤ E(N)Upper,

where the lower and upper bounds are given respectively by

E(N)Lower = ρ+
λ2β2

2(1− ρ)
+

λpα1

1− [q + (λα1 + 1)p]ρ

[
ρ+

λ2pβ2

2(1− ρ)(1− ρq)

]
,

E(N)Upper = ρ+
2λ2β2

1

2(1− ρ)
+

p[1− e−λα1 ]

e−λα1 − [p+ qe−λα1 ]ρ

[
ρ+

2λ2pβ2
1

2(1− ρ)(1− ρq)

]
.

Proof. For the class of distribution functions with mean m, θm is its ≤L-
maximum, i.e., F ≤ θm, where θm is the Dirac distribution at m. If F ∈ L
then e−1/m is its ≤L-minimum, i.e., e−1/m ≤L F [27]. In our case, consider
auxiliary M/D/1 and M/M/1 retrial queues with the same arrival rates λ,
mean service times β1 and mean retrial times α1. A is a Dirac distribution at
α1 for the M/D/1 system, and is an exponential distribution for the M/M/1
system. Using the Theorem 7.1 we obtain the stated results. Recall that if B
is of class L then β2 ≤ 2β2

1 . □
Remark 7.4. Inequality (7.1) gives upper bound on the mean number of cus-
tomers in the retrial group when the retrial time and service time distributions
are unknown, but we have partial information about the first two moments.
For the second inequality (7.2) we use the partial information about the ageing
class of the retrial time and service time distributions.

Theorem 7.5. For any M/G/1 retrial queue with general retrial times and
Bernoulli schedule

(7.3) E(N2) ≤
λp

2(1− ρq)

2β1(1− ρq)[1− e−λα1 ] + λβ2[p+ qe−λα1 ]

e−λα1 − [p+ qe−λα1 ]ρ
.

If A and B are of class L, then the mean number of customers in the retrial
group is bounded as follows

(7.4) E(N2)Lower ≤ E(N2) ≤ E(N2)Upper,

where the lower and upper bounds are given respectively by

E(N2)Lower =
λp

2(1− ρq)

2β1(1− ρq)λα1 + λβ2[(λα1 + 1)p+ q]

1− [q + (λα1 + 1)p]ρ
,

E(N2)Upper =
λp

2(1− ρq)

2β1(1− ρq)[1− e−λα1 ] + 2λβ2
1 [p+ qe−λα1 ]

e−λα1 − [p+ qe−λα1 ]ρ
.



1393 Boualem, Cherfaoui, Djellab and Aı̈ssani

Theorem 7.6. For any M/G/1 retrial queue with general retrial times and
Bernoulli schedule

(7.5) W2 ≤ 2β1(1− ρq)[1− e−λα1 ] + λβ2[p+ qe−λα1 ]

2(1− ρq)[e−λα1 − [p+ qe−λα1 ]ρ]
.

If A and B are of class L, then the mean waiting time in the retrial group
is bounded as follows

(7.6) W2,Lower ≤ W2 ≤ W2,Upper,

where the lower and upper bounds are given respectively by

W2,Lower =
2β1(1− ρq)λα1 + λβ2[q + (λα1 + 1)p]

2(1− ρq)[1− (q + (λα1 + 1)p)ρ]
,

W2,Upper =
2β1(1− ρq)[1− e−λα1 ] + 2λβ2

1 [p+ qe−λα1 ]

2(1− ρq)[e−λα1 − [p+ qe−λα1 ]ρ]
.

Theorem 7.7. For any M/G/1 retrial queue with general retrial times and
Bernoulli schedule

(7.7) W ≤ β1 +
λβ2

2(1− ρ)
+

p[1− e−λα1 ]

e−λα1 − [p+ qe−λα1 ]ρ

[
β1 +

λpβ2

2(1− ρ)(1− ρq)

]
.

If A and B are of class L, then the mean time a customer spends in the
system is bounded as follows

(7.8) WLower ≤ W ≤ WUpper,

where the lower and upper bounds are given respectively by

WLower = β1 +
λβ2

2(1− ρ)
+

λpα1

1− (q + (λα1 + 1)p)ρ

[
β1 +

λpβ2

2(1− ρ)(1− ρq)

]
,

WUpper = β1 +
2λβ2

1

2(1− ρ)
+

p[1− e−λα1 ]

e−λα1 − [p+ qe−λα1 ]ρ

[
β1 +

2λpβ2
1

2(1− ρ)(1− ρq)

]
.

Proof. The proof of Theorems 7.5, 7.6 and 7.7 is similar to that of Theorem
7.3 and thus omitted. □

8. Numerical example

In this section, we give a numerical illustration concerning the mean num-
ber of customers in the M/G/1 retrial queue with general retrial times and
Bernoulli schedule given in Theorem 7.3. To this end, for the service time
distribution B(X), we choose exponential (exp), two-stage Erlang (E2) and
Weibull (Wbl) laws; whereas for the retrial time distribution A(X), we consider
exponential (exp), two-stage Erlang (E2) and two-stage hyper-exponential (H2)
distributions. The distributions in question are the most representative. The
exact values of the mean number of customers in the system, E(N)(B(X),A(X))

(where B(X) and A(X) are of class L), the upper bound E(N)Upper and the
lower bound E(N)Lower are represented:
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(1) In Figure 1, against β1 for fixed values of p (p = 0.5), λ (λ = 1) and
α1 (α1 = 2) and the service time distribution B(X) is a Weibull law.

(2) In Figure 2 the quantities E(N)(Exp,A(X)), E(N)Upper and E(N)Lower

are plotted against the retrial rate 1/α1 for fixed values of p (p = 0.5),
λ (λ = 1) and β1 (β1 = 0.5).

(3) In Figure 3 the quantities E(N)(Exp,A(X)), E(N)Upper and E(N)Lower

are plotted against the arrivals rate λ for fixed values of p (p = 0.5),
β1 (β1 = 1) and α1 (α1 = 1).

(4) In Figure 4 the quantities E(N)(Exp,A(X)), E(N)Upper and E(N)Lower

are plotted against the probability p for fixed values of λ (λ = 0.5), β1

(β1 = 1) and α1 (α1 = 1).

Note that a similaire type of figures as Figures 1–3 can be obtained for other
settings (when we change the service time distribution B(x) or the value of
the probability p). Another similar type of figures as Figure 4 can be obtained
when changing the service time distribution B(x).

For the above considered situations, we note that:

• The lower bound E(N)Lower is nothing else than the mean number
of the customers E(N) in the M/G/1 retrial queue with exponential
retrial times and Bernoulli schedule.

• The inequality E(N)Lower ≤ E(N)(B(x),A(x)) ≤ E(N)Upper holds.
• If the service rate 1/β1 or the retrial rate 1/α1 are large enough then the
mean number of customers in the system is closer to the E(N)(B(x),Exp),
in other words, closer to the E(N)Lower.

• If the distribution of the retrial time is close to the exponential distribu-
tion in the Laplace transform, then the exact value E(N)(B(x),A(x)) is
closer to the lower bound E(N)Lower (see the case of E(N)((B(x),E2)).

• If p is close to 0 (resp. close to 1), then our system tend to behave as a
nominal M/G/1 queue (resp. an M/G/1 retrial queue with general re-
trial times). Alternatively, when p = 1, our model becomes an M/G/1
retrial queue with general retrial times, which was studied in [17].

Figure 1. Bounds for E(N) in M/Wbl/1 queue with general
retrial times versus β1
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Figure 2. Bounds for E(N) in M/M/1 queue with general
retrial times versus 1/α1

Figure 3. Bounds for E(N) in M/M/1 queue with general
retrial times versus λ

Figure 4. Bounds for E(N) in M/G/1 queue with general
retrial times versus p
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