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Abstract. In this paper, we present an algorithm for generating ap-

proximate nondominated points of a multiobjective optimization prob-
lem (MOP), where the constraints and the objective functions are con-
vex. We provide outer and inner approximations of nondominated points
and prove that inner approximations provide a set of approximate weakly

nondominated points. The proposed algorithm can be applied for differ-
entiable or nondifferentiable convex MOPs. To illustrate efficiency of the
proposed algorithm for convex MOPs, we provide numerical examples.
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efficient solution, approximation algorithm, differentiable problem.
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1. Introduction

Multiobjective optimization is a research field that is concerned with opti-
mization problems involving several conflicting objective functions to be mini-
mized simultaneously. Various applications of multiobjective optimization have
been reported in many areas of science, concerning especially engineering, eco-
nomics, logistics and medicine. For studying multiobjective optimization we
refer to [1, 7, 15, 24,29,34] and the references therein.

Generally, for a multiobjective optimization problem, there does not exist
a unique solution that simultaneously optimizes each objective function, but
a set of solutions can be identified, by using the concept of Pareto optimality.
A Pareto optimal (efficient) solution is defined as a feasible solution for which
none of the objective functions can be improved in value, without deterioration
in at least one of the other objectives. The image of a Pareto optimal solution
in the objective space is called a nondominated point.
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Researchers have developed a variety of methods to obtain Pareto optimal
solutions of a given MOP [2, 6, 17, 18, 22, 26, 30]. But, since the number of ob-
jectives of an MOP is often much smaller than the number of variables and
typically many efficient solutions in decision space are mapped to a single non-
dominated point in objective space, Benson [4, 5] argued that generating the
nondominated set should require less computation than generating the effi-
cient set. Therefore, finding the nondominated set in objective space instead of
Pareto optimal set in decision space is more important for the decision maker.
While it is theoretically possible to identify the complete set of Pareto optimal
solutions, finding an exact description of this set often turns out to be prac-
tically impossible or at least computationally too expensive. Therefore, many
researchers focus on approximate efficient solutions [3,9–14,16,19–21,23,27,28,
33,35–38].

Ehrgott et al. [8] proposed an outer approximation algorithm for finding ap-
proximate nondominated points of a differentiable convex MOP. They utilized
Benson’s outer approximation algorithm [4,5] and a linearization technique for
their algorithm. In each iteration of their proposed algorithm a polyhedron is
constructed by adding a new hyperplane to the previous polyhedron.
Now, in this paper, motivated by the algorithm given by Thuy et al. [31] for
finding nondominated points of a convex MOP, we propose a modified algo-
rithm for finding approximate nondominated points of a convex MOP. In each
iteration of the algorithm, we obtain a reverse polyblock from the previous
one by cutting out a box. We show that the proposed method yields a set of
ε−nondominated points for the given convex MOP. The suggested algorithm
works for nondifferentiable MOPs, too. Validity of the algorithm is verified
with numerical examples.

The rest of this paper is organized as follows: In Section 2 preliminaries
and basic definitions are given. In Section 3, the algorithm of Thuy et al.
[31] is presented. Section 4 is devoted to the proposed algorithm for finding
approximate nondominated points. In this section, we also prove theorems
related to the given algorithm. In Section 5, numerical results are given to
clarify the efficiency of the proposed algorithm. Finally, in Section 6 conclusions
are given.

2. Preliminaries and basic definitions

Let y1, y2 ∈ Rp. With regard to vector inequalities, the following convention
will be applied: y1 ≦ y2 if and only if y1i ≤ y2i , for all i ∈ {1, . . . , p} and y1 ≤ y2

if and only if y1 ≦ y2 and y1 ̸= y2. Moreover, y1 < y2 if and only if y1i < y2i , for
all i ∈ {1, . . . , p}. Due to the above-defined componentwise orders, we define
Rp

≧ = {y ∈ Rp : y ≧ 0}.
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A multiobjective optimization problem (MOP) may be written as

min f(x) = (f1(x), . . . , fp(x))(2.1)

s.t. x ∈ X = {x ∈ Rn : g(x) = (g1(x), . . . , gm(x))T ≦ 0},
where X is the feasible set in the decision space Rn. The image of X under f
is denoted by Y = {f(x) : x ∈ X} and is called the feasible set in the objective
space Rp. We assume that X is nonempty and compact.

Definition 2.1 ([24]). The multiobjective optimization problem (2.1) is convex
if all its objective functions and its feasible region X are convex.

Definition 2.2 ([7]). A feasible solution x̂ ∈ X is called an efficient (a Pareto
optimal) solution for MOP (2.1), if there is no other x ∈ X such that f(x) ≤
f(x̂). The set of all efficient solutions x̂ ∈ X will be denoted by XE and called
the efficient set in the decision space. If x̂ is efficient, ŷ = f(x̂) is called
nondominated point and the set of all nondominated points in the objective
space is denoted by YN .

Definition 2.3 ( [7]). A feasible solution x̂ ∈ X is called a weakly efficient
solution for MOP (2.1), if there is no other x ∈ X such that f(x) < f(x̂). The
set of all weakly efficient solutions x̂ ∈ X will be denoted by XWE and called
the weakly efficient set in the decision space. If x̂ is weakly efficient, ŷ = f(x̂)
is called weakly nondominated point and the set of all weakly nondominated
points in the objective space is denoted by YWN .

Definition 2.4 ( [23]). Consider ε ∈ Rp
≧. A feasible solution x̂ ∈ X is called

ε-efficient for MOP (2.1), if there is no other x ∈ X where f(x) ≤ f(x̂) − ε.
Also, x̂ is ε-weakly efficient if there is no other x ∈ X with f(x) < f(x̂)− ε.

Definition 2.5 ([7]). The point ym = (ym1 , . . . , ymp ) in which ymi = miny∈Y yi,
i = 1, . . . , p, is called the ideal point of MOP (2.1).

It is obvious that if ym ∈ Y, then YN = {ym} and the problem is solved.
Therefore, we assume that ym /∈ Y.

By definition, it is clear that the optimal objective value of the following
problem is the kth component of the ideal point [31]:

ymk = min yk(2.2)

s.t. fi(x)− yi ≤ 0, i = 1, . . . , p,

gj(x) ≤ 0, j = 1, . . . ,m.

By solving problem (2.2), for k = 1, . . . , p, optimal objective values ym1 , . . . , ymp
are obtained. Assume that (x∗, y∗) ∈ Rn+p is an optimal solution of problem
(2.2) with y∗ = (yk1 , . . . , y

k
p). As in [31], we define yM = (yM1 , . . . , yMp ) ∈ Rp as

yMi = α for all i = 1, . . . , p where α is a real number satisfying:

(2.3) α > max{yki |i = 1, . . . , p, k = 1, . . . , p}.



An algorithm for approximating nondominated points 1402

3. The Thuy et al. algorithm for generating nondominated points

Thuy et al. [31] have proposed an algorithm to generate a number of nondom-
inated points of a convex MOP. In this section, we summarize their algorithm.

Consider the multiobjective optimization problem (2.1), where X ⊆ Rn is
nonempty and compact. In this case, Y0 = Y+Rp

≧ is a full dimensional convex

and nonempty set in Rp. Furthermore, it is obvious that Y0
N = YN [15]. For

the convex MOP (2.1), let

Y ′ = Y0 ∩ (yM − Rp
≧).

To find nondominated points of MOP (2.1), Thuy et al. [31] investigate Y ′

instead of Y.

Theorem 3.1 ([31]). YN = Y ′
N .

The set B0 = (ym+Rp
≧)∩ (yM −Rp

≧) is called a block and briefly is denoted

by B0 = [ym, yM ]. It is obvious that B0 is a cover for Y ′, that is Y ′ ⊆ Bo.

Theorem 3.2 ( [31]). Assume that ȳ ∈ B0 \ Y ′. Let yw be the unique point
on the boundary of Y ′ that belongs to the line segment connecting ȳ and yM .
Then, yw ∈ Y ′

N .

Consider the following optimization problem:

min λ

s.t. f(x)− λ(yM − ȳ)− ȳ ≤ 0,

gi(x) ≤ 0 i = 1, . . . ,m,

0 ≤ λ ≤ 1.

(3.1)

If λ∗ is the optimal objective value of problem (3.1), then yw = λ∗yM+(1−λ∗)ȳ
is the boundary point of Y ′ that belongs to the line segment connecting ȳ and
yM .

For each nondominated point yw (given in Theorem 3.2), we can determine
p new points which belong to B0 \ Y ′. To compute these new vertices, the
cutting reverse polyblock technique [31, 32] is used. A set of the form B =
∪y∈V [y, y

M ] ⊂ Rp, where [y, yM ] := {ŷ|y ≤ ŷ ≤ yM} and V ⊆ B0, is called a
reverse polyblock in B0 with vertex set V.

Theorem 3.3 ([31]). Let B = ∪y∈V [y, y
M ] be a reverse polyblock with vertex set

V and Y ′ ⊆ B. Let v = (v1, . . . , vp) ∈ V \Y ′ and yw be the unique point on the
boundary of Y ′ that belongs to the line segment connecting v and yM . Then, B̄ =
B \ [v, yw] is a reverse polyblock with vertex set V̄ = (V \{v})∪{v1, v2, . . . , vp},
where

(3.2) vi = yw − (ywi − vi)e
i, i = 1, . . . , p,

where ei is the ith unit vector of Rp.
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In Algorithm 1, the Thuy et al. [31] algorithm for finding nondominated
points of a convex MOP is given.

Step 1.: (Initialization) Construct B0 = [ym, yM ]. Set YN = ∅, XE = ∅, S = {ym},
Nef = the number of needed elements, B = B0, k = 0.

Step 2.: (Iteration).
(a) Set S̄ = ∅.
(b) for each ȳ ∈ S do:

begin
k := k + 1.
Find an optimal solution (x∗, λ∗) ∈ Rn+1 of problem (3.1) and set:

– wk = ȳ + λ∗(yM − ȳ),

– YN = YN ∪ {wk}, XE = XE ∪ {x∗},
– B̄ = B \ [v, yw] with v = ȳ and yw = wk.

– Obtain p vertices v1, . . . , vp corresponding to yw from relation (3.2).

– Set S̄ = S̄ ∪ {v1, . . . , vp} and B = B̄,
end.

(c) If k ≥ Nef then terminate the algorithm.
Else set S = S̄ and return the Step 2.

Algorithm 1: Thuy et al. [31] algorithm for generating nondominated points

4. An approximation algorithm for Convex MOPs

For convex multiobjective optimization problems, finding the set of non-
dominated points has many difficulties. For example, the set of nondominated
points may be empty or for a large scale nonlinear MOP, the numerical methods
can not find nondominated points, easily. Therefore, in recent decades, many
researchers have considered approximations of nondominated points. Ehrgott
et al. [8], using a linearization technique, extended the outer approximation
algorithm of Benson [4, 5] to find ε-nondominated points of a convex MOP. In
their algorithm, separating hyperplanes are constructed in each iteration. In
the suggested algorithm the objectives and constraints must be differentiable,
and the algorithm is not applicable for nondifferentiable MOPs.

Now, in this section we provide an algorithm for finding ε-nondominated
points of a convex MOP. The proposed algorithm works for every convex MOP
even nondifferentiable MOPs. In the given algorithm, it is not necessary to
construct separating hyperplanes and in each iteration, covers are constructed
easily and the vertices of the covers can be updated. We construct inner and
outer approximations of Y ′ and show that using inner approximation, we can
find ε−nondominated points. To this end, we consider two sets I and O, with
empty values in initialization. Let ϵ ∈ R, with ϵ > 0 be a tolerance given by
the decision maker (DM). If the Euclidean distance of the boundary point yw

and ȳ ∈ S is lower than or equal to ϵ, then yw is added to I and ȳ is added
to O. Otherwise, cutting reverse polyblock technique [32] is utilized to produce
new vertices for adding to S.
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The set of extreme points of the inner approximation of Y ′ is V i = I ∪
{A1, . . . , Ap, y

M} and the set of extreme points of the outer approximation Y ′

is V o = O ∪ {A1, . . . , Ap, y
M}, where Ai = (Ai1, . . . , Aip) and

Aij =

{
yMj i ̸= j, j = 1, . . . ,m

ymj i = j

for i = 1, . . . , p.
The convex hull of the set V i, which is an inner approximation of Y ′, is

denoted by Y ′i and the convex hull of the set V o, which is an outer approxi-
mation of Y ′, is denoted by Y ′o. In Algorithm 2, the approximation algorithm
for convex MOPs is given.

Step 1.: (Initialization) Let ϵ ≥ 0 be given. Construct block B0 = [ym, yM ]
containing Y′.

Set B = B0, I = O = ∅, S = {ym} and k = 0, where ym and yM

are described in Section 2.
Step 2.: (Iteration).

(a) Set S̄ = ∅.
(b) For each ȳ ∈ S do:

begin
b1) k := k + 1.
b2) Find an optimal solution (x∗, λ∗) from problem (3.1).

b3) Set wk = ȳ + λ∗(yM − ȳ).

b4) If d(ȳ, wk) ≤ ϵ, then set I = I ∪ {wk} and O = O ∪ {ȳ}.
Select another ȳ ∈ S and go to b1.

b5) If d(ȳ, wk) > ϵ, then B̄ = B \ [v, yw], where v = ȳ and

yw = wk.
b6) Determine p vertices v1, . . . , vp corresponding to yw via

formulation (3.2).

b7) Set S̄ = S̄ ∪ {v1, . . . , vp} and B := B̄.
end

(c) If S̄ ̸= ∅, set S = S̄ and then go to Step 2. Else, stop.

Algorithm 2: Approximation algorithm for finding ε-nondominated points

By the given approximation algorithm, we have the following observations:

Theorem 4.1. (i) The number of points in V o is equal to the number of
points in V i.

(ii) All points in V i are on the boundary of Y ′ and the points of V 0 are
on the boundary of Y ′ or outside Y ′. Moreover, y ∈ V o is not on the
boundary of Y ′ if and only if y /∈ V i.

Proof. (i) By Algorithm 2, the initial values for I and O are empty sets. More-
over, when we add a point to I (for example wk), its corresponding point (for
example ȳ) is added to O. Therefore the number of points in I and O is equal.
Also, since the elements {A1, . . . , Ap, y

M} are shared in the definitions of V o

and V i, therefore the number of vertices of the inner and outer approximations
of Y ′ is equal.
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(ii) By definition of I, it is obvious that all of its members are on the boundary
of Y ′. Also, by definition of Y ′, the points {A1, . . . , Ap, y

M} are on the boundary
of Y ′. Furthermore, it is clear that all points in V o\{A1, . . . , Ap, y

M} which are
selected from S, are different from the boundary points wk. Therefore, these
points are not on the boundary of Y ′. □

Theorem 4.2. (i) If yo is a point in V o, then, there exists a point yi ∈ V i

corresponding to yo such that d(yo, yi) ≤ ϵ, and vice versa.
(ii) If Y ′i

N is the nondominated set of the inner approximation Y ′i and Y ′o
N is

the nondominated set of the outer approximation Y ′o, then Y ′i
N +Rp

≧ ⊆
Y ′
N + Rp

≧ ⊆ Y ′o
N + Rp

≧.

Proof. (i) yo ∈ V o, therefore yo ∈ O or yo ∈ {A1, . . . , Ap, y
M}. If yo ∈

{A1, . . . , Ap, y
M} then we have yo = yi and the proof is completed. Other-

wise, if yo ∈ O we consider yi as its corresponding boundary point which is
in I. By the steps of the algorithm, it is obvious that since yo ∈ O therefore
d(yo, yi) ≤ ϵ, and vice versa.
(ii) Since Y ′o is the outer approximation of Y ′, therefore Y ′ ⊆ Y ′o. On the
other hand, Y ′

N ⊆ Y ′, therefore Y ′
N ⊆ Y ′o. Now, since Y ′o is Rp−closed and

Rp−bounded, therefore Y ′o ⊆ Y ′o
N +Rp

≧. Hence, we have Y ′
N +Rp

≧ ⊆ Y ′o
N +Rp

≧.
The other part of the inclusion can be proved similarly. □

The following theorems show that the set of nondominated points of the
inner approximation is a set of weakly ε−nondominated points of Y ′.

Theorem 4.3. If yo is a weakly nondominated point of the outer approxima-
tion set Y ′o, then there exists a weakly nondominated point yi of the inner
approximation set Y ′i such that d(yo, yi) ≤ ϵ.

Proof. The proof is similar to that of [28, Proposition 2]. □

Theorem 4.4. Let ε = ϵe with e = (1, 1, . . . , 1) ∈ Rp be given. Then, Y ′i
N is a

set of weakly ε-nondominated points of Y ′.

Proof. The proof is similar to that of [28, Theorem 5]. □

Theorem 4.4 shows that the proposed algorithm gives us a guaranteed ap-
proximation quality for the weakly nondominated set of Y ′. Since YN ⊆ Y ′

WN ,
we can find an approximation of the nondominated points of Y. However, it is
obvious that for approximating the nondominated set of Y we have to delete
some points of the weakly ε-nondominated vertices of Y, since some of them
belong to Y ′ \Y and some of them are only approximate weakly nondominated
points of Y. To this end, we consider the following definitions:

V (Yi
N ) = {y ∈ V i : y < yM},
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and

V (Yo
N ) = {y ∈ V o : y < yM}.

These sets present the vertices of the nondominated set of the inner approxima-
tion of Y and the vertices of the nondominated set of the outer approximation
of Y, respectively. Using the points in V (Yi

N ) and V (Yo
N ) we can construct

faces and connect them with each other. The nondominated set YN can be
approximated from inside and outside by these two sets.

Theorem 4.5. Let v ∈ B \ Y ′ and w be the boundary point of Y ′ on the line
segment connecting v and yM such that d(v, w) ≤ ϵ. If vi, i = 1, . . . , p are
new vertices corresponding to w (obtained from formulation (3.2)) and wi, i =
1, . . . , p are the corresponding boundary points on the line segment connecting
vi, i = 1, . . . , p, and yM , then d(vi, wi) ≤ ϵ,∀i = 1, . . . , p.

Proof. Let v1 be one of the p vertices obtained from formulation (3.2) and w1

be the boundary point obtained from connecting v1 and yM (see Figure 1 for
p = 2). Since w and w1 are nondominated points (by Theorem 3.2), it is obvious
that w1 /∈ (w + Rp

≧). Let k be a point of w + Rp
≧ on the line connecting yM

and v1. Then d(v1, k) > d(v1, w1). Now, we show that d(v, yM ) > d(v1, yM ).
Assume that v = (v1, . . . , vp) and yM = (α, . . . , α) and w = (w1, . . . , wp) and
v1 = (v1, w2, . . . , wp). We have w = λv + (1− λ)yM , λ ∈ (0, 1). Therefore

wi = λvi + (1− λ)α, ∀ i = 1, . . . , p

⇒ (α− wi) = λ(α− vi), ∀ i = 1, . . . , p

⇒ (α− wi)
2 < (α− vi)

2, ∀ i = 1, . . . , p.

Hence,

d(v, yM ) =
√
(α− v1)2 + (α− v2)2 + . . .+ (α− vp)2

>
√
(α− v1)2 + (α− w2)2 + . . .+ (α− wp)2

= d(v1, yM ).

Let L be the line connecting v and v1 and L̄ be the line connecting w and
k ∈ w+Rp

≧ such that L ∥ L̄ (see Figure 1 for p = 2). Now, by Thales theorem,

in the triangle vyMv1, we have

d(v, w)

d(v, yM )
=

d(v1, k)

d(v1, yM )
−→ d(v, w) > d(v1, k).

On the other hand d(v1, k) > d(v1, w1) and d(v, w) ≤ ϵ, therefore d(v1, w1) ≤ ϵ.
Hence, the proof is completed.

□
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Figure 1. Theorem 4.5 for p = 2
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5. Numerical results

In this section, we solve convex MOPs using Algorithm 2.

Example 5.1. Consider the following nonlinear convex MOP.

min (f1(x), f2(x)) = (x1, x2)

s.t. (x1 − 2)2 + (x2 − 2)2 ≤ 4,

x1, x2 ≥ 0.

Let ϵ = 0.1 be the approximation error given by DM. Using relations (2.2) and
(2.3), we have ym = (0, 0) and yM = (3, 3). Set Y ′ = (Y + R2

≧) ∩ (yM − R2
≧).

Initial cover B0 = [(0, 0), (3, 3)] of Y ′, ym, yM and Y ′ are given in Figure 2.
Let S = {(0, 0)}. Connect ȳ = (0, 0) to yM and obtain the boundary point w1

of Y ′. We have w1 = ȳ+ λ∗(yM − ȳ) = (0.5858, 0.5858). Since d(ȳ, w1) > ϵ, we
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construct a new cover of Y ′. We have:

B̄ = B \ [v, yw] = [(0, 0), (3, 3)] \ [(0, 0), (0.5858, 0.5858)].
B̄ is the reverse polyblock. Now, by relation (3.2), two vertices corresponding
to yw = w1 are defined as v1 = (0, 0.5858) and v2 = (0.5858, 0) and we have
S̄ = {v1, v2}. Therefore, by letting B := B̄ and S := S̄ we go to Step 2. Figure
3 shows this process. Figure 4 shows the second iteration. After 4 iterations,
in k = 9, the first components of I and O appear. The algorithm terminates

Figure 3. First iteration in Example 5.1

..

B

.

yM

.
y1

.

y2

.

w1

.

v1

.
v2

.

3

.

3

after 8 iterations and I and O are as follows:

I =
{
(0.932, 0.315), (0.7666, 0.4256), (0.6392, 0.5343), (1.0726, 0.228),

(1.1812, 0.175), (1.264, 0.14), (1.32, 0.116), (1.4221, 0.0853), (0.315, 0.923),

(0.425, 0.7666), (0.5343, 0.6392), (0.228, 1.0726), (0.175, 1.1812), (0.14, 1.264),

(0.116, 1.32), (0.0853, 1.4221)
}
,

and

O =
{
(0.8683, 0.244), (0.7019, 0.301), (0.5858, 0.4785), (1.0419, 0.184),

(1.162, 0.1455), (1.2512, 0.119), (1.32, 0.0999), (1.376, 0), (0.244, 0.8683),

(0.301, 0.7019), (0.4785, 0.5858), (0.184, 1.0419), (0.1455, 1.162),

(0.119, 1.2512), (0.0999, 1.32), (0, 1.376)
}
.

Therefore, we have:

V i = I ∪ {A1, A2, y
M} = I ∪ {(0, 3), (3, 0), (3, 3)},
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Figure 4. Second iteration in Example 5.1
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Figure 5. The inner approximation of Y ′ in Example 5.1
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3
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.

Y ′i

and

V o = O ∪ {A1, A2, y
M} = O ∪ {(0, 3), (3, 0), (3, 3)}.

Convex hull of V i (i.e. Y ′i) and convex hull of V o (i.e. Y ′o) are the inner
and outer approximations of Y ′, respectively. Figure 5 shows Y ′i i.e., the inner
approximation of Y ′. V (Yi

N ) and V (Yo
N ) are the sets I and O, respectively,

and the inner and outer approximations of YN are constructed by connecting
vertices of I and O, sequentially.
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Example 5.2. Consider the following convex MOP with differentiable con-
straints but nondifferentiable objective functions:

min (f1(x), f2(x)) = (|x1|+ |x2|, |x1 − 2|+ |x2|)
s.t. x2

1 + x2
2 − 100 ≤ 0.

Ehrgott et al. [8] considered this MOP and showed that [8, Algorithm 4.2],
can not find an ε-nondominated point of this nondifferentiable problem. Now,
assume that ϵ = 0.2. We want to find ε-nondominated points using Algorithm
2. For this nondifferentiable MOP we have:

ym = (0, 0), yM = (3, 3), B = [(0, 0), (3, 3)], S = {(0, 0)}.

For k = 1, we obtain w1 = (1, 1) and d(ȳ, w1) > ϵ. If we repeat the algorithm,
after 4 iterations we find w8 = (1.479, 0.521) in which d(ȳ, w8) ≤ ϵ. Therefore,
in the 4th iteration we have I = {w8} and O = {ȳ}. After 6 iterations and
finding 12 points for I and O, the algorithm terminates. The sets I and O are
obtained as follows:

I =
{
(1.479, 0.521), (1.087, 0.913), (1.276, 0.724), (0.521, 1.479), (0.724, 1.276),

(0.913, 1.087), (1.651, 0.35), (0.35, 1.651), (1.7575, 0.2425), (1.865, 0.135),

(0.135, 1.865), (0.242, 1.758)
}
,

and

O =
{
(1.4, 0.3913), (1, 0.8181), (1.1819, 0.6), (0.3913, 1.4), (0.6, 1.1819),

(0.8181, 1), (1.6087, 0.267), (0.267, 1.6087), (1.733, 0.188), (1.812, 0),

(0, 1.812), (0.188, 1.733)
}
.

In the following two examples, in order to show some preliminary computa-
tional experiments, we implement the proposed algorithm in Matlab (R2013a)
using FMINCON as NLP solver. The test problems were run on a core i5
processor CPU with 2.5 GHz and 4 GB RAM.



1411 Ghaznavi and Azizi

0
50

100

y
2

150500
400

300

y
1

200
100

100

50

0

450

400

350

150

300

250

200

0

y 3

0

50

100

y
2

150500

400

y
1

300

200

100

50

100

350

150

0

400

300

250

200

450

0

y 3

Figure 6. The convex hulls of I (left) and O (right) for ϵ = 5 in Example 5.3.

Table 1. Obtained results for Example 5.3 with different values of ϵ.

Error Time (second) r |I| r1
ϵ = 5 24.4 71 217 3
ϵ = 7 14.03 43 125 3
ϵ = 10 8.13 24 69 3

Example 5.3. Consider the following convex multiobjective optimization prob-
lem:

minf1(x) = (x1 − 1)4 + 2(x2 − 2)4 + 3(x3 − 3)4 + 4(x4 − 4)4

f2(x) = ex1+x2+x3+x4 + x2
1 + x2

2 + x2
3 + x2

4

f3(x) = 4e−x1 + 6e−x2 + 6e−x3 + 4e−x4

s.t.



x2
1 + x2

2 + x2
3 + x2

4 ≤ 10

−2 ≤ x1 ≤ 2

−2 ≤ x2 ≤ 2

−2 ≤ x3 ≤ 2

−2 ≤ x4 ≤ 2.

We solve this problem with approximation errors ϵ = 5, ϵ = 7 and ϵ = 10,
respectively. In Figures 6 and 7 the convex hulls of I (inner approximations)
and the convex hulls of O (outer approximations) for ϵ = 5 and ϵ = 10 are
given, respectively. In Table 1, the computational time of the algorithm, the
number of iterations (r), the number of obtained boundary points (size of I)
and the iteration in which the first components of I and O appear (r1), for
ϵ = 5, 7, 10 are given. Table 1 shows the effect of the choice of ϵ. The smaller
the error parameter, the more iterations and the more boundary points are
generated and the longer the computational time.
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Figure 7. The convex hulls of I (left) and O (right) for ϵ = 10 in

Example 5.3.

Table 2. Obtained results for Example 5.4 with different values of ϵ.

Error Time (second) r |I| r1
ϵ = 5 107.38 67 3091 3
ϵ = 10 76.53 48 1561 3

ϵ = 15 42.04 40 1077 3

Example 5.4 ([8, 25]). Consider the following convex MOP:

minf1(x) = x2
1 + x2

2 + x2
3 + 10x2 − 120x3

f2(x) = x2
1 + x2

2 + x2
3 + 80x1 − 448x2 + 80x3

f3(x) = x2
1 + x2

2 + x2
3 − 448x1 + 80x2 + 80x3

s.t.


x2
1 + x2

2 + x2
3 ≤ 100

0 ≤ x1 ≤ 10

0 ≤ x2 ≤ 10

0 ≤ x3 ≤ 10.

We solve this problem with approximation errors ϵ = 5, ϵ = 10 and ϵ = 15,
respectively. In Figures 8 and 9 the convex hulls of I (inner approximations)
and the convex hulls of O (outer approximations) for ϵ = 5 and ϵ = 10 are
given, respectively. In Table 2, the computational time of the algorithm, the
number of iterations (r), the number of obtained boundary points (size of I)
and the iteration in which the first components of I and O appear (r1), for
ϵ = 5, 10, 15 are given. Table 2 shows the effect of the choice of ϵ. The smaller
the error parameter, the more iterations and the more boundary points that
are generated and the longer the computational time.
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Figure 8. The convex hulls of I (left) and O (right) for ϵ = 5 in Example 5.4.
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Figure 9. The convex hulls of I (left) and O (right) for ϵ = 10 in
Example 5.4.

6. Conclusions

In this paper, we have presented an approximation algorithm to find ε-
nondominated points of a convex MOP. The proposed algorithm, compared
with the existing algorithms, does not require differentiability of the objective
functions and constraints. Also, in the suggested algorithm, the nonlinear ob-
jectives and constraints are not approximated using linearization techniques
and therefore nonlinear and convex objectives and constraints directly play a
rule in finding the ε-nondominated points. Performing the steps of the algo-
rithm is very easy and calculating the vertices of the new covers is not difficult.

Acknowledgements

The authors would like to express their heartfelt thanks to the editor and
anonymous referees for their useful suggestions which improved the quality of
the paper.



An algorithm for approximating nondominated points 1414

References

[1] Q.H. Ansari and J.C. Yao (eds.), Recent Developments in Vector Optimization,

Springer, Berlin, 2011.
[2] P. Armand, Finding all maximal efficient faces in multiobjective linear programming,

Math. Program. 61 (1993), no. 3, 357–375.
[3] M. Beldiman, E. Panaitescu and L. Dogaru, Approximate quasi efficient solutions in mul-

tiobjective optimization, Bull. Math. Soc. Sci. Math. Roumanie (N.S.) 51(99) (2008),
no. 2, 109–121.

[4] H. P. Benson, Hybrid approach for solving multiple-objective linear programs in outcome
space, J. Optim. Theory Appl. 98 (1998), no. 1, 17-35.

[5] H. P. Benson, An outer approximation algorithm for generating all efficient extreme
points in the outcome set of a multiple objective linear programming problem, J. Global
Optim. 13 (1998), no. 1, 1-24.

[6] A. Chinchuluun and P.M. Pardalos, A survey of recent developments in multiobjective

optimization, Ann. Oper. Res. 154 (2007), no. 1, 29–50.
[7] M. Ehrgott, Multicriteria Optimization, Springer, Berlin, 2005.
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