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1. Introduction and preliminaries

Let © be a bounded domain in RY, with smooth boundary 9. In the
present paper we consider the existence of weak solutions of the following
Dirichlet problem at resonance for nonuniformly p-Laplacian system:

(1.1)

~div(hy (2)|VulP~2Vu) = |u* )P 1o + flz,u,v) — ki (2), in
-div(ha(2)|Vo|P~2V0) =1 |ul* ol P ru + g(2, u, v) — ko(z), in Q
u=20; v=20 on 01},
where
(1.2) p>2, a>1, f>1, a+ B =np.

and f,g: O xR? — R are Carathéodory functions which will be specified later,
(1.3) hi(z) € L1 .(Q), hi(z)>1, foraezecQ, i=1,2,

ki(x) € L7 (Q),p = p%l’ ki(z) >0, fora.ex €Q, i=1,2.

A1 denotes the first eigenvalue of the problem:
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~Agu =M ol o,
(1.4)

—Apv =Mu|* v,
and (u,v) € Wy P(Q) x Wy P(Q),p>2,a>1, 8> 1, a+ 8 =p.

It is well-known that the principle eigenvalue Ay = A1(p) of (1.4) is obtained
using the Ljusternick-Schnirelmann theory by minimizing the functional

J(u,v) = g/ |Vul|Pdr + é/ |VoulPde,
P Ja D Ja
on C! - manifold:
S = {(u,v) € X = WrhP(Q) x WhP(Q) : Alu,v) = 1} :
where
A(u,v) = / lu|®*~o]P~  uvde,
Q

that is Ay = A1(p) can be variational characterized as
(1.5)
J(u,v) . < Jo |Vu|pdx+§fﬂ |Vu|Pdz

)\ :>\ = inf =
! 1) /\(11,111})>0/\(U,U) (u,0)EXuv>0 Jo lulo= P~ tuvde

Moreover the eigenpair (1, p2) associated with \; is componentwise positive
and unique (up to multiplication by nonzero scalar) (see [1, Theorem 2.2] and
[15, Remark 5.4]).

We firstly make some comments on the problem (1.1). Observe that the exis-
tence of weak solutions of (p, ¢)-Laplacian systems at resonance in bounded do-
mains with Dirichlet boundary condition, was first considered by Zographopou-
los in [20]. Later in [10] Kandilakis and Magiropoulos have studied a quasilin-
ear elliptic system with resonance part and nonlinear boundary condition in an
unbounded domain by assuming the nonlinearities f and g depending only on
variable u or v. In [14], Ou and Tang have considered the same system as in [10]
with Dirichlet condition in a bounded domain. In these papers, the existence
of weak solutions is obtained by critical point theory under a Landesman-Lazer
type condition. At the same time for nonuniformly nonlinear elliptic equations
involving p-Laplacian (p > 2) at resonance we refer the reader to [12,13,18].

In this paper by introducing a generalization of Landesman-Lazer type con-
dition we shall prove an existence result for a p-Laplacian system on resonance
in bounded domain with the nonlinearities f and g to be functions depending
on both variables u and v.

Note that in [9] we considered system (1.1) in the case hq(x) = ha(z) = 1 and
shows the existence of weak solutions of (1.1) in VVO1 P x VVO1 . Our arguments
are based on the saddle point theorem and rely on a generalization of the
Landesman-Lazer type condition.



1513 Hung and Toan

Recall that due to h;(z) € L}, (), i = 1,2, the problem (1.1) now is nonuni-

loc
formly in sense that the Euler-Lagrange functional associated to the problem

may be infinity at some wy = (ug,v0) € X = WgP(Q) x W P(Q). Hence
we must consider the problem (1.1) in some suitable subspace of W, ™" () x
Wo ().

As usually WO1 P(Q) denotes the Sobolev space which can be defined as the
completion of C§°(€2) under the norm:

Jull = ( / |Vu|pdx) g
Q

Now we define the following subspaces E;, i = 1,2, of Wol’p(Q) by:
E;, = {u e W) : / hi(2)|VulPdz < +oo} ,
Q
where h;(z), i = 1,2, satisfy condition (1.2). E; can be endowed with the norm

B = (/Q hi(a:)|Vu|pdac> ’

Applying the arguments as those used in the proof of [3, Proposition 1.1] we
can prove the following proposition.

[[ul

Proposition 1.1. For each i = 1,2, E; is a Banach space and the embeddings
E; into WyP(Q) are continuous.

Proof. Tt is clear that E; is a normed space. Let {u,,} be a Cauchy sequence
in F;. Then

I gl = i » — Vuy|Pdz =
i tm — wills, o A hi(2)| Vi, — Vug[Pdz = 0,
and {||um||g,} is bounded. By (1.3) : ||um — uk||W01,p(Q) < um — ugllg, for
m,k =1,2,.... Hence the sequence {u,, } is also a Cauchy sequence in W, ? ()

. . 1 .
and it converges to some u in W, ?(Q), i.e:

m—+00

lim / [V, — Vul|’ dz = 0.
)

It follows that Vu,, — Vu in LP(Q) and there exists a subsequence {Vuy,, }
converging to Vu a.e x € ). Applying Fatou’s lemma we get

/ ho(@)|VulPde < liminf / hi(@) [V, [P da < +o0
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Hence u € F;. Applying again Fatou’s lemma we get

0 < lim hi(2)| Vi, — VulPdz
k—-+o0 Q

< lim { lim hi(z)|Vum, —Vuml|pdx} =0.
k—+oco | I—=+00 Jq

Hence {um, } converges to w in E;. From this, it implies the sequence {u,}
converges to v in F;, i = 1,2. Thus F; is a Banach space and the continuous
embedding F; into VVO1 P holds true. Proposition 1.1 is proved. O

Remark 1.2. Since the embedding W, *(€2) to LP(Q) is compact, hence E; <
LP() compactly.
Set E = E; x Ey and for w = (u,v) € E:

1
lwlle = (lullg, +llvlE,)? -

Moreover for simplicity of notation denotes by X = W, ?(Q) x Wy "*(€2). Then
we have ||lw||x < ||lw|g, Yw = (u,v) € E.

Definition 1.3. Function w = (u,v) € E is called a weak solution of the
problem (1.1) if and only if

a/Qhl(x)VuVﬂdx—|—ﬁ/ﬂh2(x)Vsz7dx
-\ /Q (a|u|°‘_1|v|ﬁ_1vﬂ + B\u|a_1|v\5_1u6) dx
- /Q (af(z,u,v)u + Bg(z,u,v)v) dx
+ /Q (aky(x)a + BEa(x)v) dz =0, Vo = (u,v) € E.
Let us introduce the following some conditions on nonlinearities of system

(1.1):
(H1)

(i) f,g: Q x R? = R are Carathéodory functions: f(z,0,0) =0, g(z,0,0)=0.

(ii) There exists function 7(z) € L¥' (), p' = P 1 such that:

|f(z,5,t)] < 7(x), |g(z,s,t)| < 7(x), for a.e x € Q,(s,t) € R
(iii) For(s,t) € R? :
of(z,s,t)

(1.6) a——a— =5

dg(x, s,t)

95 for a.e z € Q.
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Denotes, for (u,v) € R?

(1.7)

H(x,u,v) = % /(f(ac7 s,v)+ f(x,s,0)) ds—i—g /(g(m,u,t)—i—g(ac,(), t)) dt, for a.e z € Q.
0 0

Remark 1.4. By hypothesis (1.6), from (1.7) with some simple computations
we deduce that:

(1.8)
% = af(z,s,t) ,

Now we define, for i,j =1, 2:

OH (z,s,t)

ot = ﬁg(x,s,t% aexe Q7V(S,t> S R2.

(1.9)
F@) = timsup 2 [ (£ (2 (=0 e, () rea) + £ (2D T en,0))

T—+o0 T

G;(x) = limsup & /07 (g (rr (=17, (*1)1”%02) +g (-’v 0, (*1)1“7;@2)) dy.

T—+oo T

Assume that

(Hz)
(1.10)
/cmwwmm+Gmmmu»mKﬂ/Xmmm¢mw+ﬂ@@ﬂﬂ@ﬂx
Q Q

</c@mwmm+axmw@»m.
Q

Remark 1.5. For example, we can take functions f(z,u,v),g(z,u,v) as fol-
lowing:

. (% v u
f(@,u,v) = 71 (z) sin <ﬁ + a) +771($)m,
g(z,u,v) = 7 () sin <u + U) + UQ(I')L,
B« V1402

where 71 (), 1 (), m2(x) are functions in L¥' (Q) and 5 (x) < 0,72(z) < 0 for
x €
By some simple computations we get:

Fy(z) = 2am (z), Fy(x) = —2am (),

Gi(z) = 2Bn2(2), G2 (x) = —2Bn2(x).
Therefore, hypothesis (1.10) is satisfied whenever

—m(x) > ki(x) and  —mna(x) > ka(x).

Our main result is given by the following theorem:
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Theorem 1.1. Assume that the conditions (Hy) and (Hs) are fulfilled. Then
the problem (1.1) has at least a nontrivial weak solution in E.
Proof of Theorem 1.1 is based on variational techniques and the Minimum
Principle.
2. Proof of the main result

We define the Euler-Lagrange functional associated to the problem (1.1) by

(%

I(w):—/ hl(:v)|Vu|pdx+é/ hg(x)|Vv|pd$c—/\1/ [ul*~ |’ ruvdz
P Ja P Ja Q

- [ Hwydat [ (@bt Braa)o) do

(2.1)
=J(w)+T(w), Yw=(u,v)€E,
where
- )| Vul|Pdx é )| VolPdx
(2:2) Tw) =2 [ m@vupde+ 2 [ na@)|vora,
(2.3)

T(w) =—X\ /5Lu|a_1|v|5_1uvdac — /QH(x, u,v)dx + /Q (aky(x)u + BEa(x)v) de.

Firstly we note that due to h;(x) € L}, (), i = 1,2, in general the functional
J(w) may not belong to C1(E). Therefore we need some modifications in order

to apply the critical point theory to our problem.

Definition 2.1. (see [0, Definition 2.1]) Let I be a map from a Banach space X
to R. We say that I is weakly continuously differentiable on X if the following
conditions are satisfied:
(i) I is continuous on X
(ii) For any u € X there exists a linear map I’(u) from X into R such that:
1 tv) =1
i L =T ey e x
t—0 t
(iii) For any v € X the map u — (I'(u),v) is continuous on X.

Denotes by CL(X) the set of weakly continuously differentiable functionals
on X. It is clear that C1(X) C CL(X), where we denote by C*(X) the set of
all continuously Fréchet differentiable functionals on X.

Let I € CL(X) we put:

II'(w)|| = Sup{| < I'(u),h > |:h e X ||| =1}, Vu € X
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We say that I € C}(X) satisfies the Palais-Smale condition on X if any se-
quence {uy,} C X for which {I(uy,)} is bounded and limy,, oo || (tm)||x« =
0 has a convergent subsequence in X.

Theorem 2.2 (The minimum Principle, see in [12, 13, Theorem 2.3]). Let X
be a Banach space and I € CL(X). Assume that:

(i) T is bounded from below, ¢ = inf x I(u)

(ii) I satisfies the Palais-Smale condition on X.
Then there exists ug € X such that I(ug) = c.

The following proposition concerns the smoothness of the functional I =
J + T given by (2.1).

Proposition 2.3. Assuming hypothesis (Hy) and (Ha) are fulfilled. We assert
that:

(i) The functional T(w),w € E given by (2.3) is continuous on E. More-
over, T is weakly continuously differentiable on E and

(2.4)
(T (w), w) = — A\ / (au|*™HolP~toa + Blu|*Ho|P~ uv) dz
Q

- / (af (2, w)a + By(z, w)v) da
Q

(ii) The functional J(w),w € E given by (2.2) is weakly continuously dif-
ferentiable on E and we have: Yw = (u,v), © = (4,0) € E

(2.5) (J'(w), @) = a / ()| VP~ VuVada + 8 / ha ()| V[P~ VoV ada.
Q Q
Thus I = J + T 1is weakly continuously differentiable on E and
(2.6) (I'(w),w) = (J'(w), o) + (T"(w), w), Yw = (u,v);w = (u,0) € E.
In the proof of the Proposition 2.3 we need the following remarks:

Remark 2.4. By similar arguments as those used in the proof of [21, Lemma
2.3] and [10, Lemma 5] we infer that the functional A : E — R and operator
I': E — E* given by

N (u, v) :/ lu|*~v|?Luvdz, (u,v) € E,
Q
and
(T(u,v), (@, )) = / ful* o]~ vada+ / | o] Vuvd, (u, v); (@, 0) € E,
Q Q

are compact.
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Proof. (i) By the Theorem C in [16, p. 248] and the Remark 2.4 with some
standard arguments we infer that T € C*(X) where X = W, x Wy**. More-

over since the embedding F — X is continuous, we have T' € C'(E) and hence
T € CL(F) and

(T’(w),w):—)\l/ (a|u|°‘_1|v|ﬁ_lvﬂ+B|u\°‘_1|v|ﬁ_1uﬁ) dz
Q
- [ (et @ w)a-+ g, w)o) de
Q

) € E.

S]]

+ /Q (aki(x)a + Pka(x)D) de, Yw = (u,v);w = (4,

(ii) By similar arguments used in the proof of [3, Proposition 2.1], we deduce
that J € CL(E) and (2.5), (2.6) hold true. The proof of Proposition 2.3 is
complete. 0

Remark 2.5. From Proposition 2.3, it implies that the critical points of the
functional I given by (2.1) correspond to the weak solutions of the problem

(1.1)

Proposition 2.6. Suppose that the sequence {w,, = (Um,Vm)}m converges
weakly to wo = (ug,vo) in X = W, P(Q) x WyP(). Then we have
(2.7) Jwo) < ok ().
Proof. The sequence {w;, = (U, vm)} converges weakly to wg € X. Hence for
all bounded €' C Q, {w,,} is also weakly converging in X. By compactness
of the embedding Wy (') into LP(€'), the sequence {w,,} converges strongly
in LP(Q') x LP(§Y). Then the sequences {u,,} and {v,,} converge strongly in
LY(Q). Applying [16, Theorem 1.6, p9] we deduce that

J(wo) < liminf J(wy,).

m——+oo

The proof of Proposition 2.6 is complete. 0

Proposition 2.7. Let {wm, = (um,vm)} be a sequence in E such that:
(1) [H(wm)| <e¢, (m=1,2,...), ¢ is positive constant

I'(wy) — 0 in E* as m — +00.
(i) {w,} converges weakly to wy = (uo,vo) in X = Wy P(Q) x Wy ().
Then wy € E and the sequence {wy,} converges strongly to wo in E.

Proof. Since {w;,} converges weakly to wg = (ug,vo) in X and the embedding
WP into LP(Q) is compact hence the sequences {u,,} and {v,} converge
strongly in LP(£2) to ug and vy, respectively.



1519 Hung and Toan
By hypothesis (H;) and (1.7), applying Holder’s inequality, we obtain
T (wn)| < )\1/ i | [0 | P +/ H (2, )|
Q Q

+ / (0 (@) i + Blea(2) 0] it

< MllmllEo @ loml 2oy + 1712 ) (@llmllzo @) + Bllomllzo (o))
+ allkll Lo ) lumllLe @) + Bllkll Lo () lom || Lo (0)-
Since {u,,} and {v,,} are bounded in LP(Q), there exists M > 0 such that:
|T(wm)| <M, m=1,2,....
Moreover by Proposition 2.6
J(wp) < liminf J(wy,) = }}Lrg_li_rg{l(wm) — T(wm)}

m——+oo

< limsup {|I(wm )| + |T(wm)|} < C+ M < 400,
m—+00
which implies

h ()| Vo [Pda < +00 ; / ho ()| Vo |Pda < +oc.
Q Q

Hence wy = (ug,vo) € E. Now from (2.4) and hypothesis (H;) we have:
|(Tl(wm)7 (wm - wO))|

<X\ {/ At | Hom|? |tm — uolda
Q
4 [ Bl o~ volde |
Q
+ [ el wn)llun = uol + Alg(a, wo)llom — vol} do
Q
+/ {ak1(z)|um — uo| + Bka(z)|vm — vo|} dz
Q
< A {al w135 [[0m] 75 oy ll1tm — o]l 1o(0)

Bl E [0l £ oy [ [0m = vl [y |
7l Lo 0y (@llum —wol|ze @) + Bllvm — vollLr(e))
+ a”leLP/(Q)Hu’m — uol|Lr () + 5Hk2||LP'(Q)va = vol|Lr(a)-
Letting m — 400 and remark that
lum —uollLe) = 05 [[vm —vollLe() =+ 0 as  m — o0,
we deduce that

lim (T"(wm), (Wm —wp)) = 0.

m——+oo
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From this we arrive at

lim (J' (W), (Wm —wo)) = lim  (I'(wm) — T (W), wnm — we) = 0.

m——+o0 m——+o0

Moreover, since J is convex we have
J(wo) — J(wn) > (J/(wm)a (wo — wi,)).
Letting m — 400 we obtain that

J(we) > lim  J(wp).

m——+oo

On the other hand, by Proposition 2.6 we have
J(wp) < klgirg J(wpm).

This implies that
J(we) = lim  J(wp).

m——+oo

Next we suppose, by contradiction, that {w,,} does not converge to wy =
(u0,v0). Then there exists a subsequence {wpm, = (Um,,Vm, )}, of {wy,} and
€ > 0 such that

|wm, —wolle >€ kE=1,2,....

Recalling the Clarkson’s inequality

p p

s—t
2

s+t
2

1
< § (|S|p + ‘t|p) 8,1 € R»

we deduce that

]. ]- me
J<wmk>+2j<wo>_J(W> > J(w2w) k=12

9 2
Observe that
Wm, —wo\ _ a1 p o B b
; <2> = gl = woll, + o7 lom, = vollf,
1 min («, 3) €?
> ﬁmm(a,ﬁ) Wi, —woll% > T, > 0.

Hence

1 1 i P
§J(wmk) + §J(wo) —J (wmk +wo) > min (o, §) €

—>0,k=1,2,....
2 P 2p

Letting limg_, 4 o inf we obtain

J(wg) — liminf J (

k—+oco

Winy, + w0> - min (o, B) €P
5 >
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P . Win,, +W, .
Again instead of the remark that since {kf‘)} converges weakly to wp in

X, by Proposition 2.6 we have

2

J(wp) < liminf J (wmk—'_wo) .
k—-+o0

Hence we get a contradiction:

S min (o, B) €

= » o > 0.

Therefore {w,,} converges strongly to wg in E. The Proposition 2.7 is proved.
O

Proposition 2.8. Assume that hypothesis (Hy) and (Hs) are fulfilled. The
functional I : E — R given by (2.1) satisfies the Palais-Smale condition on E.

Proof. Let {wp, = (tm,vm)} be a Palais-Smale sequence in E, i.e:

(2.8) [I(wm)| < ¢, cis positive constant.

(2.9) I'(wy,) — 0 in E* as m — +00.

First we shall prove that {w.,} is bounded in E. We suppose, by contradic-
tion, that {wy,} is not bounded in E. Without loss of generality we assume
that

|lwm ||z — 400 as m — +00

Let @m = 2 = (Um, Um) that is Uy = 0
@y, is bounded in E, hence @, is also bounded in X = Wy** x Wy”. Then
there exists a subsequence {@W,, = (Um,,Vm, )}, which converges weakly to
some @ = (4,0) in X. Since the embedding W,*(Q2) into LP(2) is compact,

the sequences {U,, } and {¥,,, } converge strongly to & and U, respectively, in

o — Ym
and v, = Tois " Thus

7 (Q).
From (2.8) we have
(2.10)
9/ hl(x)|vamk|f’dx+§/ hg(a:)|Vi?mk|pdx—)\1/ B | [ [P Vi, By
P Ja P Ja Q
_ H(wi";k)dx+/ aklumk +ﬂf7fvmk xS c -
o llwm,lI% Q l|wm,, |15 lwm, ||z

From this, remark that hy(z) > 1, ho(z) > 1 for a.e x € Q, we get
(2.11)

. (63 ~ ﬁ ~ ~ a—1|~ B—1~ ~
lim sup{—/ Vi, pd:ﬁ—i——/ VU, pdm—)\l/ U, Um Winy, U, dx
Jin sup {2 [ (9, pae+ S [ (95, [ [l o

Hiriny) [ ahaelim 4 8lolin ) )
i <

Q ”'LUmk”% ||wmk||1175‘71
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By hypothesis (H;) on the functions f, g, h;(z), k;(x), i = 1,2, we deduce that

H m
(2.12) limsup/ Mdz:ﬂ,
koo Jo o lwm g
k1 (x)tm, ko (x)0m,
(2.13) m [ @R@) ’<+fff(x)“ Edy = 0.
k=teo /o Wi, |15
Moreover by Remark 2.4, we infer
(2.14) hm /|um e umkvmkdxf/ [a|~ 5P~ avd.

From (2.11) with (2.12), (2.13) and (2.14) we arrive at

hmsup{ /|Vumk|pdx+5/ |Vﬁmk|pd:ﬂ} §)\1/ [a*= 10|~ avd.
p Q Q

k——+oo

By Proposition 2.6 and the variational characterization of A\; we get

)\1/ a5~ tavde < 9/ \va|de+§/ \Vo[Pdx
Q P Ja P Ja

gnmmf{“ / Vi, [Pde + 2 / |Vﬁmk|pdx}

k— 400

<11msup{ /|Vumk| dx+5/ |vak|de} <)\1/ @) o)P ' avdz.
p

k—+oco

Thus theses inequalities are indeed equalities and we have

(2.15)
lim {O‘ / Vi, [Pde + 2 / Vﬁmk”dx} _ / Valrdz + 2 / VoIPda
k=400 | D Jao P Ja P Ja P Ja
:/\1/ [a|*~1[5)°~ avdz.
Q

We shall prove that @ # 0 and v # 0.
By contradiction suppose that u = 0, thus u,,, — 0 in LP(Q) as k — +o0.
Then from the fact that

AWy, s Oy, )| = ‘/ [ ! |ﬁ 1umkvmkdx

< ”umk ”LP(Q) HUmk lep(g)'
Letting k — 400 since ||t ||zr () — 0, we deduce that
(2.16) lim A (U, , Um, ) = 0.

k— 400

From (2.10) taking limy_, 1 o sup with (2.12), (2.13) and (2.16) we arrive at



1523 Hung and Toan

(2.17) nmsup{o‘ / b (2)| Vi, [Pz + 2 / hg(x)|Vﬁmk|pdx} ~0.
P Ja P Ja

k—+o00

On the other hand, since | W, ||z = 1 and

& /hl(m)|Vﬂmk|pdx+é ha(2)|Vm, |Pdz >min (9, é) || @m, || £ =min (9, §)>o,
P Ja PJa pp pp
which contradicts (2.17). Thus @ # 0. Similary we have v # 0.

By again the definition of A; from (2.15) we deduce that @ = (u,?) = (¢1, p2)
or W = (u,v) = (—p1, —p2), where (p1,¢2) is eigenpair associated with A; of
the problem (1.4).

Next we shall consider following two cases:
Assume that @,,, — ¢1,Um, — @2 in LP(Q) as k — +o00. Observe that by the
variational characterization of \; we have

9/ Vi, |[Pde + é/ VB, [P — )\1/ [ty | Omy [P~ Yty Vmy dw > 0.
P Ja P Ja Q
From this, note that hy(x) > 1, hao(x) > 1 a.e z € Q, we have
g/ hl(x)\VﬁmkV’dqué/hz(:r)\Vi;\mk\pdmf)\l/|umk\a71\vmk|371umkvmkdx > 0.
P Ja P Ja Q
Then from (2.8) it implies:
—/ H(z, Uy, U, )de —|—/ (aky () Um,, + Bka(2)vm, ) de <c, k=1,2,....
Q Q
After dividing by ||wm, ||z taking limg_, oo sup and remark that

lim (ak1 (), + B2 ()0, ) dx = / (aky(z)p1 + Bka(x)p2) dz,

k—+o00 Q Q
we arrive at
] H(z,wp,)
(2.18) limsup | ————>dx > [ (aki(z)p1 + Bka(z)p2) dx.
k—too Jo  |Wm,llE Q

We need the following lemma

Lemma 2.9. Assume that the hypothesis (Hy) is true. Then

(2.19) limsup/ Mdm = 1/ (Fi(x)e1 + G1(x)p2) dz,
k—too Ja wm e 2 Jo

where Fy(x), G1(x) are given by (1.9).

Proof. By (1.7), we have

(2.20) H(z,wm,) =

a [k B Ump,
5/0 (f($7871}mk)+f(1‘78,0)) ds + 5/0 (9(m7umk7t)+g(x707t))dt'
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Set I, = ||wm, ||E — +o0 as k — +00. Observe that by hypothesiss (H;) on
f(z,w), g(x,w) we have

Umy, lke1
‘a/ f(x7s,vmk)ds—a/ fx, s, lkp2)ds
0 0

<a +

U
/ f(CU,S,leOQ)dS

lpe1

/ @5, vme) — (@5, o)) ds
0

<

Umy, 9
/ aa—{ (z, s, lkp2 + 0(Vm;, — lkp2)) (Vm,, — lep2) ds
0

+ a1 (z) [tm,;, — ke

Um, a
<[ [ B9 @ bpa + 8o, — o)) d (v, — i)
0

+ar(z) [um, — kel
< 287(z)|vmy, — lep2| + at(2)|tm, — lkp1] , 0 € (0,1).

Umy, Umy,

From this and remark that @,,, = ok Uy = o, we get:
1 U, 1 lkpr
a—/ f(z,8,0m, )ds —a— fx, s, lppa)ds
k. Jo b Jo
(2.21) < 2B87(x) [y, — 2| + a7 () [Um,, — @1
Similarly,
o Um, o lk"Pl
(2.22) l—/ f(z,s,0)ds — o f(z,5,0)ds| < ar(x) [Um, — ¢1]-
k Jo k Jo

Combining (2.21) and (2.22) we infer that

Um g, lgp1
J AR [ tesm + swsonds— [ st + fas0)ds o
Q 0 k Jo

U

< / {287(2) |(Um)y, — p2)| + 207 (@) [tim), — 1} dx
Q
< 28I (@)l ot g B, — Pllincer + 20l (@) o o 1, — P1llmce-
Letting k — o0, since:

M T, = e2llzz@) =0, Him i, —¢illz2@) =0,

we deduce that

. a [
hmsup/Q{ /0 (f(x7s,vmk)+f(x,s,0))ds}dx

k— o0 Uy

lrpr
:Hmsup/Q {lo;/o (f(z,8,lpp2) + f(x,5,0)) ds} dx.

k—+oo
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Set s = yp1(x), ds = 1(x)dy, we get

lrp1 s
/0 (F(a 5, lipa) + £z 5,0)) ds = / (f (9o, npa) + £, yon,0)) ordy.

Remark that I, = ||wm,||g — +00 as k — +oo, we derive that

limsup/{){i/o o (f(x,s,vmk)+f(:c,s,0))ds}d:z:

k—+o0

a [
—limsup/ﬂ{/o (f(x,y<p1,lk<p2)+f($7y¢1,0))dy} p1dx

k—s—+o0 Iy

(2.23) :/Fl(m)gol(x)dx.
Q
Similarly, we also derive that
(2.24)
. B Umy,
sy [ {27 (i) + o600.0) bt = [ Giloeatalas,

k—+oco

where F(z) and G;(z) are given in (1.9). Combining (2.23), (2.24) we obtain:

H m 1
(2.25) 1imsup/ de = 7/ (Fi(z)p1(x) + Gi(x)p2(z)) de.
k—too Jo llwm e 2 Ja
Lemma 2.9 is proved. |

Now, by (2.19) from (2.18) we obtain

3 [ (A@a +Gi@eade > [ (ahi(@)er+ fhala)en) do.

which contradicts (1.10).
If Uy, = —01(2) O, = —@2(z) in LP(Q) as k — 400, by similar computa-
tions as above and remark that in this case:
lim sup de = —1/ (Fy(x)p1 + Ga(x)p2) da.
ktoe Jo [lwm B 2 Jo
Hence from (2.18) we get

1

3 | (Pa@hor + Galwo) do > = [ (aba(@)gr + Bhaa)pa) do

which gives
1
! / (Fa(2)p1 + Ga(w)pa) de < / (aky(@)gr + B () ps) do.
2 Q Q

Thus we get a contradiction with (1.10).

Hence the Palais-Smale sequence {w,,} is bounded in E and it is also
bounded in X. Then there exists a subsequence {w,y,, } which converges weakly
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to some wy = (ug,vg) in X. From Proposition 2.7 we deduce that wy € F and
{wm, } converges strongly to wy in E. The proof of the Proposition 2.8 is
complete. O

Proposition 2.10. The functional I : E — R given by (2.1) is coercive on E
provided that hypotheses (Hy) and (Hz) hold.

Proof. By contradiction we suppose that I is not coercive in F. Then it is
possible to choose a sequence {w,, = (U, Vm)}m in E such that

lwmllg = +o0 and I(w,,) < ¢, ¢ is positive constant.

Let w,, = = (Um, Um ). Hence the sequence {w,,} is bounded in F and

Twm &
then bounded in X = W, P(Q) x Wy?(Q). Therefore it has a subsequence
Wm, = (Umy,,Vm, ) which converges weakly in X and converges strongly in
LP(Q) x LP(Q2). Applying arguments used in the proof of Proposition 2.8,
we can proof that W, — (¢1,92) OF W, — (—p1, —p2) in LP(2) x LP(Q)
as k — 400 where (1, p2) is eigenpair associated with eigenvalue A; of the
problem (1.4). Assume that @Wy,, — (¢1,92) in LP(Q) x LP(Q) as k — +oo.

By again the same arguments used in the proof of the Proposition 2.8 we arrive

at
1

3 | (F@a +Gi@eade > [ (ahi(@)er+ Bhala)en) do.

which contradicts (1.10). If @W,, — (—¢1, —p2) in LP(2) x LP(Q) as k — +oo,
we get

1

3 | (Paaor + Gala)n) do < [ (aha(o)pn + Ba(a)g) da.

This is in contradiction with (1.10). Thus [ is coercive on E. O

Proof of Theorem 1.1. By Propositions 2.8 and Proposition 2.6, applying the
Minimum Principle (see Theorem 2.2), we deduce that the functional I at-
tains its proper infimum at some woy = (up,v9) € F, so that the problem
(1.1) has at least a weak solution wy € E. Moreover by hypothesis (H;) on
f(xz,s,t),9(x,8,t), k1(x), ka(z), it is clear that wy is nontrivial and the proof of
Theorem 1.1 is complete. 0
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