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Abstract. The aim of this paper is to characterize 3-dimensional N(k)-
paracontact metric manifolds satisfying certain curvature conditions. We
prove that a 3-dimensional N(k)-paracontact metric manifold M admits

a Ricci soliton whose potential vector field is the Reeb vector field ξ
if and only if the manifold is a paraSasaki-Einstein manifold. Several
consequences of this result are discussed. Finally, an illustrative example
is constructed.
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1. Introduction

The study of nullity distribution on paracontact geometry is one among the
most interesting topics in modern contact geometry. Kaneyuki and Williams
[25] initiated the study of paracontact geometry. Since then many authors
[1, 2, 6, 13, 18, 39] contribute to the study of paracontact geometry. A system-
atic study of paracontact metric manifolds was carried out by Zamkovoy [40].
The importance of paracontact geometry comes from the theory of para-
Kähler manifolds and its role in pseudo-Riemannian geometry and mathemat-
ical physics. More recently, Cappelletti-Montano et al [9] introduced a new
type of paracontact geometry, so-called paracontact metric (k, µ)-spaces, where
k and µ are some real constants. Martin-Molina [28, 29] obtained some clas-
sification theorems on paracontact metric (k, µ)-spaces and constructed some
examples.

The conformal curvature tensor C is invariant under conformal transfor-
mations and vanishes identically for 3-dimensional manifolds. Using this fact,
several authors [15–17,24] studied various types of 3-dimensional manifolds.
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A pseudo-Riemannian manifold is called semisymmetric (respectively, Ricci
semisymmetric) if R(X,Y ) · R = 0 (respectively, R(X,Y ) · S = 0) [35], where
R(X,Y ) is considered as a field of linear operators acting on R (respectively,
S).

An algebraic curvature tensor field R on a pseudo-Riemannian manifold
(M, g) is said to be harmonic [31] if (divR)(X,Y, Z) = 0, for any vector fields
X,Y, Z ∈ χ(M), where χ(M) is the set of all differentiable vector fields on M
and ‘div’ denotes the divergence operator with respect to the metric g. On the
other hand divR = 0 holds in a pseudo-Riemannian manifold if and only if the
Ricci tensor is of Codazzi type [30], that is,

(1.1) (∇XS)(Y, Z) = (∇Y S)(X,Z),

where ∇ is the Levi-Civita connection.
A Ricci soliton is a natural generalization of an Einstein metric [3]. In a

manifold M a Ricci soliton is a triplet (g, V, λ), with g, a Riemannian metric,
V a vector field (called the potential vector field) and λ a real scalar such that

(1.2) £V g + 2S + 2λg = 0,

where £V is the Lie derivative with respect to V and S is the Ricci tensor
of type (0, 2). The Ricci soliton is said to be shrinking, steady or expanding
according as λ is negative, zero or positive, respectively. The compact Ricci
solitons are the fixed points of the Ricci flow ∂

∂tg = −2S projected from the
space of metrics onto its quotient modulo diffeomorphisms and scalings, and
often arise as blow-up limits for the Ricci flow on compact manifolds.

A Ricci soliton on a compact manifold has constant curvature in dimension
2 (Hamilton [22]) and also in dimension 3 (Ivey [23]). It is well known [32] that
a Ricci soliton on a compact manifold is a gradient Ricci soliton. For more
details, we refer to Chow and Knopf [12].

Sharma [34] has initiated the study of Ricci solitons in K-contact manifolds.
Recently, Yildiz et al [38] studied Ricci solitons in 3-dimensional f -Kenmotsu
manifolds. Also Ricci solitons have been studied by several authors such as
Cho [10, 11], Tripathi [36], De and Matsuyama [14], Ghosh [19, 20], Turan et
al [37] and many others.

The paper is organized as follows: In Section 2, we give some basic re-
sults of N(k)-paracontact metric manifolds. Section 3 is devoted to study
Ricci semisymmetric N(k)-paracontact metric manifolds. Sections 4 and 5
respectively deal with 3-dimensional N(k)-paracontact metric manifolds satis-
fying divR = 0 and cyclic parallel Ricci tensor. In the next section we study
η-parallel Ricci tensor on 3-dimensional N(k)-paracontact metric manifolds.
Section 7 is devoted to study Ricci soliton on 3-dimensional N(k)-paracontact
metric manifolds. Several consequences of this result are discussed. Finally, an
illustrative example is constructed.
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2. Preliminaries

A smooth manifold M2n+1 has an almost paracontact structure (ϕ, ξ, η) if
it admits a (1, 1)-type tensor field ϕ, a vector field ξ (called the Reeb vector
field) and a 1-form η satisfying the following conditions [25]
(i) ϕ2X = X − η(X)ξ,
(ii) ϕ(ξ) = 0, η ◦ ϕ = 0, η(ξ) = 1,
(iii) the tensor field ϕ induces an almost paracomplex structure on each fibre
of D =ker(η), that is, the eigendistributions D+

ϕ and D−
ϕ of ϕ corresponding to

eigenvalues 1 and −1, respectively, have same dimension n.
An almost paracontact manifold equipped with a pseudo-Riemannian metric g
such that

(2.1) g(ϕX, ϕY ) = −g(X,Y ) + η(X)η(Y ),

for all X,Y ∈ χ(M), is called almost paracontact metric manifold and
(ϕ, ξ, η, g) is said to be an almost paracontact metric structure.

An almost paracontact structure is said to be normal [40] if and only if the
(1, 2)-type torsion tensor Nϕ = [ϕ, ϕ] − 2dη ⊗ ξ = 0, where [ϕ, ϕ](X,Y ) =
ϕ2[X,Y ] + [ϕX, ϕY ] − ϕ[ϕX, Y ] − ϕ[X,ϕY ]. An almost paracontact struc-
ture is said to be a paracontact structure if g(X,ϕY ) = dη(X,Y ) [40]. Any
almost paracontact metric manifold (M2n+1, ϕ, ξ, η, g) admits (at least, lo-
cally) a ϕ-basis [40], that is, a pseudo-orthonormal basis of vector fields of
the form {ξ, E1, E2, . . . , En, ϕE1, ϕE2, . . . , ϕEn}, where ξ, E1, E2, . . . , En are
space-like vector fields and then, by (2.1) vector fields ϕE1, ϕE2, . . . , ϕEn are
time-like. For a three dimensional almost paracontact metric manifold, any
(local) pseudo-orthonormal basis of ker(η) determines a ϕ-basis, up to sign. If
{e, e3} is a (local) pseudo-orthonormal basis of ker(η), with e3, time-like, so
by (2.1) vector field ϕe2 ∈ ker(η) is time-like and orthogonal to e2. Therefore,
ϕe2 = ±e3 and {ξ, e2,±e3} is a ϕ-basis [5]. In a paracontact metric manifold
one can easily define a symmetric, trace-free (1, 1)-tensor h = 1

2£ξϕ satisfying
(see [8, 40])

(2.2) ϕh+ hϕ = 0, hξ = 0,

(2.3) ∇Xξ = −ϕX + ϕhX,

for all X ∈ χ(M). Clearly h vanishes identically if and only if ξ is a Killing
vector field and then (ϕ, ξ, η, g) is said to beK-paracontact structure. An almost
paracontact metric manifold is said to be para-Sasakian manifold if and only
if (see [40])

(2.4) (∇Xϕ)Y = −g(X,Y )ξ + η(Y )X

holds, for any X,Y ∈ χ(M). A normal paracontact metric manifold is para-
Sasakian and satisfies

(2.5) R(X,Y )ξ = −(η(Y )X − η(X)Y ),
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for any X,Y ∈ χ(M), but unlike contact metric geometry the relation (2.5)
does not imply that the paracontact manifold is para-Sasakian. It is well known
that every para-Sasakian manifold is K-paracontact, but the converse is not
always true, as it is shown in three dimensional case [4].

According to Cappelletti-Montano and Di Terlizzi [8] we give the definition
of paracontact metric (k, µ)-manifolds.

Definition 2.1. A paracontact metric manifold is said to be a paracontact
(k, µ)-manifold if the curvature tensor R satisfies

(2.6) R(X,Y )ξ = k(η(Y )X − η(X)Y ) + µ(η(Y )hX − η(X)hY ),

for all vector fields X,Y ∈ χ(M) and real constants k, µ.

In particular, if µ = 0, then the paracontact metric (k, µ)-manifold is called
an N(k)-paracontact metric manifold. Thus for an N(k)-paracontact metric
manifold we have

(2.7) R(X,Y )ξ = k(η(Y )X − η(X)Y ),

for all X,Y ∈ χ(M).
In an N(k)-paracontact metric manifold (M3, ϕ, ξ, η, g), the following rela-

tions hold (see [33])

(2.8) QX = (
r

2
− k)X + (3k − r

2
)η(X)ξ,

(2.9) S(X,Y ) = (
r

2
− k)g(X,Y ) + (3k − r

2
)η(X)η(Y ),

R(X,Y )Z = (
r

2
− 2k){g(Y, Z)X − g(X,Z)Y }

+(3k − r

2
){g(Y, Z)η(X)ξ − g(X,Z)η(Y )ξ

+η(Y )η(Z)X − η(X)η(Z)Y },(2.10)

(2.11) S(X, ξ) = 2kη(X),

where Q,S,R and r are the Ricci operator, Ricci tensor, curvature tensor and
the scalar curvature respectively. From (2.10) it follows that

(2.12) R(ξ,X)Y = k{g(X,Y )ξ − η(Y )X}.
Also using (2.3) we have

(2.13) (∇Xη)Y = g(X,ϕY )− g(hX, ϕY ),

for all X,Y ∈ χ(M). Immediately from (2.10) we have the following:

Proposition 2.2. A 3-dimensional N(k)-paracontact metric manifold is a
manifold of constant curvature k if and only if the scalar curvature r = 6k.

We recall a result due to Cappelletti-Montano et al ([9, p. 686]).



1575 De, Deshmukh and Mandal

Lemma 2.3. Any paracontact metric (k, µ)-manifold of dimension three is
Einstein if and only if k = µ = 0.

Though any paracontact metric (k, µ)-manifold of dimension three is Ein-
stein if and only if k = µ = 0, it always admits some compatible Einstein
metrics [7].

3. Ricci semisymmetric N(k)-paracontact metric manifolds

In this section we discuss about Ricci semisymmetric N(k)-paracontact met-
ric manifolds. Hence

R(X,Y ) · S = 0.

This is equivalent to

(3.1) (R(X,Y ) · S)(U, V ) = 0,

for any X,Y, U, V ∈ χ(M).
From (3.1), we have

(3.2) S(R(X,Y )U, V ) + S(U,R(X,Y )V ) = 0.

Substituting X = U = ξ in (3.2) we obtain

(3.3) S(R(ξ, Y )ξ, V ) + S(ξ,R(ξ, Y )V ) = 0.

Using (2.11) we have from (3.3)

(3.4) S(R(ξ, Y )ξ, V ) + 2kη(R(ξ, Y )V ) = 0.

Taking (2.12) and (3.4) into account it follows that

(3.5) kS(Y, V )− 2k2g(Y, V ) = 0.

From (3.5) we get

(3.6) k{S(Y, V )− 2kg(Y, V )} = 0.

Suppose k = 0, then from Lemma 2.3 we get that the manifold is an Einstein
manifold.
Also, if k ̸= 0, then it follows from (3.6) that the manifold is an Einstein
manifold. Conversely, if the manifold is an Einstein manifold, then obviously
R · S = 0.
Thus we have the following:

Theorem 3.1. A 3-dimensional N(k)-paracontact metric manifold is Ricci
semisymmetric if and only if the manifold is an Einstein manifold.

From S(Y, V ) = 2kg(Y, V ), it immediately follows that r = 6k. Taking
account of Proposition 2.2 and the above theorem we can state the following:

Corollary 3.2. A 3-dimensional N(k)-paracontact metric manifold is Ricci
semisymmetric if and only if the manifold is of constant curvature k.
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Again Ricci symmetry (∇S = 0) implies Ricci semisymmetric (R · S = 0),
thus we have the following:

Corollary 3.3. A 3-dimensional N(k)-paracontact metric manifold is Ricci
symmetric if and only if the manifold is of constant curvature k.

4. 3-dimensional N(k)-paracontact metric manifolds with harmonic
curvature tensor

This section is devoted to the study of 3-dimensional N(k)-paracontact met-
ric manifolds with harmonic curvature tensor. Then divR = 0, which implies

(4.1) (∇XS)(Y, Z) = (∇Y S)(X,Z).

Taking the covariant derivative of (2.9) along an arbitrary vector field Y and
making use of (2.3) and (2.13) we obtain

(∇Y S)(X,Z) =
dr(Y )

2
{g(X,Z)− η(X)η(Z)}+ (3k − r

2
){g(Y, ϕX)η(Z)

−g(hY, ϕX)η(Z)− η(X)g(ϕY,Z) + η(X)g(ϕhY, Z)}.(4.2)

Interchanging X and Y in (4.2) yields

(∇XS)(Y,Z) =
dr(X)

2
{g(Y, Z)− η(Y )η(Z)}+ (3k − r

2
){g(X,ϕY )η(Z)

−g(hX, ϕY )η(Z)− η(Y )g(ϕX,Z) + η(Y )g(ϕhX,Z)}.(4.3)

Applying (4.2) and (4.3) in (4.1) we have

(3k − r

2
){2g(X,ϕY )η(Z)− g(ϕX,Z)η(Y )

+g(ϕhX,Z)η(Y ) + g(ϕY,Z)η(X)− g(ϕhY,Z)η(X)} = 0.(4.4)

Replacing Y by ϕY in (4.4) yields

(3k − r

2
){2g(X,Y )η(Z) + g(Y,Z)η(X)

+g(hY, Z)η(X)− 3η(X)η(Y )η(Z)} = 0.(4.5)

Let {ei}, i = 1, 2, 3 be a ϕ-basis of the tangent space at each point of the
manifold. Then putting Y = Z = ei in (4.5) and taking summation over i,
1 ≤ i ≤ 3, we get

(4.6) (3k − r

2
)η(X) = 0.

This gives r = 6k (since η(X) ̸= 0), which implies by Proposition 2.2 that the
manifold is of constant curvature k.

This leads to the following:

Theorem 4.1. If a 3-dimensional N(k)-paracontact metric manifold is of har-
monic curvature, then the manifold is of constant curvature k.
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5. Cyclic parallel Ricci tensor

In this section we study cyclic parallel Ricci tensor in 3-dimensional N(k)-
paracontact metric manifolds. Suppose that the manifold M has cyclic parallel
Ricci tensor [21], then the Ricci tensor S satisfies

(5.1) (∇XS)(Y, Z) + (∇Y S)(Z,X) + (∇ZS)(X,Y ) = 0.

Taking the covariant derivative of (2.9) along arbitrary vector field X and
making use of (2.3) and (2.13) we obtain

(∇XS)(Y,Z) =
dr(X)

2
{g(Y, Z)− η(Y )η(Z)}+ (3k − r

2
){g(X,ϕY )η(Z)

−g(hX, ϕY )η(Z)− η(Y )g(ϕX,Z) + η(Y )g(ϕhX,Z)}.(5.2)

Similarly, we have

(∇Y S)(Z,X) =
dr(Y )

2
{g(Z,X)− η(Z)η(X)}+ (3k − r

2
){g(Y, ϕZ)η(X)

−g(hY, ϕZ)η(X)− η(Z)g(ϕY,X) + η(Z)g(ϕhY,X)},(5.3)

and

(∇ZS)(X,Y ) =
dr(Z)

2
{g(X,Y )− η(X)η(Y )}+ (3k − r

2
){g(Z, ϕX)η(Y )

−g(hZ, ϕX)η(Y )− η(X)g(ϕZ, Y ) + η(X)g(ϕhZ, Y )}.(5.4)

Also it is known [26] that Cartan hypersurfaces are manifolds, with non-parallel
Ricci tensor, satisfying (5.1). From (5.1), it follows that r = constant. Using
(5.2)-(5.4) in (5.1) we obtain

(5.5) (3k − r

2
){g(ϕhY,Z)η(X) + g(ϕhX,Z)η(Y ) + g(ϕhY,X)η(Z)} = 0.

Replacing X by ϕX in (5.5) gives

(5.6) (3k − r

2
){g(hX,Z)η(Y ) + g(hX, Y )η(Z)} = 0.

Substituting Z = ξ in (5.6) and using the last part of (2.2) we get

(5.7) (3k − r

2
)g(hX, Y ) = 0.

Thus we get either, r = 6k, or, h = 0.
By the above discussions and Proposition 2.2 we get the following:

Theorem 5.1. If an N(k)-paracontact metric manifold M3 admits cyclic par-
allel Ricci tensor, then either the manifold is of constant curvature k, or para-
Sasakian.
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6. η-parallel Ricci tensor

Definition 6.1. An N(k)-paracontact metric manifold M3 is called η-parallel
if its Ricci tensor satisfies

(6.1) (∇ZS)(ϕX, ϕY ) = 0,

for all vector fields X,Y and Z ∈ χ(M).

The notion of η-parallel Ricci tensor for Sasakian manifolds was introduced
by Kon [27].

Let us assume that the Ricci tensor of an N(k)-paracontact metric manifold
is η-parallel. Then (6.1) holds.
From (2.9) we can easily get

(6.2) S(ϕX, ϕY ) = (
r

2
− k)g(ϕX, ϕY ).

Taking covariant derivative of (6.2) along any arbitrary vector field Z we obtain

(∇ZS)(ϕX, ϕY ) =
dr(Z)

2
{−g(X,Y ) + η(X)η(Y )}

+(
r

2
− k){(∇Zη)(X)η(Y ) + (∇Zη)(Y )η(X)}.(6.3)

Applying (2.13) in the above equation gives

(∇ZS)(ϕX, ϕY ) =
dr(Z)

2
{−g(X,Y ) + η(X)η(Y )}+ (

r

2
− k){g(Z, ϕX)η(Y )

−g(hZ, ϕX)η(Y ) + g(Z, ϕY )η(X)− g(hZ, ϕY )η(X)}.(6.4)

In view of (6.1) and (6.4) we have

dr(Z)

2
{−g(X,Y ) + η(X)η(Y )}+ (

r

2
− k){g(Z, ϕX)η(Y )

−g(hZ, ϕX)η(Y ) + g(Z, ϕY )η(X)− g(hZ, ϕY )η(X)} = 0.(6.5)

Putting X = Y = ei and taking summation over i, 1 ≤ i ≤ 3, we obtain

(6.6) dr(Z) = 0,

from which it follows that r= constant. Using this fact we have from (6.5)

(
r

2
− k){g(Z, ϕX)η(Y )− g(hZ, ϕX)η(Y )

+g(Z, ϕY )η(X)− g(hZ, ϕY )η(X)} = 0.(6.7)

Replacing X by ξ in the above equation yields

(6.8) (
r

2
− k){g(Z, ϕY )− g(hZ, ϕY )} = 0.

Interchanging Y and Z in (6.8) we have

(6.9) (
r

2
− k){g(Y, ϕZ)− g(hY, ϕZ)} = 0.
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Subtracting the above two equations we get

(6.10) (
r

2
− k)g(Z, ϕY ) = 0.

It follows from (6.10) that r = 2k.
Conversely, if r = 2k, one can easily find from (6.4) that

(∇ZS)(ϕX, ϕY ) = 0,

for all vector fields X,Y and Z ∈ χ(M).
Hence we can state the following:

Theorem 6.2. An N(k)-paracontact metric manifold of dimension 3 is η-
parallel if and only if the scalar curvature r = 2k.

7. Ricci solitons

Suppose that a 3-dimensional N(k)-paracontact metric manifold admits a
Ricci soliton whose potential vector field is the Reeb vector field ξ. Then from
(1.2) we get

(7.1) g(∇Xξ, Y ) + g(∇Y ξ,X) + 2S(X,Y ) + 2λg(X,Y ) = 0.

Taking into account of (2.3) the above equation implies

(7.2) g(ϕhX, Y ) + S(X,Y ) + λg(X,Y ) = 0.

Replacing Y by ξ in the above equation gives

(7.3) (λ+ 2k)η(X) = 0.

Putting X = ξ in (7.3) to get

(7.4) λ = −2k.

Thus, (7.2) and (7.4) together gives

(7.5) S(X,Y ) = 2kg(X,Y )− g(ϕhX, Y ).

Replace X by ϕX in (7.5) to get

(7.6) S(ϕX, Y ) = 2kg(ϕX, Y ) + g(hX, Y ).

Also from (2.9) we obtain

(7.7) S(ϕX, Y ) = (
r

2
− k)g(ϕX, Y ).

Equating the right hand sides of (7.6) and (7.7) we get

(7.8) g(hX, Y ) = (
r

2
− 3k)g(ϕX, Y ).

Replacing X and Y in (7.8) yields

(7.9) g(hY,X) = (
r

2
− 3k)g(ϕY,X).
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Adding (7.8) and (7.9) we have g(hX, Y ) = 0, which gives

(7.10) h = 0.

Now h = 0 holds if and only if ξ is a Killing vector field and thus M is a K-
paracontact metric manifold. Then equation (1.2) yields that M is Einstein.
Also in dimension 3, a K-paracontact metric manifold is a para-Sasakian man-
ifold. Thus M is a paraSasaki-Einstein manifold. The converse is trivial.

Thus we can state the following:

Theorem 7.1. A 3-dimensional N(k)-paracontact metric manifold admits a
Ricci soliton whose potential vector field is the Reeb vector field ξ if and only
if the manifold is a paraSasaki-Einstein.

Remark 7.2. [5, Theorem 3.3] is a particular case of Theorem 7.1.

Corollary 7.3. If a conformally flat N(k)-paracontact metric manifold admits
a Ricci soliton, then the manifold is a paraSasaki-Einstein.

8. Example of a 3-dimensional N(k)-paracontact metric manifold

In this section we construct an example of a 3-dimensional N(k)-paracontact
metric manifold such that k = −1 and h ̸= 0. We consider the 3-dimensional
manifold M = {(x, y, z) ∈ R3, z ̸= 0}, where (x, y, z) are the standard coordi-
nates of R3.
The vector fields

e1 =
∂

∂x
+ z

∂

∂y
− 2y

∂

∂z
, e2 =

∂

∂y
, e3 =

∂

∂z

are linearly independent at each point of the manifoldM . We define the pseudo-
Riemannian metric g as follows

g(e1, e2) = g(e3, e3) = 1 and g(ei, ej) = 0, otherwise .

We obtain

[e1, e2] = 2e3, [e1, e3] = −e2, [e2, e3] = 0.

We consider η = 2ydx+ dz and satisfying η(e1) = 0 = η(e2), η(e3) = 1. Let ϕ
be the (1, 1)-tensor field defined by ϕe1 = e1, ϕe2 = −e2, ϕe3 = 0. Then we
have

dη(e1, e2) = g(e1, ϕe2),

dη(e1, e3) = g(e1, ϕe3),

dη(e2, e3) = g(e2, ϕe3).

Thus for e3 = ξ, the structure (ϕ, ξ, η, g) is a paracontact metric structure on
M with he1 = e2, he2 = he3 = 0.
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Using the well known Koszul’s folmula we have the following:

∇e1e1 = e3, ∇e1e2 = e3, ∇e1e3 = −e1 − e2,

∇e2e1 = −e3, ∇e2e2 = 0, ∇e2e3 = e2,

∇e3e1 = −e1, ∇e3e2 = e2, ∇e3e3 = 0.

By the above results we can easily obtain the components of the curvature
tensor as follows:

R(e1, e2)e1 = 3e1, R(e1, e2)e2 = −3e2, R(e1, e2)e3 = 0,

R(e1, e3)e1 = −2e3, R(e1, e3)e2 = e3, R(e1, e3)e3 = 2e2 − e1,

R(e2, e3)e1 = e3, R(e2, e3)e2 = 0, R(e2, e3)e3 = −e2.

We conclude that the manifold is an N(k)-paracontact metric manifold with
k = −1. Also from the above expressions it is not hard to see that the scalar
curvature r of the manifold is −2. Therefore we obtain r = 2k, where k = −1.
Thus Theorem 6.2 is verified.
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[9] B. Cappelletti-Montano, I. Küpeli Erken and C. Murathan, Nullity conditions in para-

contact geometry, Differential Geom. Appl. 30 (2012), no. 6, 665–693.
[10] J.T. Cho, Notes on contact Ricci solitons, Proc. Edinb. Math. Soc. (2) 54 (2011), no.

1, 47–53.

[11] J.T. Cho, Ricci solitons in almost contact geometry, in: Proceedings of the 17th Interna-
tional Workshop on Differential Geometry and the 7th KNUGRG-OCAMI Differential
Geometry Workshop [Vol. 17], pp. 85–95, Natl. Inst. Math. Sci. (NIMS), Taejǒn, 2013.
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