ISSN: 1017-060X (Print)

ISSN: 1735-8515 (Online)

Bulletin of the Iranian Mathematical Society

Vol. 43 (2017), No. 6, pp. 1571–1583

Title:

On three-dimensional N(k)-paracontact metric manifolds and Ricci solitons

Author(s):

U.C. De, S. Deshmukh and K. Mandal

Published by the Iranian Mathematical Society http://bims.ir

ON THREE-DIMENSIONAL N(k)-PARACONTACT METRIC MANIFOLDS AND RICCI SOLITONS

U.C. DE*, S. DESHMUKH AND K. MANDAL

(Communicated by Mohammad Bagher Kashani)

ABSTRACT. The aim of this paper is to characterize 3-dimensional N(k)-paracontact metric manifolds satisfying certain curvature conditions. We prove that a 3-dimensional N(k)-paracontact metric manifold M admits a Ricci soliton whose potential vector field is the Reeb vector field ξ if and only if the manifold is a paraSasaki-Einstein manifold. Several consequences of this result are discussed. Finally, an illustrative example is constructed

Keywords: Ricci semisymmetric, cyclic parallel Ricci tensor, η -parallel Ricci tensor, Ricci soliton, Einstein manifold.

MSC(2010): Primary: 53B30; Secondary: 53C15, 53C25.

1. Introduction

The study of nullity distribution on paracontact geometry is one among the most interesting topics in modern contact geometry. Kaneyuki and Williams [25] initiated the study of paracontact geometry. Since then many authors [1,2,6,13,18,39] contribute to the study of paracontact geometry. A systematic study of paracontact metric manifolds was carried out by Zamkovoy [40]. The importance of paracontact geometry comes from the theory of para-Kähler manifolds and its role in pseudo-Riemannian geometry and mathematical physics. More recently, Cappelletti-Montano et al [9] introduced a new type of paracontact geometry, so-called paracontact metric (k,μ) -spaces, where k and μ are some real constants. Martin-Molina [28, 29] obtained some classification theorems on paracontact metric (k,μ) -spaces and constructed some examples.

The conformal curvature tensor C is invariant under conformal transformations and vanishes identically for 3-dimensional manifolds. Using this fact, several authors [15–17,24] studied various types of 3-dimensional manifolds.

Article electronically published on 30 November, 2017.

Received: 31 March 2016, Accepted: 21 July 2016.

^{*}Corresponding author.

A pseudo-Riemannian manifold is called semisymmetric (respectively, Ricci semisymmetric) if $R(X,Y) \cdot R = 0$ (respectively, $R(X,Y) \cdot S = 0$) [35], where R(X,Y) is considered as a field of linear operators acting on R (respectively, S).

An algebraic curvature tensor field R on a pseudo-Riemannian manifold (M,g) is said to be harmonic [31] if $(\operatorname{div} R)(X,Y,Z)=0$, for any vector fields $X,Y,Z\in\chi(M)$, where $\chi(M)$ is the set of all differentiable vector fields on M and 'div' denotes the divergence operator with respect to the metric g. On the other hand $\operatorname{div} R=0$ holds in a pseudo-Riemannian manifold if and only if the Ricci tensor is of Codazzi type [30], that is,

$$(1.1) \qquad (\nabla_X S)(Y, Z) = (\nabla_Y S)(X, Z),$$

where ∇ is the Levi-Civita connection.

A Ricci soliton is a natural generalization of an Einstein metric [3]. In a manifold M a Ricci soliton is a triplet (g, V, λ) , with g, a Riemannian metric, V a vector field (called the potential vector field) and λ a real scalar such that

$$\pounds_V g + 2S + 2\lambda g = 0,$$

where \pounds_V is the Lie derivative with respect to V and S is the Ricci tensor of type (0,2). The Ricci soliton is said to be shrinking, steady or expanding according as λ is negative, zero or positive, respectively. The compact Ricci solitons are the fixed points of the Ricci flow $\frac{\partial}{\partial t}g = -2S$ projected from the space of metrics onto its quotient modulo diffeomorphisms and scalings, and often arise as blow-up limits for the Ricci flow on compact manifolds.

A Ricci soliton on a compact manifold has constant curvature in dimension 2 (Hamilton [22]) and also in dimension 3 (Ivey [23]). It is well known [32] that a Ricci soliton on a compact manifold is a gradient Ricci soliton. For more details, we refer to Chow and Knopf [12].

Sharma [34] has initiated the study of Ricci solitons in K-contact manifolds. Recently, Yildiz et al [38] studied Ricci solitons in 3-dimensional f-Kenmotsu manifolds. Also Ricci solitons have been studied by several authors such as Cho [10,11], Tripathi [36], De and Matsuyama [14], Ghosh [19,20], Turan et al [37] and many others.

The paper is organized as follows: In Section 2, we give some basic results of N(k)-paracontact metric manifolds. Section 3 is devoted to study Ricci semisymmetric N(k)-paracontact metric manifolds. Sections 4 and 5 respectively deal with 3-dimensional N(k)-paracontact metric manifolds satisfying $\operatorname{div} R = 0$ and cyclic parallel Ricci tensor. In the next section we study η -parallel Ricci tensor on 3-dimensional N(k)-paracontact metric manifolds. Section 7 is devoted to study Ricci soliton on 3-dimensional N(k)-paracontact metric manifolds. Several consequences of this result are discussed. Finally, an illustrative example is constructed.

2. Preliminaries

A smooth manifold M^{2n+1} has an almost paracontact structure (ϕ, ξ, η) if it admits a (1, 1)-type tensor field ϕ , a vector field ξ (called the Reeb vector field) and a 1-form η satisfying the following conditions [25]

(i)
$$\phi^2 X = X - \eta(X)\xi$$
,

(ii)
$$\phi(\xi) = 0$$
, $\eta \circ \phi = 0$, $\eta(\xi) = 1$,

(iii) the tensor field ϕ induces an almost paracomplex structure on each fibre of $\mathcal{D} = \ker(\eta)$, that is, the eigendistributions \mathcal{D}_{ϕ}^{+} and \mathcal{D}_{ϕ}^{-} of ϕ corresponding to eigenvalues 1 and -1, respectively, have same dimension n.

An almost paracontact manifold equipped with a pseudo-Riemannian metric g such that

$$(2.1) g(\phi X, \phi Y) = -g(X, Y) + \eta(X)\eta(Y),$$

for all $X,Y \in \chi(M)$, is called almost paracontact metric manifold and (ϕ,ξ,η,g) is said to be an almost paracontact metric structure.

An almost paracontact structure is said to be normal [40] if and only if the (1,2)-type torsion tensor $N_{\phi} = [\phi,\phi] - 2d\eta \otimes \xi = 0$, where $[\phi,\phi](X,Y) = \phi^2[X,Y] + [\phi X,\phi Y] - \phi[\phi X,Y] - \phi[X,\phi Y]$. An almost paracontact structure is said to be a paracontact structure if $g(X,\phi Y) = d\eta(X,Y)$ [40]. Any almost paracontact metric manifold $(M^{2n+1},\phi,\xi,\eta,g)$ admits (at least, locally) a ϕ -basis [40], that is, a pseudo-orthonormal basis of vector fields of the form $\{\xi,E_1,E_2,\ldots,E_n,\phi E_1,\phi E_2,\ldots,\phi E_n\}$, where $\xi,E_1,E_2,\ldots,\xi E_n$ are space-like vector fields and then, by (2.1) vector fields $\phi E_1,\phi E_2,\ldots,\phi E_n$ are time-like. For a three dimensional almost paracontact metric manifold, any (local) pseudo-orthonormal basis of $\ker(\eta)$ determines a ϕ -basis, up to sign. If $\{e,e_3\}$ is a (local) pseudo-orthonormal basis of $\ker(\eta)$, with e_3 , time-like, so by (2.1) vector field $\phi e_2 \in \ker(\eta)$ is time-like and orthogonal to e_2 . Therefore, $\phi e_2 = \pm e_3$ and $\{\xi,e_2,\pm e_3\}$ is a ϕ -basis [5]. In a paracontact metric manifold one can easily define a symmetric, trace-free (1, 1)-tensor $h = \frac{1}{2}\pounds_{\xi}\phi$ satisfying (see [8, 40])

$$\phi h + h\phi = 0, \quad h\xi = 0,$$

$$\nabla_X \xi = -\phi X + \phi h X,$$

for all $X \in \chi(M)$. Clearly h vanishes identically if and only if ξ is a Killing vector field and then (ϕ, ξ, η, g) is said to be K-paracontact structure. An almost paracontact metric manifold is said to be para-Sasakian manifold if and only if (see [40])

$$(2.4) \qquad (\nabla_X \phi) Y = -g(X, Y) \xi + \eta(Y) X$$

holds, for any $X,Y\in\chi(M)$. A normal paracontact metric manifold is para-Sasakian and satisfies

(2.5)
$$R(X,Y)\xi = -(\eta(Y)X - \eta(X)Y),$$

for any $X, Y \in \chi(M)$, but unlike contact metric geometry the relation (2.5) does not imply that the paracontact manifold is para-Sasakian. It is well known that every para-Sasakian manifold is K-paracontact, but the converse is not always true, as it is shown in three dimensional case [4].

According to Cappelletti-Montano and Di Terlizzi [8] we give the definition of paracontact metric (k, μ) -manifolds.

Definition 2.1. A paracontact metric manifold is said to be a *paracontact* (k, μ) -manifold if the curvature tensor R satisfies

(2.6)
$$R(X,Y)\xi = k(\eta(Y)X - \eta(X)Y) + \mu(\eta(Y)hX - \eta(X)hY),$$

for all vector fields $X, Y \in \chi(M)$ and real constants k, μ .

In particular, if $\mu=0$, then the paracontact metric (k,μ) -manifold is called an N(k)-paracontact metric manifold. Thus for an N(k)-paracontact metric manifold we have

$$(2.7) R(X,Y)\xi = k(\eta(Y)X - \eta(X)Y),$$

for all $X, Y \in \chi(M)$.

In an N(k)-paracontact metric manifold $(M^3, \phi, \xi, \eta, g)$, the following relations hold (see [33])

(2.8)
$$QX = (\frac{r}{2} - k)X + (3k - \frac{r}{2})\eta(X)\xi,$$

(2.9)
$$S(X,Y) = (\frac{r}{2} - k)g(X,Y) + (3k - \frac{r}{2})\eta(X)\eta(Y),$$

$$R(X,Y)Z = (\frac{r}{2} - 2k)\{g(Y,Z)X - g(X,Z)Y\} + (3k - \frac{r}{2})\{g(Y,Z)\eta(X)\xi - g(X,Z)\eta(Y)\xi\}$$

$$(2.10) + \eta(Y)\eta(Z)X - \eta(X)\eta(Z)Y\},$$

$$(2.11) S(X,\xi) = 2k\eta(X),$$

where Q, S, R and r are the Ricci operator, Ricci tensor, curvature tensor and the scalar curvature respectively. From (2.10) it follows that

(2.12)
$$R(\xi, X)Y = k\{g(X, Y)\xi - \eta(Y)X\}.$$

Also using (2.3) we have

$$(2.13) \qquad (\nabla_X \eta) Y = g(X, \phi Y) - g(hX, \phi Y),$$

for all $X, Y \in \chi(M)$. Immediately from (2.10) we have the following:

Proposition 2.2. A 3-dimensional N(k)-paracontact metric manifold is a manifold of constant curvature k if and only if the scalar curvature r = 6k.

We recall a result due to Cappelletti-Montano et al ([9, p. 686]).

Lemma 2.3. Any paracontact metric (k, μ) -manifold of dimension three is Einstein if and only if $k = \mu = 0$.

Though any paracontact metric (k, μ) -manifold of dimension three is Einstein if and only if $k = \mu = 0$, it always admits some compatible Einstein metrics [7].

3. Ricci semisymmetric N(k)-paracontact metric manifolds

In this section we discuss about Ricci semisymmetric N(k)-paracontact metric manifolds. Hence

$$R(X,Y) \cdot S = 0.$$

This is equivalent to

(3.1)
$$(R(X,Y) \cdot S)(U,V) = 0,$$

for any $X, Y, U, V \in \chi(M)$.

From (3.1), we have

(3.2)
$$S(R(X,Y)U,V) + S(U,R(X,Y)V) = 0.$$

Substituting $X = U = \xi$ in (3.2) we obtain

(3.3)
$$S(R(\xi, Y)\xi, V) + S(\xi, R(\xi, Y)V) = 0.$$

Using (2.11) we have from (3.3)

(3.4)
$$S(R(\xi, Y)\xi, V) + 2k\eta(R(\xi, Y)V) = 0.$$

Taking (2.12) and (3.4) into account it follows that

(3.5)
$$kS(Y,V) - 2k^2g(Y,V) = 0.$$

From (3.5) we get

(3.6)
$$k\{S(Y,V) - 2kg(Y,V)\} = 0.$$

Suppose k=0, then from Lemma 2.3 we get that the manifold is an Einstein manifold.

Also, if $k \neq 0$, then it follows from (3.6) that the manifold is an Einstein manifold. Conversely, if the manifold is an Einstein manifold, then obviously $R \cdot S = 0$.

Thus we have the following:

Theorem 3.1. A 3-dimensional N(k)-paracontact metric manifold is Ricci semisymmetric if and only if the manifold is an Einstein manifold.

From S(Y, V) = 2kg(Y, V), it immediately follows that r = 6k. Taking account of Proposition 2.2 and the above theorem we can state the following:

Corollary 3.2. A 3-dimensional N(k)-paracontact metric manifold is Ricci semisymmetric if and only if the manifold is of constant curvature k.

Again Ricci symmetry ($\nabla S = 0$) implies Ricci semisymmetric ($R \cdot S = 0$), thus we have the following:

Corollary 3.3. A 3-dimensional N(k)-paracontact metric manifold is Ricci symmetric if and only if the manifold is of constant curvature k.

4. 3-dimensional N(k)-paracontact metric manifolds with harmonic curvature tensor

This section is devoted to the study of 3-dimensional N(k)-paracontact metric manifolds with harmonic curvature tensor. Then $\operatorname{div} R = 0$, which implies

(4.1)
$$(\nabla_X S)(Y, Z) = (\nabla_Y S)(X, Z).$$

Taking the covariant derivative of (2.9) along an arbitrary vector field Y and making use of (2.3) and (2.13) we obtain

$$(\nabla_{Y}S)(X,Z) = \frac{dr(Y)}{2} \{ g(X,Z) - \eta(X)\eta(Z) \} + (3k - \frac{r}{2}) \{ g(Y,\phi X)\eta(Z) - g(hY,\phi X)\eta(Z) - \eta(X)g(\phi Y,Z) + \eta(X)g(\phi hY,Z) \}.$$

Interchanging X and Y in (4.2) yields

$$(\nabla_X S)(Y,Z) = \frac{dr(X)}{2} \{ g(Y,Z) - \eta(Y)\eta(Z) \} + (3k - \frac{r}{2}) \{ g(X,\phi Y)\eta(Z) - g(hX,\phi Y)\eta(Z) - \eta(Y)g(\phi X,Z) + \eta(Y)g(\phi hX,Z) \}.$$

Applying (4.2) and (4.3) in (4.1) we have

$$(3k - \frac{r}{2})\{2g(X, \phi Y)\eta(Z) - g(\phi X, Z)\eta(Y)\}$$

(4.4)
$$+g(\phi hX, Z)\eta(Y) + g(\phi Y, Z)\eta(X) - g(\phi hY, Z)\eta(X) \} = 0.$$

Replacing Y by ϕY in (4.4) yields

$$(3k - \frac{r}{2})\{2g(X,Y)\eta(Z) + g(Y,Z)\eta(X) + g(hY,Z)\eta(X) - 3\eta(X)\eta(Y)\eta(Z)\} = 0.$$

Let $\{e_i\}$, i=1,2,3 be a ϕ -basis of the tangent space at each point of the manifold. Then putting $Y=Z=e_i$ in (4.5) and taking summation over i, $1 \le i \le 3$, we get

$$(3k - \frac{r}{2})\eta(X) = 0.$$

This gives r = 6k (since $\eta(X) \neq 0$), which implies by Proposition 2.2 that the manifold is of constant curvature k.

This leads to the following:

Theorem 4.1. If a 3-dimensional N(k)-paracontact metric manifold is of harmonic curvature, then the manifold is of constant curvature k.

5. Cyclic parallel Ricci tensor

In this section we study cyclic parallel Ricci tensor in 3-dimensional N(k)paracontact metric manifolds. Suppose that the manifold M has cyclic parallel
Ricci tensor [21], then the Ricci tensor S satisfies

(5.1)
$$(\nabla_X S)(Y, Z) + (\nabla_Y S)(Z, X) + (\nabla_Z S)(X, Y) = 0.$$

Taking the covariant derivative of (2.9) along arbitrary vector field X and making use of (2.3) and (2.13) we obtain

$$(\nabla_X S)(Y, Z) = \frac{dr(X)}{2} \{ g(Y, Z) - \eta(Y)\eta(Z) \} + (3k - \frac{r}{2}) \{ g(X, \phi Y)\eta(Z) \}$$

$$(5.2) \qquad -g(hX, \phi Y)\eta(Z) - \eta(Y)g(\phi X, Z) + \eta(Y)g(\phi hX, Z) \}.$$

Similarly, we have

$$(\nabla_Y S)(Z, X) = \frac{dr(Y)}{2} \{ g(Z, X) - \eta(Z)\eta(X) \} + (3k - \frac{r}{2}) \{ g(Y, \phi Z)\eta(X) - g(hY, \phi Z)\eta(X) - \eta(Z)g(\phi Y, X) + \eta(Z)g(\phi hY, X) \},$$
(5.3)

and

$$(\nabla_Z S)(X,Y) = \frac{dr(Z)}{2} \{ g(X,Y) - \eta(X)\eta(Y) \} + (3k - \frac{r}{2}) \{ g(Z,\phi X)\eta(Y) - g(hZ,\phi X)\eta(Y) - \eta(X)g(\phi Z,Y) + \eta(X)g(\phi hZ,Y) \}.$$
(5.4)

Also it is known [26] that Cartan hypersurfaces are manifolds, with non-parallel Ricci tensor, satisfying (5.1). From (5.1), it follows that r = constant. Using (5.2)-(5.4) in (5.1) we obtain

$$(5.5) \qquad (3k - \frac{r}{2})\{g(\phi hY, Z)\eta(X) + g(\phi hX, Z)\eta(Y) + g(\phi hY, X)\eta(Z)\} = 0.$$

Replacing X by ϕX in (5.5) gives

(5.6)
$$(3k - \frac{r}{2})\{g(hX, Z)\eta(Y) + g(hX, Y)\eta(Z)\} = 0.$$

Substituting $Z = \xi$ in (5.6) and using the last part of (2.2) we get

(5.7)
$$(3k - \frac{r}{2})g(hX, Y) = 0.$$

Thus we get either, r = 6k, or, h = 0.

By the above discussions and Proposition 2.2 we get the following:

Theorem 5.1. If an N(k)-paracontact metric manifold M^3 admits cyclic parallel Ricci tensor, then either the manifold is of constant curvature k, or para-Sasakian.

6. η -parallel Ricci tensor

Definition 6.1. An N(k)-paracontact metric manifold M^3 is called η -parallel if its Ricci tensor satisfies

(6.1)
$$(\nabla_Z S)(\phi X, \phi Y) = 0,$$

for all vector fields X, Y and $Z \in \chi(M)$.

The notion of η -parallel Ricci tensor for Sasakian manifolds was introduced by Kon [27].

Let us assume that the Ricci tensor of an N(k)-paracontact metric manifold is η -parallel. Then (6.1) holds.

From (2.9) we can easily get

(6.2)
$$S(\phi X, \phi Y) = (\frac{r}{2} - k)g(\phi X, \phi Y).$$

Taking covariant derivative of (6.2) along any arbitrary vector field Z we obtain

$$(\nabla_{Z}S)(\phi X, \phi Y) = \frac{dr(Z)}{2} \{-g(X, Y) + \eta(X)\eta(Y)\} + (\frac{r}{2} - k)\{(\nabla_{Z}\eta)(X)\eta(Y) + (\nabla_{Z}\eta)(Y)\eta(X)\}.$$
(6.3)

Applying (2.13) in the above equation gives

$$(\nabla_Z S)(\phi X, \phi Y) = \frac{dr(Z)}{2} \{ -g(X, Y) + \eta(X)\eta(Y) \} + (\frac{r}{2} - k) \{ g(Z, \phi X)\eta(Y) - g(hZ, \phi X)\eta(Y) + g(Z, \phi Y)\eta(X) - g(hZ, \phi Y)\eta(X) \}.$$

In view of (6.1) and (6.4) we have

$$\frac{dr(Z)}{2} \{-g(X,Y) + \eta(X)\eta(Y)\} + (\frac{r}{2} - k)\{g(Z,\phi X)\eta(Y)\}$$

(6.5)
$$-g(hZ, \phi X)\eta(Y) + g(Z, \phi Y)\eta(X) - g(hZ, \phi Y)\eta(X)\} = 0.$$

Putting $X = Y = e_i$ and taking summation over $i, 1 \le i \le 3$, we obtain

$$(6.6) dr(Z) = 0,$$

from which it follows that r = constant. Using this fact we have from (6.5)

$$(\frac{r}{2} - k)\{g(Z, \phi X)\eta(Y) - g(hZ, \phi X)\eta(Y) + g(Z, \phi Y)\eta(X) - g(hZ, \phi Y)\eta(X)\} = 0.$$
(6.7)

Replacing X by ξ in the above equation yields

(6.8)
$$(\frac{r}{2} - k)\{g(Z, \phi Y) - g(hZ, \phi Y)\} = 0.$$

Interchanging Y and Z in (6.8) we have

(6.9)
$$(\frac{r}{2} - k)\{g(Y, \phi Z) - g(hY, \phi Z)\} = 0.$$

Subtracting the above two equations we get

(6.10)
$$(\frac{r}{2} - k)g(Z, \phi Y) = 0.$$

It follows from (6.10) that r = 2k.

Conversely, if r = 2k, one can easily find from (6.4) that

$$(\nabla_Z S)(\phi X, \phi Y) = 0,$$

for all vector fields X, Y and $Z \in \chi(M)$.

Hence we can state the following:

Theorem 6.2. An N(k)-paracontact metric manifold of dimension 3 is η -parallel if and only if the scalar curvature r = 2k.

7. Ricci solitons

Suppose that a 3-dimensional N(k)-paracontact metric manifold admits a Ricci soliton whose potential vector field is the Reeb vector field ξ . Then from (1.2) we get

(7.1)
$$g(\nabla_X \xi, Y) + g(\nabla_Y \xi, X) + 2S(X, Y) + 2\lambda g(X, Y) = 0.$$

Taking into account of (2.3) the above equation implies

(7.2)
$$g(\phi hX, Y) + S(X, Y) + \lambda g(X, Y) = 0.$$

Replacing Y by ξ in the above equation gives

$$(7.3) \qquad (\lambda + 2k)\eta(X) = 0.$$

Putting $X = \xi$ in (7.3) to get

$$(7.4) \lambda = -2k.$$

Thus, (7.2) and (7.4) together gives

(7.5)
$$S(X,Y) = 2kg(X,Y) - g(\phi h X, Y).$$

Replace X by ϕX in (7.5) to get

(7.6)
$$S(\phi X, Y) = 2kg(\phi X, Y) + g(hX, Y).$$

Also from (2.9) we obtain

(7.7)
$$S(\phi X, Y) = (\frac{r}{2} - k)g(\phi X, Y).$$

Equating the right hand sides of (7.6) and (7.7) we get

(7.8)
$$g(hX,Y) = (\frac{r}{2} - 3k)g(\phi X, Y).$$

Replacing X and Y in (7.8) yields

(7.9)
$$g(hY, X) = (\frac{r}{2} - 3k)g(\phi Y, X).$$

Adding (7.8) and (7.9) we have g(hX, Y) = 0, which gives

$$(7.10) h = 0.$$

Now h=0 holds if and only if ξ is a Killing vector field and thus M is a K-paracontact metric manifold. Then equation (1.2) yields that M is Einstein. Also in dimension 3, a K-paracontact metric manifold is a para-Sasakian manifold. Thus M is a para-Sasaki-Einstein manifold. The converse is trivial.

Thus we can state the following:

Theorem 7.1. A 3-dimensional N(k)-paracontact metric manifold admits a Ricci soliton whose potential vector field is the Reeb vector field ξ if and only if the manifold is a paraSasaki-Einstein.

Remark 7.2. [5, Theorem 3.3] is a particular case of Theorem 7.1.

Corollary 7.3. If a conformally flat N(k)-paracontact metric manifold admits a Ricci soliton, then the manifold is a paraSasaki-Einstein.

8. Example of a 3-dimensional N(k)-paracontact metric manifold

In this section we construct an example of a 3-dimensional N(k)-paracontact metric manifold such that k=-1 and $h\neq 0$. We consider the 3-dimensional manifold $M=\{(x,y,z)\in\mathbb{R}^3,z\neq 0\}$, where (x,y,z) are the standard coordinates of \mathbb{R}^3 .

The vector fields

$$e_1 = \frac{\partial}{\partial x} + z \frac{\partial}{\partial y} - 2y \frac{\partial}{\partial z}, \ e_2 = \frac{\partial}{\partial y}, \ e_3 = \frac{\partial}{\partial z}$$

are linearly independent at each point of the manifold M. We define the pseudo-Riemannian metric g as follows

$$g(e_1, e_2) = g(e_3, e_3) = 1$$
 and $g(e_i, e_i) = 0$, otherwise.

We obtain

$$[e_1, e_2] = 2e_3, [e_1, e_3] = -e_2, [e_2, e_3] = 0.$$

We consider $\eta=2ydx+dz$ and satisfying $\eta(e_1)=0=\eta(e_2),\,\eta(e_3)=1.$ Let ϕ be the (1,1)-tensor field defined by $\phi e_1=e_1,\,\phi e_2=-e_2,\,\phi e_3=0.$ Then we have

$$d\eta(e_1, e_2) = g(e_1, \phi e_2),$$

$$d\eta(e_1, e_3) = g(e_1, \phi e_3),$$

$$d\eta(e_2, e_3) = g(e_2, \phi e_3).$$

Thus for $e_3 = \xi$, the structure (ϕ, ξ, η, g) is a paracontact metric structure on M with $he_1 = e_2$, $he_2 = he_3 = 0$.

Using the well known Koszul's folmula we have the following:

$$\begin{split} &\nabla_{e_1}e_1=e_3, \ \nabla_{e_1}e_2=e_3, \ \nabla_{e_1}e_3=-e_1-e_2, \\ &\nabla_{e_2}e_1=-e_3, \ \nabla_{e_2}e_2=0, \ \nabla_{e_2}e_3=e_2, \\ &\nabla_{e_3}e_1=-e_1, \ \nabla_{e_3}e_2=e_2, \ \nabla_{e_3}e_3=0. \end{split}$$

By the above results we can easily obtain the components of the curvature tensor as follows:

$$R(e_1, e_2)e_1 = 3e_1, \ R(e_1, e_2)e_2 = -3e_2, \ R(e_1, e_2)e_3 = 0,$$

 $R(e_1, e_3)e_1 = -2e_3, \ R(e_1, e_3)e_2 = e_3, \ R(e_1, e_3)e_3 = 2e_2 - e_1,$
 $R(e_2, e_3)e_1 = e_3, \ R(e_2, e_3)e_2 = 0, \ R(e_2, e_3)e_3 = -e_2.$

We conclude that the manifold is an N(k)-paracontact metric manifold with k = -1. Also from the above expressions it is not hard to see that the scalar curvature r of the manifold is -2. Therefore we obtain r = 2k, where k = -1. Thus Theorem 6.2 is verified.

Acknowledgement

The authors would like to thank the referee for very careful reading and many helpful comments which have improved the paper.

References

- [1] D.V. Alekseevski, V. Cortés, A.S. Galaev and T. Leistner, Cones over pseudo-Riemannian manifolds and their holonomy, *J. Reine Angew. Math.* **635** (2009) 23–69.
- [2] D.V. Alekseevski, C. Medori and A. Tomassini, Maximally homogeneous para-CR manifolds, *Ann. Global Anal. Geom.* **30** (2006), no. 1, 1–27.
- [3] C. Calin and M. Crasmareanu, From the Eisenhart problem to Ricci solitons in f-Kenmotsu manifolds, Bull. Malays. Math. Sci. Soc. (2) 33 (2010), no. 3, 361–368.
- [4] G. Calvaruso, Homogeneous paracontact metric three-manifolds, *Illinois J. Math.* 55 (2011), no. 2, 697–718.
- [5] G. Calvaruso and A. Perrone, Ricci solitons in three-dimensional paracontact geometry, J. Geom. Phys. 98 (2015) 1–12.
- [6] B. Cappelletti-Montano, Bi-paracontact structures and Legendre foliations, Kodai Math. J. 33 (2010), no. 3, 473–512.
- [7] B. Cappelletti-Montano, A. Carriazo and V. Martin-Molina, Sasaki-Einstein and paraSasaki-Einstein metrics from (k, μ) -stuctures, J. Geom. Phys. **73** (2013) 20–36.
- [8] B. Cappelletti-Montano and L. Di Terlizzi, Geometric structures associated to a contact metric (k, μ)-space, Pacific J. Math. 246 (2010), no. 2, 257–292.
- [9] B. Cappelletti-Montano, I. Küpeli Erken and C. Murathan, Nullity conditions in paracontact geometry, *Differential Geom. Appl.* 30 (2012), no. 6, 665–693.
- [10] J.T. Cho, Notes on contact Ricci solitons, Proc. Edinb. Math. Soc. (2) 54 (2011), no. 1, 47–53.
- [11] J.T. Cho, Ricci solitons in almost contact geometry, in: Proceedings of the 17th International Workshop on Differential Geometry and the 7th KNUGRG-OCAMI Differential Geometry Workshop [Vol. 17], pp. 85–95, Natl. Inst. Math. Sci. (NIMS), Taejŏn, 2013.
- [12] B. Chow and D. Knopf, The Ricci Flow: An introduction, Mathematical Surveys Monogr. 110, Amer. Math. Soc. Providence, RI, 2004.

- [13] V. Cortés, M.A. Lawn and L. Schäfer, Affine hyperspheres associated to special para-Kähler manifolds, Int. J. Geom. Methods Mod. Phys. 3 (2006), no. 5-6, 995–1009.
- [14] U.C. De and Y. Matsuyama, Ricci solitons and gradient Ricci solitons in a Kenmotsu manifolds, Southeast Asian Bull. Math. 37 (2013), no. 5, 691–697.
- [15] U.C. De and G. Pathak, On 3-dimensional Kenmotsu manifolds, Indian J. Pure Appl. Math. 35 (2004), no. 2, 159–165.
- [16] U.C. De and A. Sarkar, On three dimensional trans-Sasakian manifolds, Extracta Math. 23 (2008), no. 3, 265–277.
- [17] U.C. De and A. Sarkar, On three dimensional quasi-Sasakian manifolds, SUT J. Math. 45 (2009), no. 1, 59–71.
- [18] S. Erdem, On almost (para) contact (hyperbolic) metric manifolds and harmonicity of (ϕ, ϕ') -holomorphic maps between them, *Huston J. Math.* **28** (2002) 21–45.
- [19] A. Ghosh, Kenmotsu 3-metric as a Ricci soliton, Chaos Solitons Fractals 44 (2011), no. 8, 647–650.
- [20] A. Ghosh, An η-Einstein Kenmotsu metric as a Ricci soliton, Publ. Math. Debrecen 82 (2013), no. 3-4, 591–598.
- [21] A. Gray, Two classes of Riemannian manifolds, Geom. Dedicata 7 (1978) 259-280.
- [22] R.S. Hamilton, The Ricci flow on surfaces, in: Mathematics and General Relativity (Santa Cruz, CA, 1986), pp. 237–262, Contemp. Math., 71, Amer. Math. Soc. Providence, RI, 1988.
- [23] T. Ivey, Ricci solitons on compact 3-manifolds, Differential Geom. Appl. 3 (1993) 301–307.
- [24] J.B. Jun, I.B. Kim and U.K. Kim, On 3-dimensional almost contact metric manifolds, Kyungpook Math. J. 34 (1994) 293–301.
- [25] S. Kaneyuli and F.L. Williams, Almost paracontact and parahodge structures on manifolds, Nagoya Math. J. 99 (1985) 173–187.
- [26] U.H. Ki and H. Nakagawa, A characterization of the cartan hypersurfaces in a sphere, Tohoku Math. J. (2) 39 (1987), no. 1, 27–40.
- [27] M. Kon, Invariant submanifolds in Sasakian manifolds, Math. Ann. 219 (1976), no. 3, 277–290.
- [28] V. Martin-Molina, Paracontact metric manifolds without a contact metric counterpart, Taiwanese J. Math. 19 (2015), no. 1, 175–191.
- [29] V. Martin-Molina, Local classification and examples of an important class of paracontact metric manifolds, Filomat 29 (2015), no. 3, 507–515.
- [30] M. Memerthzheim and H. Reckziegel, Hypersurface with Harmonic Curvature in Space of Constant Curvature, Cologne, March 1993.
- [31] S. Mukhopadhyay and B. Barua, On a type of non-flat Riemannian manifold, *Tensor* (N.S.) **56** (1995), no. 3, 227–232.
- [32] G. Perelman, The entropy formula for the Ricci flow and its geometric applications, Arxiv:math/0211159 [math.DG].
- [33] D.G. Prakasha and K.K. Mirji, On ϕ -symmetric N(k)-paracontact metric manifolds, J. Math. **2015** (2015), Article ID 728298, 6 pages.
- [34] R. Sharma, Certain results on K-contact and (k, μ) -contact manifolds, J. Geom. 89 (2008) 138–147.
- [35] Z.I. Szabó, Structure theorems on Riemannian spaces satisfying $R(X,Y) \cdot R = 0$, the local version, J. Differential Geom. 17 (1982), no. 4, 531–582.
- [36] M.M. Tripathi, Ricci solitons in contact metric manifolds, Arxiv: 0801.4222v1 [math.DG].
- [37] M. Turan, U.C. De and A. Yildiz, Ricci solitons and gradient Ricci solitons in threedimensional trans-Sasakian manifolds, Filomat 26 (2012), no. 2, 363–370.

- [38] A. Yildiz, U.C. De and M. Turan, On 3-dimensional f-Kenmotsu manifolds and Ricci solitons, Ukrainian Math. J. 65 (2013) 684–693.
- [39] J. Welyczko, On Legendre curves in 3-dimensional normal almost paracontact metric manifolds, Result. Math. 54 (2009), no. 3-4, 377–387.
- [40] S. Zamkovoy, Canonical connections on paracontact manifolds, Ann. Global Anal. Geom. 36 (2009), no. 1, 37–60.

(Uday Chand De) DEPARTMENT OF PURE MATHEMATICS, UNIVERSITY OF CALCUTTA, 35, BALLYGUNGE CIRCULAR ROAD, KOL- 700019, WEST BENGAL, INDIA.

 $E ext{-}mail\ address: uc_de@yahoo.com}$

(Sharief Deshmukh) DEPARTMENT OF MATHEMATICS, COLLEGE OF SCIENCE, KING SAUD UNIVERSITY, P.O. BOX-2455, RIYADH-11451, SAUDI ARABIA.

 $E ext{-}mail\ address: shariefd@ksu.edu.sa}$

(Krishanu Mandal) Department of Pure Mathematics, University of Calcutta, 35, Ballygunge Circular Road, Kol- 700019, West Bengal, India.

 $E ext{-}mail\ address: krishanu.mandal} 013@gmail.com$