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Abstract. In a non-complete graph Γ, a vertex triple (u, v, w) with v
adjacent to both u and w is called a 2-geodesic if u ̸= w and u,w are
not adjacent. The graph Γ is said to be 2-geodesic transitive if its au-
tomorphism group is transitive on arcs, and also on 2-geodesics. We first

produce a reduction theorem for the family of 2-geodesic transitive graphs
of prime power order. Next, we classify such graphs which are also vertex
quasiprimitive.
Keywords: 2-geodesic transitive graph, 2-arc transitive graph, automor-

phism group.
MSC(2010): Primary: 05E18; Secondary: 20B25.

1. Introduction

In this paper, all graphs are finite, simple, connected and undirected. For a
graph Γ, we use V (Γ) and Aut(Γ) to denote its vertex set and automorphism
group, respectively. A geodesic from a vertex u to a vertex v in a graph Γ is
one of the shortest paths from u to v, and this geodesic is called an s-geodesic
if the distance between u and v is s. Let G ≤ Aut(Γ). A non-complete graph
Γ is said to be (G, s)-geodesic transitive if, for each i ≤ s, G is transitive on
all i-geodesics of Γ. An arc is an ordered pair of adjacent vertices. A vertex
triple (u, v, w) with v adjacent to both u and w is called a 2-arc whenever
u ̸= w. A graph Γ is said to be G-arc transitive if G is transitive on arcs of
Γ; further, if G is also transitive on 2-arcs of Γ, then it is called a (G, 2)-arc
transitive graph. Moreover, in the previous definitions, if G = Aut(Γ), then G
is often omitted and we write simply s-geodesic transitive, etc. Clearly, every
2-geodesic is a 2-arc, but some 2-arcs may not be 2-geodesics. If Γ has girth
3 (length of the shortest cycle is 3), then the 2-arcs contained in 3-cycles are
not 2-geodesics. Thus the family of non-complete 2-arc transitive graphs is
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. Figure 1. K4[2]

properly contained in the family of 2-geodesic transitive graphs. The graph in
Figure 1 is 2-geodesic transitive but not 2-arc transitive with 8 vertices.

The study of symmetric graphs forms a significant part of current research
efforts in algebraic graph theory. The family of 2-arc transitive graphs has
been studied intensively, beginning with the seminal result of Tutte [27, 28]
that cubic s-arc transitive graphs must have s ≤ 5; for more work see [1, 2, 15,
18,20–22,26,29,30].

In [7], Devillers, Li, Praeger and the author determined the structure of
[Γ(u)] (the induced subgraph on Γ(u) of vertices adjacent to vertex u) for any
2-geodesic transitive graph Γ. Later, they classified the tetravalent and prime
valency connected 2-geodesic transitive graphs in [8] and [10], respectively.
After that, in [9], a reduction theorem for the family of normal 2-geodesic
transitive Cayley graphs was produced and those which are complete multi-
partite graphs were also classified. This reduction result reduces the studying
of normal 2-geodesic transitive Cayley graphs to finding all examples where
automorphism group acts quasiprimitively on vertices and then studying their
covers.

A transitive permutation group G is said to be quasiprimitive, if every non-
trivial normal subgroup of G is transitive. This is a generalization of primitiv-
ity as every normal subgroup of a primitive group is transitive, but there exist
quasiprimitive groups which are not primitive. For knowledge of quasiprimi-
tive permutation groups, see [22] and [24]. Praeger [22] generalized the O’Nan-
Scott Theorem for primitive groups to quasiprimitive groups and showed that
a finite quasiprimitive group is one of eight distinct types: Holomorph Affine
(HA), Almost Simple (AS), Twisted Wreath product (TW), Product Action
(PA), Simple Diagonal (SD), Holomorph Simple (HS), Holomorph Compound
(HC) and Compound Diagonal (CD).

Let Γ be a 2-geodesic transitive graph. Note that, if Aut(Γ) acts quasiprim-
itively of type HA on V (Γ), then the socle N of Aut(Γ) is regular on V (Γ) and
N ∼= Zr

p for some prime p. Thus Γ has pr vertices. This observation inspired
us to study 2-geodesic transitive graphs with prime power vertices.
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For two integers m ≥ 3 and b ≥ 2, let Km[b] denote the complete multipartite
graph, whose vertex set consisting of m parts of size b, with edges between all
pairs of vertices from distinct parts. Let G be a group of permutations acting
on the vertex set Ω of a graph Γ. Let N be an intransitive subgroup of G and
let B = {B1, B2, . . . , Bn} be the set of N -orbits in Ω. Then the quotient graph
ΓN of Γ is the graph with vertex set B such that {Bi, Bj} is an edge of ΓN if
and only if there exist x ∈ Bi and y ∈ Bj such that {x, y} is an edge of Γ. The
graph Γ is said to be a cover of ΓN if for each edge {Bi, Bj} of ΓN and v ∈ Bi,
we have |Γ(v) ∩Bj | = 1.

We first produce a reduction theorem.

Theorem 1.1. Let Γ be a 2-geodesic transitive graph of order pr where p is a
prime. Then one of the following holds.

(1) Γ is 2-arc transitive.
(2) Γ ∼= Kpi[pj ] where i+ j = r.
(3) There exists a nontrivial normal subgroup N of A := Aut(Γ) such that Γ

is a cover of ΓN which is a complete A/N -arc transitive graph with order equal
to a power of p.

(4) There exists a nontrivial normal subgroup N of A := Aut(Γ) such that
Γ is a cover of ΓN which is (A/N, 2)-geodesic transitive of girth 3 with order
p-power, and A/N is quasiprimitive on V (ΓN ).

Then 2-geodesic transitive graphs in Theorem 1.1(1) are 2-arc transitive.
Such graphs have been studied extensively, see [1, 2, 15, 18, 20, 22, 27, 28, 30].
Theorem 1.1 points out that the study of 2-geodesic transitive but not 2-arc
transitive graphs of prime power order reduces to the following three prob-
lems: investigating the case that such graphs which are vertex quasiprimitive,
studying the 2-geodesic transitive covers of these graphs, and investigating the
2-geodesic transitive covers of complete graphs of prime power order.

We next study ‘basic’ 2-geodesic transitive graphs with prime power number
of vertices, that is we suppose that Aut(Γ) is quasiprimitive on the vertex set.
Our second theorem determines all the possible quasiprimitive action types.

For a finite group T , and a subset S of T such that 1 /∈ S and S = S−1, the
Cayley graph Γ := Cay(T, S) of T with respect to S is the graph with vertex set
T and edge set {{g, sg} | g ∈ T, s ∈ S}. In particular, Γ is connected if and only
if T = ⟨S⟩. The group R(T ) = {σt|t ∈ T} of right translations σt : x 7→ xt is a
subgroup of the automorphism group Aut(Γ) and acts regularly on the vertex
set. We may identify T with R(T ). Godsil [12, Lemma 2.1] observed that
NAut(Γ)(T ) = T : Aut(T, S) where Aut(T, S) = {σ ∈ Aut(T )|Sσ = S}. The
family of Cayley graphs Γ such that NAut(Γ)(T ) = Aut(Γ) are called normal
Cayley graphs, and they have been studied under various additional conditions,
see [11,23,31].

In a later section, a particular well-known graph will play an important role
and we define it here. The Schläfli graph is the graph on isotropic lines in
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the U(4, 2) geometry and adjacent when disjoint. It is the unique strongly
regular graph with parameters (27, 16, 10, 8), and its automorphism group is
U(4, 2).Z2. The complement of the Schläfli graph is the collinearity graph of
the unique generalized quadrangle GQ(2, 4), refer to [3] or [4].

Theorem 1.2. Let Γ be a 2-geodesic transitive but not 2-arc transitive graph of
order pr where p is a prime number. Suppose that Aut(Γ) acts quasiprimitively
on V (Γ) with a minimal normal subgroup N . Then Aut(Γ) acts primitively
on V (Γ), N ∼= T i where T ∼= Zp or T is listed in Lemma 3.1, and one of the
following holds.

(1) Aut(Γ) acts primitively on V (Γ) of AS type and Γ is the Schläfli graph
or its complement.

(2) Aut(Γ) acts primitively on V (Γ) of PA type and Γ is the Hamming graph
H( s, pt) where st = r.

(3) Aut(Γ) acts primitively on V (Γ) of HA type, Γ is a normal Cayley graph
Cay(N,S), and ⟨a⟩ \ {1} ⊂ S for each a ∈ S.

We give some examples for Theorem 1.2(3).

Example 1.3. (1) Let n ≥ 2 and let d be a positive integer. Then the Hamming
graph H( d, n) has vertex set Zd

n = Zn×Zn×· · ·×Zn, seen as a module on the
ring Zn = [0, n− 1], and two vertices u, v are adjacent if and only if u− v has
exactly one non-zero entry. Let Γ = H( d, q) where d ≥ 2, q is a prime power.
Then Γ has order qd, and is locally isomorphic to dKq−1. By [17, Proposition
2.2], Γ is 2-geodesic transitive. If q ∈ {3, 4}, then Aut(Γ) acts primitively of
type HA on V (Γ).

(2) Let T = ⟨a1, . . . , ad⟩ ∼= Zd
3 and S =

∪
(⟨a1⟩ \ {1}). Then H( d, 3) ∼=

Cay(T, S) is normal (A, 2)-geodesic transitive where A = T : Aut(T, S) ∼=
S3 ≀ Sd.

(3) Let T = ⟨a1, . . . , ai, b1, . . . , bi⟩ ∼= Zd
2 where d = 2i, i ≥ 1. Let S = Sa∪Sb

where Sa = ⟨a1, . . . , ai⟩ \ {1} and Sb = ⟨b1, . . . , bi⟩ \ {1}. Then Γ = Cay(T, S)
is a normal (G, 2)-geodesic transitive Cayley graph where G = T : Aut(T, S).
Further, Γ is a graph of girth 3 and diameter 2, and G acts primitively of type
HA on V (Γ). In particular, if i = 2, then Γ ∼= H( d, 4).

For a 2-geodesic transitive but not 2-arc transitive graph Γ of prime power
order, if Aut(Γ) is quasiprimitive on V (Γ), then Theorem 1.2 shows that the
quasiprimitive action type is one of AS,PA, or HA. If further Aut(Γ) is
quasiprimitive on V (Γ) of type AS, then Γ is the Schläfli graph or its com-
plement; if Aut(Γ) is quasiprimitive on V (Γ) of type PA, then Γ is a Hamming
graph. For Γ with vertex quasiprimitive action type HA, we don’t konw much
at the moment. To finish the classification of such ‘basic’ graphs, we pose the
following problem.
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Problem 1.4. Let Γ be a 2-geodesic transitive graph of prime power order which
is not 2-arc transitive. Classify such graphs where Aut(Γ) acts quasiprimitively
on V (Γ) of type HA.

2. Reduction

In this section, we prove Theorem 1.1, that is, produce a reduction result
for the family of 2-geodesic transitive but not 2-arc transitive graphs of prime
power order.

A graph Γ is said to be s-distance transitive if, for any two pairs of vertices
(u1, v1) and (u2, v2) with the same distance t ≤ s, there exists g ∈ Aut(Γ) such
that (u1, v1)

g = (u2, v2). In particular, Γ is s-geodesic transitive implies that
it is s-distance transitive.

Lemma 2.1. Let Γ be a 2-geodesic transitive graph of girth 3 and order pr

where p is a prime number and r is a positive number. Suppose that a nontrivial
normal subgroup N of Aut(Γ) is intransitive on V (Γ). If there exist vertices u
and v in the same N -orbit such that the distance between u and v is 2, then
Γ ∼= Kpm[pn] where pm ≥ 3, pn ≥ 2, m+ n = r, and ΓN

∼= Kpm .

Proof. Suppose that N is a nontrivial normal subgroup of Aut(Γ) and is in-
transitive on V (Γ). Let u and v be two vertices of Γ. Suppose that u and v
are in the same N -orbit and the distance between u and v is 2. Since Γ is
2-geodesic transitive, Γ is non-complete 2-distance transitive and so [6, Lemma
5.2] holds. Since Γ is arc transitive and N is a normal subgroup of Aut(Γ), it
follows that every N -orbit contains no edges of Γ. Note that N is not transitive
on V (Γ) and Γ has girth 3, N has at least 3 orbits on V (Γ). Since the distance
between u and v is 2 and u and v lie in the same N -orbit, it follows that only
the case (iii) of [6, Lemma 5.2] holds, and so Γ ∼= Ki[t] for some i ≥ 3, t ≥ 2,
and ΓN

∼= Ki. Finally, as |V (Γ)| = pr and p is a prime number, it follows that
Γ ∼= Kpm[pn] where pm ≥ 3, pn ≥ 2, m+ n = r, and ΓN

∼= Kpm . □

Lemma 2.2. Let Γ be a 2-geodesic transitive graph of girth 3 and order pr

where p is a prime number and r is a positive integer. Let N be a nontrivial
normal subgroup of A := Aut(Γ). Suppose that N is intransitive on V (Γ) and
Γ is a cover of ΓN . Then ΓN has girth 3 and order pi where i < r, and either
ΓN is complete A/N -arc transitive or ΓN is non-complete (A/N, 2)-geodesic
transitive and N is semiregular on V (Γ).

Proof. Since N is a nontrivial normal subgroup of A, it follows that each N -
orbit is a nontrivial block of A of size pj for some j < r. Hence ΓN has order
pr−j and r − j < r.

Let B be the set of N -orbits on V (Γ). Since Γ has girth 3 and each N does
not contain edges of Γ, it follows that |B| ≥ 3. Let (u, v, w, u) be a triangle of
Γ. Then u, v and w pairwise lie in distinct N -orbits, and so ΓN has girth 3.
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First suppose that ΓN is a complete graph. Let (B0, B1) and (C0, C1) be
two arcs of ΓN . Since Γ is a cover of ΓN , there exist xi ∈ Bi and yi ∈ Ci such
that (x0, x1) and (y0, y1) are two arcs of Γ. As Γ is arc transitive, there exists
g ∈ Aut(Γ) such that (x0, x1)

g = (y0, y1), and hence (B0, B1)
g = (C0, C1). In

particular, g ∈ A/N . Thus ΓN is A/N -arc transitive.
Next, suppose that ΓN is non-complete. Then by Lemma 2.1, the distance

between any pair of vertices of each N -orbit is greater than 2. Since Γ is
2-geodesic transitive, it is 2-distance transitive, and so [6, Lemma 5.3] is ap-
plicable. Since any pair of vertices of each N -orbit is greater than 2, it follows
that only the case (iv) of [6, Lemma 5.3] holds, so N is semiregular on V (Γ).
Let (B0, B1, B2) and (C0, C1, C2) be two 2-geodesics of ΓN . Since Γ is a cover
of ΓN , there exist xi ∈ Bi and yi ∈ Ci such that (x0, x1, x2) and (y0, y1, y2)
are two 2-geodesics of Γ. As Γ is 2-geodesic transitive, there exists g ∈ A such
that (x0, x1, x2)

g = (y0, y1, y2), and hence (B0, B1, B2)
g = (C0, C1, C2). Note

that g ∈ A/N , and so ΓN is (A/N, 2)-geodesic transitive. □

We are ready to prove our first theorem. The diameter diam(Γ) of a graph
Γ is the maximum distance between two vertices in Γ.

Proof of Theorem 1.1. If Γ is 2-arc transitive, then (1) holds. In the remainder
of this proof, we assume that Γ is not 2-arc transitive, and so Γ has girth
3. Suppose that A := Aut(Γ) is not quasiprimitive on V (Γ). Then A has
a nontrivial normal subgroup N that is intransitive on V (Γ). Choosing the
maximal such N such that for any N < M ◁G, M is transitive on V (Γ).

Since Γ is 2-geodesic transitive, it is 2-distance transitive. It follows that [6,
Lemma 5.3] is applicable. Since Γ has girth 3, Γ is not bipartite, so (iii) or (iv)
of [6, Lemma 5.3] holds. If [6, Lemma 5.3(iii)] occurs, then Γ ∼= Kpm[pn] for
some pm ≥ 3, pn ≥ 2, m+ n = r, and ΓN

∼= Kpm . Therefore (2) holds.
Now, suppose that [6, Lemma 5.3(iv)] holds. Then N is semiregular on

V (Γ), Γ is a cover of ΓN and |V (ΓN )| < |V (Γ)|. By Lemma 2.2, ΓN is (A/N, s)-
geodesic transitive where s = min{2, diam(ΓN )}. Since for any N < M ◁ A,
M is transitive on V (Γ), it follows that A/N is quasiprimitive on V (ΓN ). If
ΓN is complete, then (3) holds.

Finally, suppose that ΓN is non-complete. Then ΓN is (A/N, 2)-geodesic
transitive. Since Γ is arc transitive, it follows that each N -orbit contains no
edges of Γ. Since Γ has girth 3, it follows that N has at least 3 orbits on V (Γ)
and ΓN has girth 3. Therefore (4) holds. □

3. Vertex quasiprimitive

In this section, we study 2-geodesic transitive graphs Γ of prime power order
where Aut(Γ) acts quasiprimitively on V (Γ).

Lemma 3.1 ([14]). Let T be a non-abelian simple group that has a subgroup
H of index pr where p is a prime number. Then one of the following holds.
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(1) T ∼= Apr and H ∼= Apr−1.
(2) T ∼= PSL(d, q), H is a maximal parabolic subgroup of T , and pr =

(qd − 1)/(q − 1).
(3) T ∼= PSL(2, 11), H ∼= A5 and pr = 11.
(4) T ∼= M11, H ∼= M10 and pr = 11.
(5) T ∼= M23, H ∼= M22 and pr = 23.
(6) T ∼= PSU(4, 2), H ∼= Z4

2 : A5 and pr = 27.

Lemma 3.2. Let Γ be a vertex transitive graph of pr vertices where p is a prime
number. Suppose that Aut(Γ) acts quasiprimitively on V (Γ) with a minimal
normal subgroup M . Then Aut(Γ) acts primitively on V (Γ) of type HA, AS or
PA. In particular, M ∼= T i where either T ∼= Zp or T is listed in Lemma 3.1.

Proof. Suppose that A := Aut(Γ) acts quasiprimitively on V (Γ). Since |V (Γ)|
is a prime power, it follows from [19, Theorem 2.2] that A acts primitively on
V (Γ). Since M is a minimal normal subgroup of A, it follows that M ∼= T i

is transitive on V (Γ), where T is a simple group. If M is abelian, then M is
regular on V (Γ) and T ∼= Zp, and so A is primitive on V (Γ) of HA type. In the
left of this proof, we assume that M is non-abelian. Then T is a non-abelian
simple group, and for each vertex u, |T : Tu| = pr for some positive integer r,
so T is one of the groups listed in Lemma 3.1.

If A acts primitively on V (Γ) of type TW, HS or HC, then M = T i with
i ≥ 2 is regular on V (Γ) and T is a non-abelian simple group, which contradicts
that |V (Γ)| = pr. If A acts primitively on V (Γ) of type SD or CD, then |T |
divides |V (Γ)|, which contradicts the assumption that |V (Γ)| = pr. □

Let G be a permutation group on a set Ω. Then an orbit ∆ of G on Ω× Ω
is called an orbital of G on Ω. The graph Γ(∆) is called an orbital graph of G
on Ω if its vertex set is Ω, and (u, v) is an arc of Γ(∆) if and only if (u, v) ∈ ∆.

Lemma 3.3. Let Γ be a non-complete graph with prime power number of ver-
tices. If Aut(Γ) acts primitively on V (Γ) of AS type, then Γ is the Schläfli
graph or its complement.

Proof. Assume that A := Aut(Γ) acts primitively on V (Γ) of AS type. Let
|V (Γ)| = pr where p is a prime number. Then the socle T of A is non-abelian
simple and transitive on V (Γ), so for each vertex u, |T : Tu| = pr. By [14,
Corollary 2], T is either 2-transitive or T = PSU(4, 2) with |V (Γ)| = 27.
Since Γ is non-complete, it follows that T is not 2-transitive on V (Γ), and so
T = PSU(4, 2) with |V (Γ)| = 27, and the action of T on V (Γ) is uniquely
determined.

By Atlas [5], A = PSU(4, 2).R with R ≤ Z2, A has rank 3 and Au = Z4
2 : A5

or Z4
2 : S5 for each vertex u. Then it follows from [4] and [13, p. 239, p. 259]

that the two orbital graphs are the Schläfli graph and its complement. □
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Lemma 3.4. Both the Schläfli graph and its complement are 2-geodesic tran-
sitive.

Proof. Let Γ be the Schläfli graph. Then Γ is strongly regular with parameters
(27, 16, 10, 8), and it is also a rank 3 graph. The stabilizer of a vertex u in the
automorphism group A of Γ has order 27 · 3 · 5 and acts transitively on the
neighbours of u. Thus if v ∈ Γ(u), then the stabilizer of arc (u, v) has order
|Au,v| = 23 · 3 · 5 (in fact Au,v

∼= S5). Every element of order 5 in A fixes
exactly two vertices and therefore the Sylow 5-subgroup of Au,v has two orbits,
both of length 5, on the vertices joined to v but not to u. Thus both Γ and its
complement are 2-geodesic transitive. □

Let ∆ = {0, 1, 2, . . . ,m−1} and ∆k = ∆×· · ·×∆ where m, k ≥ 2. Define Γ
to be the graph with vertex set ∆k, and two vertices u = (u1, . . . , uk) and v =
(v1, . . . , vk) are adjacent if and only if they have exactly 2 different coordinates.

Lemma 3.5. Let Γ be a graph defined as the above. If Γ is 2-geodesic transitive,
then Γ is disconnected.

Proof. Suppose that Γ is 2-geodesic transitive. If k = 2, then vertices (0, 0)
and (1, 0) are not in the same connected component, and so Γ is disconnected.

Assume that k ≥ 3. Let u = (0, 0, 0, 0k−3), v1 = (1, 1, 0, 0k−3), w1 =
(0, 1, 2, 0k−3), v2 = (1, 2, 0, 0k−3), and w2 = (1, 1, 1, 0k−3). Then (u, v1, w1)
and (u, v2, w2) are two 2-geodesics. Noting that the stabilizer of u in the auto-
morphism group can not map w1 to w2, contradicts Γ is 2-geodesic transitive,
and hence m = 2. However, in this case, vertex (0, 0, . . . , 0) lies in a connected
component with 2k−1 vertices, and (1, 0, . . . , 0) lies in another connected com-
ponent with also 2k−1 vertices, and so Γ is disconnected. □

For every vertex u of Γ, we define Γ ◦ Γ(u) = {v ∈ V (Γ)|Γ(u) ∩ Γ(v) ̸= ∅}.
Then Γ ◦ Γ(u) \ Γ(u) = Γ2(u).

Lemma 3.6. Let Γ be a 2-geodesic transitive graph of pr vertices where p is
a prime number. Suppose that Aut(Γ) is quasiprimitive on V (Γ) of PA type.
Then Γ is a Hamming graph H( s, pt) where st = r.

Proof. Suppose that A := Aut(Γ) acts quasiprimitively on V (Γ) of PA type.
Then by Lemma 3.2, A acts primitively on V (Γ) of PA type. Hence A preserves
a Cartesian decomposition V (Γ) = ∆k. Let H be the induced subgroup of A∆

in ∆. Since A is primitive on V (Γ) of PA type, H is primitive on ∆. Let
u ∈ V (Γ). Since Γ is 2-geodesic transitive, it follows that both Γ(u) and
Γ ◦ Γ(u) \ Γ(u) = Γ2(u) are orbits of Au in V (Γ) \ {u}. It follows from [25,
Proposition 2.4] that H is 2-transitive on ∆. Let v ∈ Γ(u). Then by [16], u, v
have j distinct coordinates where j = 1, 2.

Since H is 2-transitive on ∆, it follows that v′ ∈ Γ(u) if and only if u, v′

have exactly j distinct coordinates. Since Γ is arc transitive, it follows that any
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two vertices are adjacent if and only if they have exactly j distinct coordinates.
It follows from Lemma 3.5 that j ̸= 2. If j = 1, then Γ is Hamming graph
H( s, pt) where st = r. □

Lemma 3.7. Let Γ be a 2-geodesic transitive graph of pr vertices where p is a
prime number. Suppose that Aut(Γ) acts primitively on V (Γ) of HA type with
socle N . Then Γ ∼= Cay(N,S), for some S ⊆ N \ {1}, is a normal Cayley
graph. In particular, if Γ has girth at least 4, then p = 2; if Γ has girth 3, then
⟨a⟩ \ {1} ⊂ S for each a ∈ S.

Proof. Suppose that A := Aut(Γ) acts primitively on V (Γ) of HA type. Then
N ∼= Zr

p acts regularly on V (Γ), and so Γ is a Cayley graph with respect to
N , say Γ = Cay(N,S) for some S ⊆ N \ {1}. Then N ≤ A ≤ N : GL(r, p) =
N : Aut(N). Since A = N : Au for u = 1N , it follows that Au ≤ Aut(N).
In particular, Au = Aut(N,S) acts on N irreducibly, so Γ is a normal Cayley
graph.

If Γ has girth at least 4, then each 2-arc is a 2-geodesic, and so Γ is 2-arc
transitive. Hence Au acts 2-transitively on S. Since S = S−1, it follows that
{a, a−1} is a block of Au in Γ(u) for any a ∈ Γ(u) whenever o(a) > 2. This
contradicts that Au is primitive on S. Hence o(a) = 2.

Finally, suppose that Γ has girth 3. Since Γ is a 2-geodesic transitive normal
Cayley graph, it follows from [9] that ⟨a⟩ \ {1} ⊂ S for each a ∈ S. □

Proof of Theorem 1.2. Let Γ be a 2-geodesic transitive but not 2-arc transi-
tive graph of order pr where p is a prime number. Suppose that Aut(Γ) acts
quasiprimitively on V (Γ) with a minimal normal subgroup N . Then N ∼= T i

for some simple group T . It follows from Lemma 3.2 that Aut(Γ) acts prim-
itively on V (Γ) of type HA, AS or PA, and either T ∼= Zp or T is one of the
groups listed in Lemma 3.1. If Aut(Γ) acts quasiprimitively on V (Γ) of AS
type, then by Lemmas 3.3 and 3.4, Γ is the Schläfli graph or its complement.
If Aut(Γ) acts quasiprimitively on V (Γ) of PA type, then by Lemma 3.6, Γ is a
Hamming graph H( s, pt) with st = r. If Aut(Γ) acts quasiprimitively on V (Γ)
of HA type, then by Lemma 3.7, Γ ∼= Cay(N,S) is a normal Cayley graph, and
⟨a⟩ \ {1} ⊂ S for each a ∈ S. □
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