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1. Introduction

One of the interesting problems in the study of essential spectrum of linear
operators on Banach spaces is the invariance of the essential spectrum under
(additive) perturbation. This problem has attracted the attention of several
authors and has produced man important results in the spirit of [8, 14,15].

In 1972, M. Schechter [23] defined a new concept of measuring of a bounded
operator acting on Banach spaces, called, the measure of non strict singularity
and denote by g (see Definition 2.6) which has been successfully applied in
many areas such as: topology, functional analysis, matrix theory and operator
theory. Later, N. Moalla [17] proved that I − T is a Fredholm operator with
index null, for every bounded operator T satisfying g(Tm) < 1, for some m > 0
(see [17, Proposition 2.3]).

Our interest concentrates on characterizing the Schechter essential spectrum,
σess(.), to the sum of two bounded operators acting on Banach spaces involv-
ing the concept of left and right Fredholm inverse (see Definition 2.4). This
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motivation is based on a new concept of measure of non strict singularity re-
cently studied in [17]. More precisely, we derive some new conditions on the
operators A and B to obtain the following characterization on the Schechter
essential spectrum

σess(A+B) ⊆ σess(A),

which represents an amelioration of some earlier works. Hence, our results
improve and give more supplements to those in [1,9,14,15,17,25]. Furthermore,
a typical example of a problem of one-speed neutron transport operator is
given for showing efficiency and accuracy of this work on L1-space based on
the regularity of the collision operator introduced by B. Lods in [16] as follows:

AHψ(x, v) := −v3
∂ψ

∂x
(x, v) − σ(x, v)ψ(x, v) +

∫
K

κ(x, v, v′)ψ(x, v′)dv′, on D,

where D = (0, 1) × K with K is the unit sphere of R3, x ∈ (0, 1), v =
(v1, v2, v3) ∈ K, κ(., ., .) is a nonlinear function and σ(., .) is a positive bounded
function. This equation describes the transport solution ψ(., .) in the vertical
direction and characterizes the possible leakage of energy at boundary of the
channel.

Now, let us outline the content of this paper. In Section 2, we gather some
results and notations from Fredholm perturbation theory connected with the
notion of measure of non strict singularity. In Section 3, we use the notion
of measure of non strict singularity to establish the invariance of the essential
spectrum of two bounded linear operators. Finally, to illustrate the applica-
bility of this new investigation, we introduce a problem of one-speed neutron
transport operator (see Theorem 4.5).

2. Notations and definitions

We start this section by giving some basic definitions and notations that
we will need in the sequel. Let X and Y be two Banach spaces. We denote
by L(X,Y ) (respectively C(X,Y )) the set of all bounded (respectively closed,
densely defined) linear operators from X into Y. The subset of all compact
operators of L(X,Y ) is designated by K(X,Y ). For A ∈ C(X,Y ), we write
D(A) ⊂ X for the domain, N(A) ⊂ X for the null space and R(A) ⊂ Y for the
range of A. The nullity, α(A), of A is defined as the dimension of N(A) and
the deficiency, β(A), of A is defined as the codimension of R(A) in Y. The set
of upper semi-Fredholm operators is defined by

Φ+(X,Y ) = {A ∈ C(X,Y ); α(A) <∞ and R(A) is closed in Y },
and the set of lower semi-Fredholm operators is defined by

Φ−(X,Y ) = {A ∈ C(X,Y ); β(A) <∞ and R(A) is closed in Y }.
The set of bounded upper (respectively lower) semi-Fredholm operators from
X into Y is defined by
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Φb
+(X,Y ) = Φ+(X,Y )∩L(X,Y ) (respectively Φb

−(X,Y ) = Φ−(X,Y )∩L(X,Y )).

Φ(X,Y ) := Φ+(X,Y ) ∩ Φ−(X,Y ) (respectively Φ±(X,Y ) := Φ+(X,Y ) ∪
Φ−(X,Y )) denotes the set of Fredholm (respectively semi-Fredholm) opera-
tors from X into Y. The set of bounded Fredholm operators from X into Y is
defined by Φb(X,Y ) = Φ(X,Y ) ∩ L(X,Y ). If X = Y, then the sets L(X,Y ),
K(X,Y ), C(X,Y ), Φ(X,Y ), Φ+(X,Y ), Φ−(X,Y ), Φb(X,Y ), Φb

+(X,Y ) and

Φb
−(X,Y ) are replaced, respectively, by L(X), K(X), C(X), Φ(X), Φ+(X),

Φ−(X), Φb(X), Φb
+(X) and Φb

−(X). A complex number λ is in ΦA, Φ+A or
Φ−A, that is, λ − A is in Φ(X), Φ+(X) or Φ−(X) respectively. The index of
an operator A ∈ Φ±(X) is defined by i(A) := α(A)− β(A).
The set of Fredholm operators defines the corresponding Schechter essential
spectrum (see [22,24])

σess(A) := C \ {λ ∈ ΦA; i(λ−A) = 0}.

Let A ∈ C(X). It follows from the closedness of A that D(A) endowed with
the graph norm ∥.∥A (∥x∥A = ∥x∥ + ∥Ax∥) is a Banach space denoted by
XA. Clearly, for x ∈ D(A) we have ∥Ax∥ ≤ ∥x∥A; so A ∈ L(XA, X). Let B
be a linear operator. If D(A) ⊂ D(B), then B will be called A-defined. If

B is A-defined operator, hence we will denote its restriction to D(A) by B̂.

Moreover, if B̂ belongs to L(XA, X), we say that B is an A-bounded operator.
Furthermore, we have the obvious relations:

α(Â) = α(A), β(Â) = β(A), R(Â) = R(A),

α(Â+ B̂) = α(A+B),

β(Â+ B̂) = β(A+B) and R(Â+ B̂) = R(A+B).

(2.1)

Hence, A ∈ Φ(X) (respectively Φ+(X)) if and only if Â ∈ Φ(XA, X) (respec-
tively Φ+(XA, X)).

We will recall some basic definitions for bounded operators in Banach spaces
that are useful in the reminder of this paper.

Definition 2.1. LetX and Y be two Banach spaces. An operator A ∈ L(X,Y )
is said to be weakly compact if A(B) is relatively weakly compact in Y for every
bounded B ⊂ X.

The family of weakly compact operators from X into Y is denoted by
W(X,Y ). If X = Y the family of weakly compact operators on X,W(X) :=
W(X,X) is a closed two-sided ideal of L(X) containing K(X) (see [7]).

Definition 2.2. LetX and Y be two Banach spaces. An operator S ∈ L(X,Y )
is said to be strictly singular if the restriction of S to any infinite-dimensional
subspace of X is not an homeomorphism. Let S(X,Y ) denote the set of strictly
singular operators from X to Y.
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The concept of strictly singular operators was introduced in the pioneering
paper by T. Kato [12] as a generalization of the notion of compact operators.
For a detailed study of the properties of strictly singular operators we refer
to [12]. Note that S(X,Y ) is a closed subspace of L(X,Y ). In general, if
X = Y, one has S(X) := S(X,X) is a closed two-sided ideal of L(X) containing
K(X). If X is a Hilbert space, then S(X) = K(X). The class of weakly compact
operators in L1-spaces (respectively C(Ω)- spaces with Ω is a compact Hausdroff
space) is nothing else than the family of strictly singular operators on L1-spaces
(respectively C(Ω)-spaces) (see [20, Theorem 1]).

Remark 2.3. Notice that according to Theorem 1 established by A. Pelczynski
in [20] the class of weakly compact operators on L1-spaces is nothing else but
the family of strictly singular operators on L1-spaces.

If 1 < p < ∞, Xp (where Xp denotes the space Lp(Ω, dµ) for 1 ≤ p ≤ ∞ and
(Ω,Σ, µ) stands for a positive measure space) is reflexive and then L(Xp) =
W(Xp). On the other hand, it follows from [6, Theorem 5.2] that K(Xp) ⫋
S(Xp) ⫋ W(Xp) with p ̸= 2. For p = 2 we have K(Xp) = S(Xp) = W(Xp) =
F(Xp).

In this work, we are interested to discuss the invariance of essential spectrum
of two bounded operators involving the theory of Fredholm inverse. For this
purpose, we need to review the following definition due to V. Müller; see [19].

Definition 2.4. Let X and Y be two Banach spaces.

(i) An operator A ∈ L(X,Y ) is said to have a left Fredholm inverse if there
are maps Al ∈ L(Y,X) and K ∈ K(X) such that IX +K extends AlA.
The operator Al is called left Fredholm inverse of A.

(ii) An operator A ∈ L(X,Y ) is said to have a right Fredholm inverse if
there is a map Ar ∈ L(Y,X) such that IY −AAr ∈ K(Y ). The operator
Ar is called right Fredholm inverse of A.

(iii) An operator A ∈ C(X,Y ) is said to have a left Fredholm inverse (re-

spectively right Fredholm inverse) if Â has a left Fredholm inverse (re-
spectively right Fredholm inverse) of A.

We know by the classical theory of Fredholm operators, see for example [11],
that A belongs to Φ+(X),Φ−(X) or Φ(X) if it possesses a left, right or two-
sided Fredholm inverse, respectively.
Several measures of non compactness were defined in the literature (see for
example [2]). Among them, let us mention the first one introduced in 1930 by K.
Kuratawski [13]. Another one called the Hausdroff measure of non compactness
was defined and studied by V. Rakoc̆ević in [21]:

Definition 2.5. For a nonempty bounded subset Ω of X, consider the Haus-
dorff measure of non compactness of Ω as follows: q(Ω) = inf{r > 0, Ω can be
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covred by a finite set of open balls of radius r}. The Hausdroff measure of non
compactness of A ∈ L(X,Y ) is defined by:

q(A) = q[A(BX)],

where BX denotes the closed unit ball in X; that is, the set of all x ∈ X
satisfying ∥x∥ ≤ 1.

Later then, the notion of the measure of non compactness was generalized to
a new concept of measuring, so called measure of non strict singularity, by M.
Schechter in [23], which is related to define this kind of measure as well:

Definition 2.6. For A∈L(X,Y ), set gM (A) = inf
N⊂M

q(A|N) and g(A) = sup
M⊂X

gM (A),

whereM and N represent infinite dimensional subspaces ofX, and A|N denotes
the restriction of A to the subspace N. The semi-norm g is called a measure of
non strict singularity.

3. Essential spectrum of the sum of two operators

The goal of this section is to provide a characterization of Schechter essential
spectrum of the sum of two bounded operators by means of measure of non
strict singularity.

Theorem 3.1. Let X be a Banach space, and let A and B be two operators in
L(X). We have:

(i) If for each λ ∈ ΦA, there exists a left Fredholm inverse Aλl of λ−A such
that g((BAλl)

n) < 1, for some n > 0, then σess(A+B) ⊆ σess(A).
(ii) If for each λ ∈ ΦA, there exists a right Fredholm inverse Aλr of λ−A

such that g((AλrB)n) < 1, for some n > 0, then σess(A + B) ⊆
σess(A).

Proof. (i) Suppose that λ ̸∈ σess(A) that is λ− A ∈ Φ(X) with i(λ− A) = 0.
Since Aλl is a Fredholm inverse of λ−A, then there exists F ∈ K(X) such that

(3.1) Aλl(λ−A) = I − F on X,

so, Aλl(λ−A) + F = IX . It follows from
equation (3.1) that the operator λ−A−B can be written in the following form
λ−A−B = λ−A−B(Aλl(λ−A) + F ) = (IX −BAλl)(λ−A)−BF .

Therefore, by [17, Proposition 2.3], one has g((BAλl)
n) < 1. Then, we infer

that IX −BAλl ∈ Φ(X) with i(IX −BAλl) = 0. The use of [19, Theorem 12,
p. 153], allows us to conclude that

(IX −BAλl)(λ−A) ∈ Φ(X)

and

i[(IX −BAλl)(λ−A)] = i(IX −BAλl) + i(λ−A)

= i(λ−A).
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Taking into account the fact that BF ∈ K(X), we have λ−A−B ∈ Φ(X) and
i(λ − A − B) = i(λ − A). This proves that λ ̸∈ σess(A + B). Hence, we find
σess(A+B) ⊆ σess(A). (ii) Let λ ∈ C and Aλr be a right Fredholm inverse of
λ − A. Following Definition 2.4 (ii), we conclude that there exists a compact
operator K ∈ K(X), such that (λ−A)Aλr = I −K on X. Thus, the operator
λ−A−B may be written as follows: λ−A−B = λ−A−((λ−A)Aλr+F )B =
(λ−A)(IX −AλrB)− FB. Arguing as above, we can easily derive the rest of
the proof of this assertion in the same way as (i). □
Remark 3.2. (i) Theorem 3.1 remains true if we replace the assumptions

g((BAλl)
n)< 1 and g((AλrB)n) < 1 by q((BAλl)

n) < 1 and q((AλrB)n)
< 1, (respectively ∥(BAλl)

n∥ < 1 and ∥(AλrB)n∥ < 1), for some n > 0.
(ii) The result of the Theorem 3.1 remains valid for closed, densely defined

linear operator A and A-bounded operator B on X. It is sufficient to
replace A by Â ∈ L(XA, X) and B by B̂ ∈ L(XA, X) as in proof of
Theorem 3.1.

(iii) In view of [17, Proposition 2.2], Theorem 3.1 may be viewed as an ex-
tension of many known results in the literature, in particular it extends
the results obtained in [1, 14, 15, 24] to a wide classes of perturbing
operators under measuring of non strict singularity.

An immediate consequence of Theorem 3.1 in terms of power strictly singular
operators is expressed as well.

Corollary 3.3. Let X be a Banach space, and let A and B be two operators
in L(X).

(i) If for each λ ∈ ΦA, there exists a Fredholm inverse Aλl of λ − A such
that, for some n > 0,

(BAλl)
n ∈ S(X),

then σess(A+B) ⊆ σess(A).
(ii) If for each λ ∈ ΦA, there exists a Fredholm inverse Aλr of λ− A such

that, for some n > 0,

(AλrB)n ∈ S(X),

then σess(A+B) ⊆ σess(A).

Remark 3.4. (i) Corollary 3.3 remains true if we replace the assumptions
(BAλl)

n ∈ S(X) and (AλrB)n ∈ S(X) by (BAλl)
n ∈ K(X) and

(AλrB)n ∈ K(X)
(
respectively (BAλl)

n ∈ W(X) and (AλrB)n ∈
W(X)

)
, for some n > 0.

(ii) The results of Theorem 3.1 and Corollary 3.3 remain true for other
types of essential spectrum. But, it provides sufficient conditions to
ensure it for Browder essential spectrum.

We now discuss a typical example motivating the abstract theoretical results.
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4. Application to transport operator

Our aim in the present work is to establish the invariance of the essential
spectrum via the concept of measure of non strict singularity of n-power strictly
bounded operator on L1-space.

In order to state our general framework, we first make the functional setting
of the problem precise. Let the following space:

X := L1(D, dxdv), where D = (0, 1)×K with K the unit sphere of R3,
x ∈ (0, 1) and v = (v1, v2, v3) ∈ K.
Define the following sets representing the incoming Di and the outgoing D0

boundary of the phase space D

Di = Di
1 ∪Di

2 = {0} ×K1 ∪ {1} ×K0,
D0 = D0

1 ∪D0
2 = {0} ×K0 ∪ {1} ×K1,

for

K0 = K ∩ {v3 < 0} and K1 = K ∩ {v3 > 0}.
Furthermore, we introduce the following boundary spaces

Xi := L1(D
i, |v3|dv) := L1(D

i
1, |v3|dv)⊕ L1(D

i
2, |v3|dv)

:= Xi
1 ⊕Xi

2

and
X0 := L1(D

0, |v3|dv) := L1(D
0
1, |v3|dv)⊕ L1(D

0
2, |v3|dv)

:= X0
1 ⊕X0

2 .

We define the partial Sobolev space W by:

W =

{
ψ ∈ X, v3

∂ψ

∂x
∈ X

}
.

It is well-known that any function ψ ∈ W has traces (see, for instance, [4])
on the spatial boundary denoted respectively by ψo and ψi which represent
respectively the outgoing and the incoming fluxes related by the boundary
operator H; namely:

H : X0
1 ×X0

2 −→ Xi
1 ×Xi

2

H

(
u1
u2

)
=

(
H11 H12

H21 H22

)(
u1
u2

)
with k, l ∈ {1, 2}, Hkl : X

0
l −→ Xi

k, Hkl ∈ L(X0
l , X

i
k), defined such that the

boundary conditions can be written as ψi = Hψo.

Now, we define the streaming operator TH (with a domain including the
boundary conditions) by:
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TH : D(TH) ⊆ X −→ X

ψ −→ THψ(x, v) = −v3
∂ψ

∂x
(x, v)− σ(x, v)ψ(x, v)

D(TH) =

{ψ ∈ W; ψ|Di := ψi ∈ Xi; ψ|D0 := ψo ∈ X0 and ψi = H(ψo)}.

Let λ∗ be the real defined by

λ∗ := ess- inf{σ(x, v), (x, v) ∈ D}

and

λ0 :=

{
−λ∗ if ∥H∥ ≤ 1

−λ∗ + log(∥H∥) if ∥H∥ > 1.

Note that, if H is strictly singular operator, then

σ(TH) = {λ ∈ C; Reλ ≤ −λ∗}.

In fact, we can easily show that σ(TH) reduces to σC(TH), the continuous
spectrum of TH , that is

(4.1) σ(TH) = σC(TH) = {λ ∈ C; Reλ ≤ −λ∗}.

On the other hand, if λ ∈ σC(TH) then R(λ − TH) is not closed (otherwise
λ ∈ ρ(TH)). So, λ ∈ σess(TH). This implies that σC(TH) ⊆ σess(TH).

Thus according to equation (4.1), we obtain

σess(TH) = {λ ∈ C; Reλ ≤ −λ∗}.

The transport operator can be formulated as follows: AH = TH +K,

where K is the following collision operator:
K : X −→ X

ψ −→
∫
K

κ(x, v, v′)ψ(x, v′)dv′

and the kernel κ : (0, 1)×K ×K −→ R is assumed to be measurable.

Observe that the collision operators K acts only on the variables v′, so x may
be viewed merely as a parameter in (0, 1). Then, we will consider K as the
function

K(.) : x ∈ (0, 1) → K(x) ∈ L(L1(K, dv)).
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Remark 4.1. Note that, to verify that the assumptions g((K(λ−TH)−1)n) < 1
and g((λ− TH)−1K)n) < 1, for some n > 0, we shall prove that the operators
K(λ− TH)−1 and (λ− TH)−1K are weakly compact on X.

From the previous remark, the problem is equivalent to finding a solution ψ
(must be sought in D(TH)) of the equation:

(λ− TH)ψ = φ,(4.2)

for λ ∈ C and φ ∈ X. Thus, for Reλ > −λ∗, the solution of equation (4.2) is
formally given by:

ψ(x, v) = ψ(0, v) e
−

∫ x
0

σ(s,v)+λ
|v3| ds

+(4.3)

1

|v3|

∫ x

0

e
−

∫ x
x′

σ(s,v)+λ
|v3| ds

φ(x′, v)dx′, v ∈ K1

ψ(x, v) = ψ(1, v)e
−

∫ 1
x

σ(s,v)+λ
|v3| ds

+(4.4)

1

|v3|

∫ 1

x

e
−

∫ x′
x

σ(s,v)+λ
|v3| ds

φ(x′, v)dx′, v ∈ K0

whereas ψ(1, v) and ψ(0, v) are given by:

ψ(1, v) = ψ(0, v)e
−

∫ 1
0

σ(s,v)+λ
|v3| ds

+(4.5)

1

|v3|

∫ 1

0

e
−

∫ 1
x′

σ(s,v)+λ
|v3| ds

φ(x′, v)dx′, v ∈ K1

ψ(0, v) = ψ(1, v)e
−

∫ 1
0

σ(s,v)+λ
|v3| ds

+(4.6)

1

|v3|

∫ 1

0

e
−

∫ x′
0

σ(s,v)+λ
|v3| ds

φ(x′, v)dx′, v ∈ K0.

For the clarity of our subsequent analysis, we introduce the following bounded
operators depending on the parameter λ,

Nλ : Xi −→ X0, Nλu := (N+
λ u,N

−
λ u), with

(N+
λ u)(0, v) := u(1, v) e

−
∫ 1
0

σ(s,v)+λ
|v3| ds

, v ∈ K0

(N−
λ u)(1, v) := u(0, v) e

−
∫ 1
0

σ(s,v)+λ
|v3| ds

, v ∈ K1
Bλ : Xi −→ X,Bλu := χK0(v)B+

λ u+ χK1(v)B−
λ u, with

(B−
λ u)(x, v) := u(0, v) e

−
∫ x
0

σ(s,v)+λ
|v3| ds

, v ∈ K1

(B+
λ u)(x, v) := u(1, v) e

−
∫ 1
x

σ(s,v)+λ
|v3| ds

, v ∈ K0
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Gλ : X −→ X0, Gλφ := (G+
λφ,G

−
λ φ), with

G−
λ φ :=

1

|v3|

∫ 1

0

e
−

∫ 1
x

σ(s,v)+λ
|v3| ds

φ(x, v) dx, v ∈ K1

G+
λφ :=

1

|v3|

∫ 1

0

e
−

∫ x
0

σ(s,v)+λ
|v3| ds

φ(x, v) dx, v ∈ K0

and 

Fλ : X −→ X,Fλφ := χK0(v)F+
λ φ+ χK1(v)F−

λ φ, with

F−
λ φ :=

1

|v3|

∫ x

0

e
−

∫ x
x′

σ(s,v)+λ
|v3| ds

φ(x′, v) dx′, v ∈ K1

F+
λ φ :=

1

|v3|

∫ 1

x

e
−

∫ x′
x

σ(s,v)+λ
|v3| ds

φ(x′, v) dx′, v ∈ K0,

where χK0(.) and χK1(.) denote, respectively, the characteristic functions of the
setsK0 andK1. The operators Nλ, Bλ, Gλ and Fλ are bounded on their respec-
tive spaces. Their norms are bounded above, respectively by e−(Reλ+λ∗), (λ∗+
Reλ)−1, (λ∗ +Reλ)−1 and (Reλ+ λ∗)−1.
Let us now explicit the resolvent of TH . To this aim, for any Reλ > −λ∗,
equations (4.5) and (4.6) revel that

ψ0 = NλHψ
0 +Gλφ

and

(I −NλH)ψ0 = Gλφ.

On the other hand, if Reλ > λ0, the solution of the last equation is reduced to
the following form:

ψ0 =
∑
n≥0

(NλH)nGλφ.(4.7)

Moreover, equations (4.3) and (4.4) can be rewritten as:

ψ = BλHψ
0 + Fλφ.(4.8)

Substituting equation (4.7) into equation (4.8), we get the resolvent of TH by
the following form:

(λ− TH)−1 =
∑
n≥0

BλH(NλH)nGλ + Fλ.(4.9)

Observe that the operator Fλ is nothing else but (λ−T0)−1 where T0 designate
the operator TH with a boundary condition H = 0.

Thoughout the sequel, we shall assume that K is a regular operator in the
following sense.
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Definition 4.2 ([16]). Let K be the collision operator defined above. Then,
K is said to be regular if {κ(x, ., v′), (x, v′) ∈ (0, 1)×K} is a relatively weakly
compact subset of L1(K, dv).

Remark 4.3. (i) From the definition of the regularity of the collision op-
erator introduced by B. Lods in [16, Definition 2.1], we can provide
the invariance of the Schechter essential spectrum in these models of
transport equation. This weak compactness assumption is more general
than the ones used by M. Mokhtar-Kharroubi in [18].

(ii) Definition 4.2 asserts that for every x ∈ (0, 1),

f ∈ L1(K) −→
∫

K

κ(x, v, v′)f(v′)dv′ ∈ L1(K)

is a weakly compact operator and this weak compactness holds collec-
tively in x ∈ (0, 1).

Now, we claim the following weak compactness result.

Lemma 4.4. Assume that the collision operator K is non-negative. We have:

(i) If
{

κ(x,.,v′)
|v′

3|
, (x, v′) ∈ (0, 1)×K

}
is a relatively weakly compact subset

of L1(K, dv), then for Reλ > −λ∗, the operator K(λ−TH)−1 is weakly
compact on X.

(ii) If K is regular, then for Reλ > −λ∗, the operator (λ − TH)−1K is
weakly compact on X.

Proof. (i) In view of equation (4.9), the operator K(λ− TH)−1 is given by

K(λ− TH)−1 =
∑
n≥0

KBλH(NλH)nGλ +KFλ.

Then, to prove the weak compactness of K(λ− TH)−1, it suffices to prove the
weak compactness of the operators KBλ and KFλ. Following [10, Lemma 4.2],
we need only to prove the claim for the operator KBλ. Indeed, let φ ∈ Xi.

(KBλφ)(x, v) =

∫
K

K(x, v, v′)(Bλφ)(x, v
′)dv′

=

∫
K0

K(x, v, v′)B+
λ φ(x, v

′)dv′

+

∫
K1

K(x, v, v′)B−
λ φ(x, v

′)dv′

= K̃B̃λφ(x, v),
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where
K̃ : X −→ X

φ −→
∫
K

κ(x, v, v′)

|v′3|
φ(x, v′) dv′,

and B̃λ := |v′3|Bλ.

Thus, we can restrict ourselves to claim that K̃B̃λ depends continuously on K̃.
Let φ ∈ X. We have:

∥B̃λφ∥ ≤
∫ 1

0

∫
K0

|v′3|dv′ e
−

∫ 1
x

σ(s,v′)+λ

|v′
3| ds |φ(1, v′)| dx

+

∫ 1

0

∫
K1

|v′3|dv′ e
−

∫ x
0

σ(s,v′)+λ

|v′
3| ds |φ(0, v′)| dx

≤
∫ 1

0

∫
K0

|v′3|dv′ e
−Reλ+λ∗

|v′
3| |1−x| |φ(1, v′)| dx

+

∫ 1

0

∫
K1

|v′3|dv′ e
−Reλ+λ∗

|v′
3| |x| |φ(0, v′)| dx

≤
∫ 1

0

∫
K0

|φ(1, v′)||v′3|dv′dx+

∫ 1

0

∫
K1

|φ(0, v′)| |v′3|dv′dx

≤ ∥φ∥.

Then, ∥K̃B̃λ∥ ≤ ∥K̃∥.
We derive from the approximation property of regular operators established

in [16], that the kernel of K̃ may be decomposed as follows:

κ̃(v, v) =
κ(x, v, v′)

|v′3|
= κ1(v)κ2(v

′),

where κ1(·) ∈ L1(K) and κ2(·) ∈ L∞(K).

Let φ ∈ Xi; we have:

K̃B̃λφ(x, v) = κ1(v)
[∫

K0

κ2(v
′)|φ(1, v′)|e−

∫ 1
x
−σ(s,v′)+λ

|v′
3| ds|v′3|dv′

+

∫
K1

κ2(v
′)|φ(0, v′)|e−

∫ x
0

−σ(s,v′)+λ

|v′
3| ds|v′3|dv′

]
.

Therefore,

|K̃B̃λφ(x, v)| ≤ ∥κ2∥∞|κ1(v)|
[∫

K0

|φ(1, v′)|e−
λ∗+Reλ

|v′
3| |1−x||v′3|dv′

+

∫
K1

|φ(0, v′)|e−
λ∗+Reλ

|v′
3| |x||v′3|dv′

]
.



1555 Abdmouleh and Walha

Let O be a bounded set of Xi, and let ψ ∈ O. It follows, for Reλ > −λ∗, and
for all measurable subset E of D, that:∫

E

| K̃B̃λ ψ(x, v) | dx dv ≤ ∥κ2∥∞ ∥ ψ∥1
∫
E

|κ1(v)| dx dv.

Since

lim
|E|−→0

∫
E

|κ1(v)| dx dv = 0, (κ1 ⊆ L1(K, dv))

the weak compactness of the set K̃B̃λ(O) can be obtained by the use of [5,
Corollary 11, p. 294]. Our claim follows and the proof of this item is thereby
completed.

(ii) According to [10, Lemma 4.3], to prove the weak compactness of (λ −
TH)−1K it sufficient to add the claim for the operator GλK.
Following the approximation property for the class of regular operators intro-
duced in [16], the kernel of the collision operator K becomes:

κ(v, v′) = κ1(v)κ2(v
′), where κ1(.) ∈ L1(K), and κ2(.) ∈ L∞(K).

Now, we will show that GλK is weakly compact.

For φ ∈ X, we have (G+
λKφ)(x, v) =

1

|v3|

∫ 1

0

e
−

∫ x
0

σ(s,v)+λ
|v3| ds

Kφ(x, v)dx

=
1

|v3|

∫ 1

0

∫
K

e
−

∫ x
0

σ(s,v)+λ
|v3| ds

κ1(v)κ2(v
′)φ(x, v′)dx dv′ = JλUλφ

where v ∈ K0, Jλ and Uλ denote the following bounded operators

Uλ : X −→ L1((0, 1), dx)

φ −→
∫
K

κ2(v
′)φ(x, v′) dv′,

and

Jλ : L1((0, 1), dx) −→ X0
1

φ −→ 1

|v3|

∫ 1

0

e
−

∫ x
0

σ(s,v)+λ
|v3| ds

κ1(v)φ(x) dx.

Now, it suffices to show that Jλ is weakly compact. To do this, let O be a
bounded set of L1((0, 1), dx). Let ψ ∈ O. It follows for all measurable subset
E of K0 that ∫

E

|Jλψ(v)||v3| dv ⩽ ∥ψ∥
∫
E

|κ1(v)| dv.
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Since

lim
|E|→0

∫
E

|κ1(v)| dv = 0, (κ1(.) ∈ L1(K, dv)

where |E| is the measure of E, the applicability of [5, Corollary 11] asserts
that the set Jλ(O) is weakly compact. Hence the weak compactness of G+

λK
is checked.
The proof of the weak compactness of the operator G−

λK is similar to the

operator G+
λK. □

Now, we are ready to state and prove the precise picture of the essential spec-
trum of AH :

Theorem 4.5. If the operator H is strictly singular, K is a non negative,
regular collision operator. If in addition{

κ(x,.,v′)
|v′

3|
, (x, v) ∈ (0, 1)×K

}
is a relatively weakly compact subset of L1(K, dv), then

σess(AH) ⊆ σess(TH) = {λ ∈ C; Reλ ≤ −λ∗}.

Proof. Since TH generates a strongly continuous semi-group on X, then it
follows that lim

Reλ→∞
∥(λ−TH)−1∥ = 0 (see [4,18]). Hence, there exists η > −λ∗

such that for Reλ > η, we have rσ(K(λ − TH)−1) < 1 (rσ(.) is the spectral
radius). Therefore, the open half plane O = {λ ∈ C ; Reλ > η} is contained
in ΦTH

∩ ΦAH
; then ΦTH

∩ ΦAH
̸= ∅.

On the other hand, Proposition 4.4 with [5, Corollary 13] assert that [K(λ −
TH)−1]2 is compact on X for all λ ∈ ρ(TH).

Consequently, [17, Proposition 2.2] revels that

g((K(λ− TH)−1)2) < 1 and g(((λ− TH)−1K)2) < 1.
Now, applying Theorem 3.1, we get

σess(AH) ⊆ σess(TH) = {λ ∈ C; Reλ ≤ −λ∗}. □

5. Conclusion

In this paper, new sufficient conditions are derived to characterize the essen-
tial spectrum of the sum of two linear operators. The obtained result exploits
the concept of measuring of non strict singularity involving an elegant use of
the notion of Fredholm inverse properties of linear operators. The validity of
the main result is illustrated by an example of one-speed neutron transport
operator on L1-space.
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