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Abstract. Let C be a semidualizing module. We first investigate the

properties of finitely generated GC -projective modules. Then, relative to
C, we introduce and study the rings over which every submodule of a pro-
jective (flat) module is GC -projective (flat), which we call C-Gorenstein

(semi)hereditary rings. It is proved that every C-Gorenstein hereditary
ring is both coherent and C-Gorenstein semihereditary.
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1. Introduction

Throughout this work R is a commutative ring with unity. For an R-module
T , let addRT be the subclass of R-modules consisting of all modules isomorphic
to direct summands of finite direct sums of copies of T . We define gen∗(T ) =
{M is an R-module | there exists an exact sequence · · · → Tn → · · · → T1 →
T0 → M → 0 with each Ti ∈ addRT and HomR(T,−) leaves it exact } (see [14]).
cogen∗(T ) is defined dually. Recall that an R-module C ∈ gen∗(R) is said to be
semidualizing if ExtiR(C,C) = 0 for any i ≥ 1, and the map R → HomR(C,C)
is an isomorphism.

In the following, we always assume that C is a semidualizing R-module.
Recall from [15] that an R-module M is called GC-projective if there exists an
exact sequence of R-modules · · · → P1 → P0 → C ⊗R P−1 → C ⊗R P−2 → · · ·
with all Pi projective, such that M ∼= Im(P0 → C⊗RP−1) and HomR(−, C⊗R

P ) leaves the sequence exact for any projective R-module P . The GC-injective
modules are defined in a dual manner. An R-module M is called GC-flat [9]
if there is an exact sequence of R-modules · · · → F1 → F0 → C ⊗R F−1 →
C ⊗R F−2 → · · · with all Fi flat, such that M ∼= Im(F0 → C ⊗R F−1) and
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HomR(C, I)⊗R − leaves the sequence exact for any injective R-module I. The
GC-projective, flat, and injective dimensions of an R-module M are defined
in terms of GC-projective, flat resolutions, and injective coresolutions, and
denoted by GC-pdR(M), GC-fdR(M) and GC-idR(M), respectively. The GC-
projective dimension was first introduced by Golod in [7] for finitely generated
modules over a commutative Noetherian ring, and was extended by Holm and
Jørgensen in [9] to arbitrary modules. Later, White further extended in [15]
these concepts to the non-Noetherian setting, and showed that they share many
common properties with the Gorenstein homological dimensions [8]. Since then
these notions have been extensively studied (see also [2,12] for a new trends in
relative homological algebra).

It is well-known that, the classical global dimensions of rings play an impor-
tant role in the theory of rings. Motivated by Bennis and Mahdou’s [3] ideas
to study the global dimensions of a ring R in terms of Gorenstein homologi-
cal dimensions, recently, Zhao and Sun studied in [16] the global dimensions
of R defined by some relative homological dimensions with respect to C, and
proved that sup{GC-pdR(M)|M is an R-module} = sup{GC-idR(M)|M is an
R-module}. The common value, denoted by GC-gl.dim(R), is named as the
C-Gorenstein global dimension of R. Similarly, the C-Gorenstein weak global
dimension of R is also defined as GC-wgl.dim(R) = sup{GC-fdR(M)|M is an
R-module}.

On the other hand, in classical homological algebra, the rings of (weak)
global dimensions at most 1, called (semi)hereditary rings [13], are important
classes of rings, and the following are well-known: (1) every hereditary ring is
coherent and semihereditary; (2) a ring R is semihereditary if and only if ev-
ery finitely generated submodule of a projective R-module is projective. Rings
of small Gorenstein homological dimensions were introduced in [4, Section 5]
which ends with the following question “whether G-hereditary rings are coher-
ent?”. This question is recently resolved positively in [6] (see also [1, 10, 11]
where some results on these kind of rings were established). Then, naturally,
relative Gorenstein rings will be of interest. According to the terminology of the
classical theory of homological algebra and the one of Gorenstein homological
algebra started in [4, Section 5], we introduce the following notions: A ring R
is called C-Gorenstein hereditary (GC-hereditary for short) if every submodule
of a projective R-module is GC-projective (i.e., GC-gl.dim(R) ≤ 1), and R is
said to be C-Gorenstein semihereditary (GC-semihereditary for short) if R is
coherent and every submodule of a flat R-module is GC-flat. In this paper, we
are mainly concerned with the following natural questions:
Question A. Is it true that every C-Gorenstein hereditary ring is coherent
and C-Gorenstein semihereditary?
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Question B. Is it true that R is C-Gorenstein semihereditary if and only
if every finitely generated submodule of a GC-projective R-module is GC-
projective?

It is shown that Question A has an affirmative answer (see Corollary 2.4 and
Theorem 2.8). Also, a partial answer to Question B is provided at the end of
this paper.

2. C-Gorenstein hereditary and semihereditary rings

We use (−)C to denote the functor HomR(−, C). The following result is the
relative version of [6, Lemma 2.3 and Corollary 2.4], but the proof is slightly
different.

Lemma 2.1. Assume that M is a finitely generated GC-projective R-module.
Then

(1) M ∈ cogen∗(C).
(2) MC ∈ gen∗(R).

Proof. (1) Because M is GC-projective, there is an exact sequence 0 → M →
C⊗RF → G → 0, in which F is free and G is GC-projective by [15, Observation
2.3 and Proposition 2.9]. Since M is also finitely generated, there exists a
finitely generated free submodule Rα0 with α0 an integer, and a free submodule
F ′ of F , such that M ⊆ C ⊗R Rα0 ∼= Cα0 and F = Rα0 ⊕ F ′. Setting
H = Coker(M → C ⊗R Rα0) yields a commutative diagram with exact row

0

��

0

��
M

��

M

��
0 // C ⊗R Rα0

��

// C ⊗R F

β

��

// C ⊗R F
′ // 0

H

��

G

��

C ⊗R F
′

0 0

with middle row is split. By the snake lemma, we get an exact sequence
0 → H → G → C ⊗R F

′ → 0, which implies that H is finitely generated
GC-projective [15, Theorem 2.8]. Repeating this process to H and so on, one
has an exact sequence

0 → M → Cα0 → Cα1 → · · · (∗)
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with each image is finitely generated GC-projective, which implies that the
sequence (∗) is exact after applying HomR(−, C). Therefore, M ∈ cogen∗(C).

(2) Applying HomR(−, C) to the sequence (∗) in (1) provides an exact se-
quence

· · · → (Cα1)C → (Cα0)C → MC → 0

Because (Cαi)C ∼= HomR(C,C)αi ∼= Rαi , the desired result follows. □

The following theorem plays a crucial role in proving the main result in this
paper.

Theorem 2.2. A ring R is coherent if every finitely generated submodule of a
GC-projective R-module is GC-projective.

Proof. Let M be a finitely generated submodule of a projective R-module. By
the hypothesis, M is GC-projective since every projective R-module is GC-
projective [15, Proposition 2.6]. It follows from Lemma 2.9(2) that MC ∈
gen∗(R), and hence it is finitely generated. On the other hand, since M is
finitely generated, there is an exact sequence

0 → K → F0 → M → 0,

where F0 = Rα is finitely generated free. Applying HomR(−, C) to this short
exact sequence gives rise to a monomorphism: 0 → MC → (Rα)C . Since
(Rα)C = HomR(R

α, C) ∼= Cα is GC-projective by [15, Proposition 2.6] again,
the assumption yields that MC is GC-projective. Replacing M with MC in
Lemma 2.9(2), we get that MCC ∈ gen∗(R), and hence finitely presented.

On the other hand, from Lemma 2.9(1), we know that M ∈ cogen∗(C).
Consider the following commutative diagram with exact rows:

0 → M → Cα0 → Cα1 → · · ·
↓ ↓ ↓

0 → MCC → (Cα0)CC → (Cα1)CC → · · · .

As (Cαi)CC ∼= (Rαi)C ∼= Cαi for each i ≥ 0, M ∼= MCC is finitely presented.
Thus, R is coherent. □

To prove the coherence of GC-hereditary rings, we need the following result,
which gives some other descriptions of GC-hereditary rings.

Proposition 2.3. Let R be a ring. The following are equivalent.

(1) R is GC-hereditary.
(2) Every submodule of a GC-projective R-module is GC-projective.
(3) Every quotient module of a GC-injective R-module is GC-injective.

Proof. (1) ⇒ (2) Follows from [15, Proposition 2.12].
(2) ⇒ (1) Evident.
(2) ⇔ (3) The assertion holds by [16, Theorem 4.4]. □
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Corollary 2.4. Every GC-hereditary ring is coherent.

Proof. It follows from Theorem 2.10 and Proposition 2.7. □
In the special case that C = R, we obtain the main result of [6, Theorem

2.5].

Corollary 2.5. All Gorenstein hereditary rings are coherent.

Before starting to study the GC-semihereditary rings, we first give some
equivalent characterizations of modules with finiteGC-flat dimension. We write
(−)+ = HomR(−, E), where E is an injective cogenerator for the categories of
R-modules.

Lemma 2.6. Suppose that R is a coherent ring, and M an R-module with
GC-fdR(M) < ∞. For a nonnegative integer n, the following are equivalent.

(1) GC-fdR(M) ≤ n.

(2) TorRi>n(M,HomR(C, I)) = 0 for any injective module I.
(3) In every exact sequence 0 → Kn → Gn−1 → · · · → G0 → M → 0, with

Gi are GC-flat, Kn is also GC-flat.

Proof. (1) ⇔ (2) Since R is coherent, it follows from [17, Theorem 3.8] that
GC-fdR(M) ≤ n if and only if GC-idR(M

+) ≤ n. This, by the dual version
of [15, Proposition 2.12], is equivalent to that ExtiR(HomR(C, I),M

+) = 0
for any injective module I and i > n. Because ExtiR(HomR(C, I),M

+) ∼=
(TorRi (M,HomR(C, I)))

+ by [5, Chapter VI, Proposition 5.1], we get the de-
sired result.

(3) ⇒ (1) is trivial. Conversely, let 0 → Kn → Gn−1 → · · · → G0 → M → 0
be an exact sequence with all Gi are GC-flat. Then 0 → M+ → G+

0 → · · · →
G+

n−1 → K+
n → 0 is exact with all G+

i are GC-injective. The assumption
implies that GC-idR(M

+) ≤ n, and so K+
n is GC-injective by the dual version

of [15, Proposition 2.12] again. Thus Kn is GC-flat. □
By Lemma 2.6 and a standard argument, it is not difficult to get the following

result.

Proposition 2.7. Let R be a ring. The following are equivalent.

(1) R is GC-semihereditary.
(2) R is coherent and GC-wgl.dim(R) ≤ 1.
(3) R is coherent and every submodule of a GC-flat R-module is GC-flat.

The next result, together with Corollary 2.4, gives an affirmative answer to
Question A.

Theorem 2.8. If R is a GC-hereditary ring, then it is GC-semihereditary.

Proof. The coherence of R follows from Corollary 2.4. It follows from [16,
Corollary 4.6] that GC-wgl.dim(R) ≤ GC-gl.dim(R) ≤ 1. Thus R is GC-
semihereditary by Proposition 2.7. □
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Recall that an R-module M is called FP -injective if Ext1R(N,M) = 0 for
all finitely presented R-modules N . The FP -injective dimension of M , de-
noted by FP -id(M), is defined to be the least nonnegative integer n such that
Extn+1

R (N,M) = 0 for all finitely presented R-modules N . If no such n exists,
set FP -id(M) = ∞.

Lemma 2.9. Let R be a coherent ring. The following are equivalent.

(1) FP -id(C ⊗R P ) ≤ n for any projective R-module P .
(2) fd(HomR(C, I)) ≤ n for any injective R-module I.

Proof. (1) ⇒ (2) Let P be a projective R-module. The hypothesis implies that
Exti>n

R (N , C ⊗R P ) = 0 for all finitely presented R-modules N . Since R is

coherent, N ∈ gen∗(R). Thus TorRi>n((C⊗RP )+, N) ∼= (Exti>n
R (N , C⊗R P ))+

= 0 by [5, Chapter VI, Proposition 5.3]. This implies that fd(C ⊗R P )+ ≤ n,
and so fd(HomR(C,P

+)) ≤ n by the adjoint isomorphism.
For any injective R-module I, since P+ is also an injec-

tive cogenerator, I is a direct summands of
∏

P+. Thus
HomR(C, I) is a direct summands of HomR(C,

∏
P+) ∼=∏

HomR(C,P
+), and hence fd(HomR(C, I)) ≤ fd(

∏
HomR(C,

P+)) ≤ n from the coherence of R.
(2) ⇒ (1) Suppose F is a flat R-module, then F+ is injective, and so

fd(HomR(C,F
+)) ≤ n. The adjoint isomorphism HomR(C,F

+) ∼= (C ⊗R F )+

yields that fd(C ⊗R F )+ ≤ n. Thus, for any finitely presented R-module N ,

(Exti>n
R (N,C ⊗R F ))+ ∼= TorRi>n((C ⊗R F )+, N) = 0, and hence Exti>n

R (N ,
C ⊗R F ) = 0. Therefore, FP -id(C ⊗R F ) ≤ n, which completes the proof. □

The following result gives a partial answer to Question B.

Theorem 2.10. Let R be a ring with GC-wgl.dim(R) < ∞. If every finitely
generated submodule of a GC-projective R-module is GC-projective, then R is
GC-semihereditary.

Proof. Let M be a finitely presented R-module. There is an exact sequence

0 → K → P → M → 0

with P finitely generated projective. Note that R is coherent by Theorem
2.2, it follows that K is finitely generated. By the hypothesis, K is GC-
projective. Thus, one has that GC-pdR(M) ≤ 1 for every finitely presented
R-module M , and so Exti>1

R (M,C ⊗R Q) = 0 for any projective R-module Q
by [15, Proposition 2.12]. This means that FP -id(C ⊗R Q) ≤ 1. By Lemma
2.9, fd(HomR(C, I)) ≤ 1 for any injective R-module I, which implies that

TorRi>1(N,HomR(C, I)) = 0 for any R-module N . Since GC-fd(N) < ∞,
Lemma 2.6 yields that GC-fd(N) ≤ 1. Therefore, GC-wgl.dim(R) ≤ 1, and
hence R is GC-semihereditary by Proposition 2.7. □
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