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Abstract. In the paper, we study duality for vector equilibrium prob-

lems using a concept of generalized convexity in dealing with the quasi-
relative interior. Then, their applications to optimality conditions for
quasi-relative efficient solutions are obtained. Our results are extensions

of several existing ones in the literature when the ordering cones in both
the objective space and the constraint space have possibly empty interior.
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1. Introduction

Vector equilibrium problems and their applications have been intensively
developed since they include other problems, e.g., vector variational inequal-
ities, vector optimization problems, vector Nash equilibrium problems, etc.
Significant results in the literature are mainly related to the existence of so-
lutions ( [6, 27]), stability ( [1, 2, 15, 17]), solving algorithms ( [18, 31]), opti-
mality conditions ( [19, 24, 29, 30, 32, 33]), duality ( [25]), etc. Almost all of
the above-mentioned results, especially optimality conditions, were established
with ordering cones having nonempty interior. Nevertheless, in several infinite-
dimensional spaces, such as lp or Lp(Ω), the interior of the positive cone is
empty. To overcome this case, Borwein and Lewis introduced the quasi-relative
interior in [11], which can be considered as a further extension among other gen-
eralized interior, e.g., the core, the intrinsic core, and the strong quasi relative
interior, see [20,34]. By virtue of this concept, the quasi-relative efficient solu-
tion was introduced. This solution has been recently involved in some topics
of optimization problems, especially optimality conditions (see, e.g., [8, 22]).
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To the best of our knowledge, there have not been results on duality for
equilibrium problems in terms of quasi-relative efficient solutions. Inspired
by [13, 21], in this paper we study duality for vector equilibrium problems us-
ing the quasi-relative interior. The layout of the paper is as follows. Section
2 is devoted to preliminaries. In Section 3, we establish duality theorems for
quasi-relative efficient solutions of a constrained equilibrium problem and its
dual problem. Their applications to optimality conditions for set-valued opti-
mization problems are obtained to show that our results are generalizations of
several existing ones in the literature. Some concluding remarks are contained
in Section 4.

2. Preliminaries

Let X, Y be two normed spaces, C ⊆ Y be a convex cone. X∗ is the
dual space of X and ⟨., .⟩ is the canonical paring. N and Rk

+ stand for the set
of natural numbers and the nonnegative orthant of the k-dimensional space,
respectively (respectively, for short). For a subset A ⊆ X, intA, clA, coneA,
affA, and linA denote the interior, closure, conic hull, affine hull, and linear
hull of A, respectively. The notion lin0A is used for the linear space parallel
with the affine hull of A, that is, for some (every) a ∈ A,

lin0A := affA− a = lin(A− a) = lin(A−A).

For the above C, the dual cone of C is defined by

C∗ := {c∗ ∈ Y ∗|⟨c∗, c⟩ ≥ 0, ∀ c ∈ C}.
The domain, image, and graph of a set-valued mapping F : X → 2Y are

denoted by, respectively,

domF := {x ∈ X|F (x) ̸= ∅}, ImF := {y ∈ Y |y ∈ F (x)},
grF := {(x, y) ∈ X × Y |y ∈ F (x)}.

We denote F+(.) := F (.) + C.
Recall that the quasi-relative interior of a convex subset S ⊆ X, see [11], is

defined by

qriS := {x ∈ S|cl cone(S − x) is a linear subspace of X}.
Some properties of the quasi-relative interior are collected in the following.

Proposition 2.1. Let S ⊆ X be convex and qriS ̸= ∅. Then,

(i) if intS ̸= ∅, then intS = qriS;
(ii) qri(qriS) = qriS;
(iii) cl qriS = clS;
(iv) λqriS + (1− λ)S ⊆ qriS for all λ ∈ (0, 1], whence qriS is convex;
(v) if, additionally, S is a pointed cone, then 0 ̸∈ qriS and qriS ∪ {0} is a

cone;
(vi) if U ⊆ X is convex and qriU ̸= ∅, then qri(S × U) = qriS × qriU ;



1681 Anh

(vii) qriS = {x ∈ S|cl cone(S − x) = cl lin0S}.

Properties (i)-(vi) can be referred to [10,11], while the proof of (vii) is implied
by [34, Proposition 1.2.7].

Proposition 2.2 ([12, 16]). Let S ⊆ X be convex, qriS ̸= ∅, and x0 ∈ S. If
x0 ̸∈ qriS, then there exists x∗ ∈ X∗ \ {0} such that ⟨x∗, x0⟩ ≤ ⟨x∗, x⟩ for all
x ∈ S.

Definition 2.3. Let S ⊆ X, qriC ̸= ∅, and F : S → 2Y . The mapping F is
said to be generalized C-subconvexlike on S if cone+(F (S)) + qriC is convex,
where cone+(F (S)) := {ry|r > 0, y ∈ F (S)}.

The above definition proposes a generalized concept of convexity for a set-
valued mapping which are weaker than earlier ones, see [26, Definition 3.1 and
Lemma 3.2].

The following proposition gives us a sufficient condition for the generalized
C-subconvexlikeness of F .

Proposition 2.4. Let S ⊆ X, qriC ̸= ∅, and F : S → 2Y . Suppose that for
all λ ∈ [0, 1], x1, x2 ∈ S, there are x ∈ S, r > 0 such that

(2.1) λF (x1) + (1− λ)F (x2) ⊆ rF (x) + C.

Then, the mapping F is generalized C-subconvexlike on S.

Proof. We need to prove that cone+(F (S))+qriC is convex. Let any λ ∈ (0, 1),
k1, k2 ∈ cone+(F (S)) + qriC. Then, there exist xi ∈ S, yi ∈ F (xi), ri > 0,
ci ∈ qriC such that ki = riyi + ci, i = 1, 2. So, we get

λk1 + (1− λ)k2 = λ(r1y1 + c1) + (1− λ)(r2y2 + c2)

= (λr1y1 + (1− λ)r2y2) + λc1 + (1− λ)c2

= (λr1 + (1− λ)r2)

(
λr1

λr1 + (1− λ)r2
y1 +

(1− λ)r2
λr1 + (1− λ)r2

y2

)
+λc1 + (1− λ)c2

= r(βy1 + (1− β)y2) + c′,

where r := λr1+(1−λ)r2, β := λr1/(λr1+(1−λ)r2), and c′ := λc1+(1−λ)c2.
It follows from the convexity of C and Proposition 2.1(iv) that c′ ∈ qriC.

By the assumption, for all α ∈ (0, 1), x1, x2 ∈ S, there are x ∈ S, t > 0 with

(2.2) αF (x1) + (1− α)F (x2) ⊆ tF (x) + C.

Putting α := β in (2.2), we have

βy1 + (1− β)y2 ∈ βF (x1) + (1− β)F (x2)

⊆ tF (x) + C,
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i.e., there exist y ∈ F (x) and c0 ∈ C such that βy1+(1−β)y2 = ty+c0. Hence,

λk1 + (1− λ)k2 = r(ty + c0) + c′

= rty + rc0 + c′

∈ cone+(F (S)) + C + qriC

⊆ cone+(F (S)) + qriC (Proposition 2.1(iv),(v)).

Therefore, cone+(F (S)) + qriC is convex. □

The condition (2.1) is not necessary, by the following example.

Example 2.5 ( [26, Example 3.2]). Let X = Y = R2, S = {(x1, x2) ∈ X :
x1 + x2 = 1}, C = R+ × {0} ⊆ Y , and F : X → 2Y be defined by F (x1, x2) :=
{(x1, x2), (1/2, 1/2)} for all (x1, x2) ∈ S.

It is easy to see that intC = ∅, qriC = {(y, 0) ∈ Y |y > 0}, and cone+(F (S))+
qriC = {(y1, y2) ∈ Y |y1+y2 > 0}. Thus, cone+(F (S))+qriC is convex, i.e., the
mapping F is generalized C-subconvexlike on S. However, (2.1) does not hold.
Indeed, by choosing λ := 1/2 > 0, x := (−1, 2), and u := (2,−1) (x, u ∈ S),
one gets

λF (x) + (1− λ)F (u) = {(1/2, 1/2), (−1/4, 5/4), (5/4,−1/4)}.

It is enough to show that for all z = (z1, z2) ∈ S, r > 0,

{(1/2, 1/2), (−1/4, 5/4), (5/4,−1/4)} ⊈ rF (z) + C.

In fact, for any z = (z1, z2) ∈ S, we have the following three cases
• if z1, z2 ≥ 0, then {(5/4,−1/4), (−1/4, 5/4)} ⊈ rF (z) + C for all r > 0,
• if z1 > 0, z2 < 0, then (−1/4, 5/4) ̸∈ rF (z) + C for all r > 0,
• if z1 < 0, z2 > 0, then (5/4,−1/4) ̸∈ rF (z) + C for all r > 0.

Proposition 2.6. Let S ⊆ X, qriC ̸= ∅, and F : S → 2Y . Suppose that
F is generalized C-subconvexlike on S and qri(cone+F (S) + qriC) ̸= ∅. If
F (S) ∩ −qriC = ∅, then there exists c∗ ∈ C∗ \ {0} such that ⟨c∗, y⟩ ≥ 0 for all
y ∈ F (S).

Proof. We first prove that 0 ̸∈ cone+(F (S)) + qriC. Suppose to the contrary,
i.e., there exist x ∈ S, y ∈ F (x), and r > 0 such that 0 ∈ ry+qriC. Thus, we get
−y ∈ (1/r)qriC ⊆ qriC, which contradicts the assumption that F (S)∩−qriC =
∅. Hence, 0 ̸∈ cone+(F (S))+qriC, which implies 0 ̸∈ qri(cone+(F (S))+qriC).

By Proposition 2.2, there exists c∗ ∈ X∗ \ {0} such that ⟨c∗, y⟩ ≥ 0 for all
y ∈ cone+(F (S)) + qriC. So, for any x ∈ S, y ∈ F (x), c ∈ qriC, r > 0,

(2.3) ⟨c∗, ry + c⟩ ≥ 0.

Letting r = 1/n in (2.3) and taking n → +∞, we get ⟨c∗, c⟩ ≥ 0 for all c ∈ qriC.
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We next show that c∗ ∈ C∗. If not, there is c′ ∈ C with ⟨c∗, c′⟩ < 0. For
given c0 ∈ qriC, it follows from Proposition 2.1(iv) that for all t > 0,

1

2
c0 +

1

2
(tc′) ∈ qriC.

Thus, ⟨c∗, c0 + tc′⟩ ≥ 0 for all t > 0, which is impossible since ⟨c∗, c′⟩ < 0.
Hence, c∗ ∈ C∗.

Moreover, taking r := 1 and c := c0 (with some c0 ∈ qriC) in (2.3), then,
for each y ∈ F (S),

⟨c∗, y⟩+ 1

n
⟨c∗, c0⟩ ≥ 0.

When n → +∞, we get that ⟨c∗, y⟩ ≥ 0, and the proof is completed. □

To illustrate Proposition 2.6, we consider the following example.

Example 2.7. Let X = l2, Y = R× l2, C = R+ × l2+, and S = l2+, where

l2 :=

{
x = {xn}n∈N |xn ∈ R, ∀n ∈ N, and

+∞∑
n=1

x2
n < +∞

}
,

l2+ :=
{
x = {xn}n∈N ∈ Z|xn ≥ 0, ∀n ∈ N

}
.

Let F : X → 2Y be given by, for all x = {xn}n∈N ∈ X,

F (x) :=

{
{(y1, y1) ∈ Y |y1 ≥ ⟨λ, x⟩, y2 = −x}, if x ∈ S,
∅, otherwise,

where λ = {λn}n∈N, λn =
1

n
for all n ∈ N.

It is easy to check that qriC = intR+×{{xn}n∈N ⊆ l2|xn > 0, ∀n ∈ N}, and
all assumptions of Proposition 2.6 are satisfied. We can choose c∗ = (1, λ) ∈
C∗ \ {(0, 0)} such that ⟨c∗, y⟩ ≥ 0 for all y ∈ F (S).

The generalized C-subconvexlikeness of F in Proposition 2.6 cannot be dis-
pensed as illustrated by

Example 2.8. Let X = R, Y = R2, C = R2
+, and consider a map F : X → 2Y

defined by F (x) = {(y1, y2) ∈ Y |y1 = x, y2 ≥ −x3} for all x ∈ X. It is obvious
to see that qriC = {(y1, y2) ∈ Y |y1 > 0, y2 > 0} and F (X) ∩ −qriC = ∅.
However, F is not generalized C-subconvexlike, since cone+(F (X)) + qriC is
not convex. Thus, the conclusion of Proposition 2.6 is not fulfilled. Indeed, let
any c∗ = (c∗1, c

∗
2) ∈ C∗(= R2

+), y = (y1, y2) ∈ F (X) such that ⟨c∗, y⟩ ≥ 0, then

c∗1y1 − c∗2y
3
1 ≥ 0.

By taking y1 ∈ X, the above inequality implies c∗1 = y21c
∗
2. Hence, c∗1 = c∗2 = 0.
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3. Duality

In this section, let X,Y, Z be normed spaces, S ⊆ X, and C ⊆ Y , D ⊆ Z
be convex cones with qriC × qriD ̸= ∅. We consider the following vector
equilibrium problem (VEP)

find x0 ∈ S such that, for all x ∈ Ω := {x ∈ S|G(x) ∩ −D ̸= ∅},

F (x0, x) ∩ −qriC = ∅,
where F : S × S → 2Y , G : S → 2Z .

Assume that F (x1, x2) ̸= ∅, G(x) ̸= ∅ for all x1, x2, x ∈ S. By setting
Fx0(x) := F (x0, x) for x0, x ∈ S and Fx0(S) :=

∪
x∈S Fx0(x), a feasible point

x0 ∈ Ω is said to be a quasi-relative efficient solution of (VEP) if Fx0(Ω) ∩
−qriC = ∅. When intC ̸= ∅, this point is called a weakly efficient solution.

Inspired by [21], we consider the Mond-Weir dual of Lagrange type of (VEP),
denoted by (DMWVEP), as follows.

maximize y,

inf
(v,w)∈(Fx0

,G)
+
(S)

{⟨c∗, v⟩+ ⟨d∗, w⟩} ≥ ⟨c∗, y⟩ ,(3.1)

(3.2) (c∗, d∗) ∈ (C∗ ×D∗) \ {(0, 0)},

(3.3) x ∈ Ω, y ∈ Fx0(x).

Remark 3.1. (i) From (DMWVEP), we can get the Mond-Weir dual type ex-
pressed in terms of generalized derivatives, for example, the contingent varia-
tion in [24], the weak contingent epiderivative in [14], the contingent derivative
in [28], the Studniarski derivaitve in [3], etc. To illustrate this statement, we
now establish the Mond-Weir dual type in terms of the Studniarski derivative.
Recall that the Studniarski derivative of a set-valued mapping F : X → 2Y at
(x0, y0) ∈ grF is defined by (see [3])

Dm
S F (x0, y0)(u) := {v ∈ Y |∃tn → 0+, (un, vn) → (u, v),

y0 + tmn vn ∈ F (x0 + tnun)}.
Assume that (domFx0) ∩ (domG) ⊆ S. Letting x ∈ Ω and (y, z) ∈

(Fx0 , G)(x), one needs to imply that

(3.4)


⟨c∗, y′⟩+ ⟨d∗, z′⟩ ≥ 0, ∀(y′, z′) ∈ Dm

S (Fx0 , G)+(x, y, z)(u), ∀u ∈ X,

⟨d∗, z⟩ ≥ 0,

(c∗, d∗) ∈ (C∗ ×D∗) \ {(0, 0)}.

Indeed, putting v := y and w := z in (3.1), one has ⟨d∗, z⟩ ≥ 0. In fact,
we get ⟨d∗, z⟩ = 0 since z ∈ G(x) ∩ −D (x ∈ Ω). On the other hand, with
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any (y′, z′) ∈ Dm
S (Fx0 , G)+(x, y, z)(u), there exist tn → 0+, (un, vn, wn) →

(u, y′, z′) such that

(y, z) + tmn (vn, wn) ∈ (Fx0 , G)(x+ tnun) + C ×D,

so

(y, z) + tmn (vn, wn) ∈ (Fx0 , G)(S) + C ×D.

It follows from (3.1) that

⟨c∗, y + tmn vn⟩+ ⟨d∗, z + tmn wn⟩ ≥ ⟨c∗, y⟩ ,
i.e., ⟨c∗, y′⟩+ ⟨d∗, z′⟩ ≥ 0. Hence, the constraints (3.4) are obtained.

However, (3.1) cannot be implied from the conditions (3.4) by illustrating
in Example 3.2 below.

(ii) We can also propose the Wolfe dual of Lagrange type of (VEP) by

(DWVEP)



maximize ⟨c∗, y⟩+ ⟨d∗, z⟩ ,
inf

(v,w)∈(Fx0 ,G)+(S)
{⟨c∗, v⟩+ ⟨d∗, w⟩} ≥ ⟨c∗, y⟩ ,

(c∗, d∗) ∈ (C∗ ×D∗) \ {(0, 0)},
x ∈ Ω, y ∈ Fx0

(x), z ∈ G(x) ∩ −D.

The Wolfe dual type presented in terms of generalized derivatives, see [14,24],
can be implied from (DWVEP) similarly.

Example 3.2. Let X = R2, Y = Z = R, S = X, C = D = R+, and F :
X ×X → 2Y , G : X → 2Z be defined by

F (x1, x2) :=

 {x2
1 + x2

2}, if (x1, x2) ∈ R2
+,

{−2}, otherwise,

G(x) :=

 R+, if x ∈ R+,

{−1}, otherwise.

Let x = 0, y = 0 ∈ F0(x), and z = 0 ∈ (G(x) ∩ (−D)). By calculating, we get

D2
S(F0, G)+(x, y, z)(u) =

 {u2} × R+, if u ∈ R+,

∅, otherwise.

It is obvious that three relations in (∗) are fulfilled for all (c∗, d∗) ∈ R2
+\{(0, 0)}.

However, (3.1) does not hold since ⟨c∗, y⟩ = 0, while

inf
(v,w)∈(Fx0 ,G)+(S)

{⟨c∗, v⟩+ ⟨d∗, w⟩} < 0.

In this paper, we discuss only duality theorems for (VEP)-(DMWVEP) prob-
lems. Results in the Wolfe dual type can be obtained by similar proofs.
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A feasible point (c∗, d∗, y0) is said to be a quasi-relative efficient solution of
(DMWVEP) with respect to x0 if (∆− y0) ∩ qriC = ∅, where

∆ := {y ∈ Y |∃(c∗, d∗) ∈ (C∗ ×D∗) \ {(0, 0)} such that

(c∗, d∗, y) satisfies the constraints of (DMWVEP)}.
The weak, strong, and converse duality theorems for (VEP) and (DMWVEP)

are established as follows.

Theorem 3.3 (Weak duality). If x̂ is a feasible point of (VEP) and (c∗, d∗, y)
is a feasible point (DMWVEP) with respect to x0, then ⟨c∗, y⟩ ≤ ⟨c∗, y⟩ for all
y ∈ Fx0(x̂).

Proof. Since x̂ ∈ Ω, there exists ẑ ∈ G(x̂) ∩ −D. Besides, it follows from the
feasibility of (c∗, d∗, y) that

⟨c∗, y⟩ ≤ inf
(y,z)∈(Fx0 ,G)+(S)

{⟨c∗, y⟩+ ⟨d∗, z⟩}

≤ ⟨c∗, y⟩+ ⟨d∗, z⟩ for all (y, z) ∈ (Fx0 , G)(S)

≤ ⟨c∗, y⟩+ ⟨d∗, ẑ⟩ for all y ∈ Fx0
(x̂)

≤ ⟨c∗, y⟩ (since ẑ ∈ −D and d∗ ∈ D∗),

and the proof is completed. □
Theorem 3.4 (Strong duality). Let x0 ∈ Ω, y0 ∈ Fx0(x0) : y0 ∈ −C, and
z0 ∈ G(x0)∩−D. Suppose that x0 is a quasi-relative efficient solution of (VEP),
(Fx0 −y0, G)+ is generalized (C×D)-subconvexlike on S, and qri(cone+((Fx0 −
y0, G)+(S)) + qri(C × D)) ̸= ∅. Then, there exists (c∗, d∗) ∈ (C∗ × D∗) \
{(0, 0)} such that (c∗, d∗, y0) is a feasible point of (DMWVEP) with respect to
x0. If, additionally, the inequality of (3.1) is strict for all feasible points, then
(c∗, d∗, y0) is a quasi-relative efficient solution.

Proof. Since x0 is a quasi-relative efficient solution of (VEP), we get

(Fx0 , G)(S) ∩ −qri(C ×D) = ∅.
Since y0 ∈ −C, we have

(Fx0 − y0, G)+(S) ∩ −qri(C ×D) = ∅.
By Proposition 2.6, there exists (c∗, d∗) ∈ (Y ∗ ×Z∗) \ {(0, 0)} such that for all
(y, z) ∈ (Fx0 − y0, G)+(S),

⟨c∗, y⟩+ ⟨d∗, z⟩ ≥ 0,

equivalently, for all (y, z) ∈ (Fx0 , G)(S), (c, d) ∈ C ×D,

(3.5) ⟨c∗, y − y0 + c⟩+ ⟨d∗, z + d⟩ ≥ 0.

Let y = y0, c = 0, and z = z0 in (3.5), we get that ⟨d∗, z0 + d⟩ ≥ 0. Because
D is a cone, it implies that ⟨d∗, d⟩ ≥ 0 for all d ∈ D, i.e., d∗ ∈ D∗. Besides,
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it follows from (3.5) that ⟨d∗, z0⟩ ≥ 0 (with y = y0, c = 0, and d = 0). Thus,
⟨d∗, z0⟩ = 0 (since z0 ∈ −D and d∗ ∈ D∗).

Taking y = y0, z = z0, and d = 0 in (3.5), we get that ⟨c∗, c⟩ ≥ 0 for all
c ∈ C, i.e., c∗ ∈ C∗. Moreover, (3.5) implies that (3.1) holds for (c∗, d∗, y0).
Hence, (c∗, d∗, y0) is a feasible point of (DMWVEP) with respect to x0.

We next prove that (c∗, d∗, y0) is a quasi-relative efficient solution. Suppose

to the contrary, i.e., there is (ĉ∗, d̂∗, ŷ) satisfying (3.1), (3.2) and ŷ− y0 ∈ qriC.

By the assumption and the feasibility of (ĉ∗, d̂∗, ŷ), we get

⟨ĉ∗, y0 − ŷ⟩ > 0,

which contradicts that ⟨ĉ∗, y0 − ŷ⟩ ≤ 0 since y0 − ŷ ∈ −qriC and ĉ∗ ∈ C∗. □

Theorem 3.5 (Converse duality). Let x0 ∈ Ω, y0 ∈ Fx0(x0) : y0 ∈ C. Suppose
that (c∗, d∗, y0) is a feasible point of (DMWVEP) with respect to x0 such that
(3.1) is a strict inequality. Then, x0 is a quasi-relative efficient solution of
(VEP).

Proof. Suppose that x0 is not a quasi-relative efficient solution of (VEP), i.e.,
there exist x ∈ S, y ∈ Fx0(x), and z ∈ G(x) ∩−D such that y ∈ −qriC, which
implies that

y − y0 ∈ −qriC − C ⊆ −qriC.

Thus, ⟨c∗, y − y0⟩ ≤ 0. By the assumption, we get

⟨c∗, y − y0⟩ > −⟨d∗, z⟩ ≥ 0,

which is a contradiction. □

We now apply the above duality results to equilibrium conditions for quasi-
relative efficient solutions of (VEP) in dealing with Fritz-John and Kuhn-Tucker
types. The next theorem can be expressed in terms of all generalized derivatives
defined in the primal space, such as the contingent derivative (see [7]), variants
of (generalized) contingent epiderivatives (see [9, 14, 23, 32]), radial sets and
radial derivatives (see [4,5]), etc. Here, we prove the statement using the higher-
order contingent derivaitve, known as the first and the most popular derivative
for set-valued mappings. Recall that the mth-order contingent derivative of a
set-valued mapping F : X → 2Y at (x0, y0) ∈ grF with respect to (ui, vi) ∈
X × Y , i = 1, . . . ,m− 1, is defined by

DmF (x0, y0, u1, v1, . . . , um−1, vm−1)(u) := {v ∈ Y |∃tn → 0+, ∃(un, vn) → (u, v),

y0 + tnv1 + ...+ tm−1
n um−1 + tmn vn ∈ F (x0 + tnu1 + ...+ tm−1

n um−1 + tmn un)}.

Theorem 3.6. Let x0 ∈ Ω, y0 ∈ Fx0(x0), z0 ∈ G(x0) ∩ −D, and (ui, vi, wi) ∈
X × Y × Z, i = 1 . . .m− 1.
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(i) (Necessary condition) Suppose that y0 ∈ −C, (vi, wi) ∈ (−C)× (−D),
i = 1 . . .m−1, x0 is a quasi-relative efficient solution of (VEP), (Fx0 −
y0, G)+ is generalized (C×D)-subconvexlike on S, and qri(cone((Fx0 −
y0, G)+(S))+qri(C×D)) ̸= ∅. Then, there exists (c∗, d∗) ∈ (C∗×D∗)\
{(0, 0)} such that for all (y, z) ∈ Dm(Fx0 , G)+(x0, y0, z0, u1, v1, w1 . . .
um−1, vm−1, wm−1)(Υ), where Υ := domDm(Fx0 , G)+(x0, y0, z0, u1, v1,
w1 . . . um−1, vm−1, wm−1),

(3.6) ⟨c∗, y⟩+ ⟨d∗, z⟩ ≥ 0,

and

(3.7) ⟨d∗, z0⟩ = 0.

If, additionally, there exists x ∈ S: ⟨d∗, G(x)⟩ ∩ −intR+ ̸= ∅, then
c∗ ̸= 0.

(ii) (Sufficient condition) Assume that y0 ∈ C and the following condition
is satisfied

(3.8) F (x)− y0 ⊆ Dm(Fx0 , G)+(x0, y0, z0, u1, v1, w1 . . . um−1, vm−1, wm−1)(x− x0).

If there is (c∗, d∗) ∈ (C∗ ×D∗) \ {(0, 0)} such that (3.6) (being a strict
inequality) and (3.7) hold, then x0 is a quasi-relative efficient solution
of (VEP).

Proof. (i) By the proof of Theorem 3.4, there exists (c∗, d∗) ∈ (C∗ × D∗) \
{(0, 0)} such that ⟨d∗, z0⟩ = 0 and for all (y, z) ∈ (Fx0 , G)+(S),

(3.9) ⟨c∗, y − y0⟩+ ⟨d∗, z − z0⟩ ≥ 0.

Let u ∈ domDm(Fx0 , G)+(x0, y0, z0, u1, v1, w1 . . . um−1, vm−1, wm−1), (y, z) ∈
Dm(Fx0 , G)+(x0, y0, z0, u1, v1, w1 . . . um−1, vm−1, wm−1)(u), then there exist
tn → 0+, {xn}n∈N ⊆ S, and (yn, zn) ∈ (Fx0 , G)(xn) for all n such that

xn − x0 − tnu1 − · · · − tm−1
n um−1

tmn
→ u,

yn − y0 − tnv1 − · · · − tm−1
n vm−1

tmn
→ y,

zn − z0 − tnw1 − · · · − tm−1
n wm−1

tmn
→ z.

Since (vi, wi) ∈ (−C)× (−D), it follows from (3.9) that⟨
c∗,

yn − y0 − tnv1 − · · · − tm−1
n vm−1

tmn

⟩
+

⟨
d∗,

zn − z0 − tnw1 − · · · − tm−1
n wm−1

tmn

⟩
≥ 0.

Taking n → +∞, we get
⟨d∗, y⟩+ ⟨d∗, z⟩ ≥ 0.
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If, additionally, there exists x ∈ S: ⟨d∗, G(x)⟩ ∩ −intR+ ̸= ∅, we prove that
c∗ ̸= 0. Suppose to the contrary, i.e., c∗ = 0, so d∗ ̸= 0. By the assumption,
there exists z ∈ G(x) with ⟨d∗, z⟩ < 0. However, it follows from (3.9) that
⟨d∗, z⟩ ≥ 0, which is a contradiction.

(ii) It is similar to the proof of Theorem 3.5. □

Remark 3.7. (i) A sufficient condition of (3.8) was given in [28, Proposition
3.2].

(ii) Theorem 3.6 is an extension of several existing results in the literature
concering equilibrium conditions for (VEP) in terms of generalized derivatives,
such as [19, Theorem 3.1], [29, Theorem 3.1], [30, Propositions 4.1, 5.1, 5.2], [32,
Theorem 4.5], [33, Theorem 3.2], to the case that the ordering cone in both the
objective space and the constraint space have empty interior. Moreover, the
convexity condition in the paper is weaker than that in the above-mentioned
papers.

(iii) If intC ̸= ∅, Theorems 3.4-3.6 give us strong duality, converse duality,
and equilibrium conditions for weakly efficient solutions of (VEP), respectively,
in the case of constraint cone D having possibly empty interior. In this case,
the conditions that (3.1) (for Theorems 3.4, 3.5) and (3.6) (for Theorem 3.6)
are strict inequalities can be omitted. The reaseon is that intC is open, while
qriC is not. Results for some kinds of solutions for (VEP), e.g., Pareto efficient
solution, Henig efficient solutions, and other types of proper efficient solutions,
see [5, 22], can be implied similarly when intD = ∅.

To illustrate Remark 3.7(iii), we consider the following examples.

Example 3.8. Let X = Z = l2, Y = R, C = R+, S = X, and D = l2+. We
define the mappings F : X ×X → Y and G : X → Z by, for c = {cn}n∈N ∈ l2+,
cn = 1/n2 for all n ∈ N, x1, x2, x ∈ X,

F (x1, x2) := {y ∈ Y |y ≥ ⟨c, x1 + x2⟩}, G(x) := −x.

Then, Ω := {x ∈ S|G(x) ∩−D ̸= ∅} = l2+. Let x0 = 0l2 ∈ Ω, y0 = 0 ∈ Fx0(x0),
z0 = 0l2 . By calculating, we get

D(Fx0 , G)+(x0, y0, z0)(u) = {(⟨c, u⟩,−u)}+ C ×D.

Then, there exists (c∗, d∗) = (1, c) ∈ (C∗ ×D∗) \ {(0, 0)} such that (3.6) and
(3.7) hold. It follows from Theorem 3.6(ii) that x0 is a weakly efficient solution
of (VEP).

Example 3.9. Let X = Y = R, Z = l2, S = C = R+, and D = l2+. For
given λ = {λn}n∈N ∈ l2+, λn = 1/n for all n ∈ N, we consider the mapping
F : S × S → Y and G : S → Z defined by

F (x1, x2) := {y ∈ Y |y ≥ −
√
x1 −

√
x2}, G(x) := −xλ.

Then, Ω := {x ∈ S|G(x) ∩ −D ̸= ∅} = S.
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Let x0 = 0 ∈ Ω, y0 = 0 ∈ Fx0(x0), and z0 = 0l2 . It is easy to check
that (Fx0 − y0, G)+ is generalized (C × D)-subconvexlike on S. Moreover,
qri(cone((Fx0 − y0, G)+(S)) + intC × qriD)) ̸= ∅ and for all u ≥ 0,

D(Fx0 , G)+(x0, y0, z0)(u) = R× ({−uλ}+D).

Suppose that there exists (c∗, d∗) ∈ C∗ ×D∗ such that (3.6) and (3.7) hold.
Then for all x ≥ 0, u ∈ R, we have

c∗(u) + ⟨d∗,−xλ⟩ ≥ ⟨c∗, y0⟩ = 0.

With u = −1, one gets

c∗ +
√
x⟨d∗, λ⟩ ≤ 0,

which implies that c∗ = 0 and d∗ = 0l2 . By Theorem 3.6(i), x0 is not a weakly
efficient solution of (VEP)

In the rest of this section, we consider the following constrained set-valued
optimization problem. Let X,Y, Z, S,C,D and G be as for (VEP), and H :
X → 2Y , our problem is

(SOP) MinimizeH(u) subject to u ∈ Ω,

where Ω := {u ∈ S|G(u) ∩ −D ̸= ∅}.
A point (u0, v0) ∈ grH is said to be a quasi-relative efficient solution of

(SOP) if u0 ∈ Ω and (H(Ω)− v0) ∩ −qriC = ∅.
By setting F (x, u) := H(u) − v0 for x, u ∈ S, (SOP) become a special case

of (VEP).
The Mond-Weir dual of Lagrange type (DMWSOP) of (SOP) is defined by

maximize v

inf
(k,z)∈(H,G)+(S)

{⟨c∗, k⟩+ ⟨d∗, z⟩} ≥ ⟨c∗, v⟩ ,(3.10)

(3.11) (c∗, d∗) ∈ (C∗ ×D∗) \ {(0, 0)}, and v ∈ F (u0, u), u ∈ Ω.

A feasible point (c∗, d∗, v0) is said to be a quasi-relative efficient solution of
(DMWSOP) if (∆′ − v0) ∩ qriC = ∅, where

∆′ := {v ∈ Y |∃(c∗, d∗) ∈ (C∗ ×D∗) \ {(0, 0)} such that

(c∗, d∗, v) satisfies the constraints of (DMWSOP)}.

Remark 3.10. (c∗, d∗, v) is a feasible point of (DMWSOP) if and only if (c∗, d∗, 0)
is a feasible point of (DMWVEP) with respect to u0, for some u0 ∈ S and
Fu0(u) := H(u)− v.

Duality theorems for (SOP)-(DMWSOP) and optimality conditions for
(SOP) can be obtained directly from corresponding results of (VEP)-
(DMWVEP) as follows.
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Theorem 3.11. (i) (Weak duality) If (û, v̂) ∈ grH is a feasible point of
(SOP) and (c∗, d∗, v) is a feasible point (DMWSOP), then ⟨c∗, v⟩ ≤
⟨c∗, v̂⟩.

(ii) (Strong duality) Let u0 ∈ Ω, v0 ∈ H(u0), and z0 ∈ G(u0) ∩ −D.
Suppose that u0 is a quasi-relative efficient solution of (SOP), (H −
v0, G)+ is generalized (C×D)-subconvexlike on S, and qri(cone+((H−
v0, G)+(S)) + qri(C × D)) ̸= ∅. Then, there exists (c∗, d∗) ∈ (C∗ ×
D∗) \ {(0, 0)} such that (c∗, d∗, v0) is a feasible point of (DMWSOP).
If, additionally, the inequality of (3.10) is strict for all feasible points,
then (c∗, d∗, v0) is a quasi-relative efficient solution.

(iii) (Converse duality) Let u0 ∈ Ω and v0 ∈ H(u0). Suppose that (c
∗, d∗, v0)

is a feasible point of (DMWSOP) such that (3.10) is a strict inequality.
Then, u0 is a quasi-relative efficient solution of (SOP).

Proof. (i) Set Fû(u) := H(u) − v, it follows from Remark 3.10 that (c∗, d∗, 0)
is a feasible point of (DMWVEP) with respect to û. Since û is also a feasible
point of (VEP), from Theorem 3.3, we get for all v ∈ Fû(û),

⟨c∗, 0⟩ ≤ ⟨c∗, v⟩,

equivalently, for all v ∈ H(û),

0 ≤ ⟨c∗, v − v⟩,

which implies that ⟨c∗, v⟩ ≤ ⟨c∗, v̂⟩.
(ii) and (iii) follow immediately from Theorems 3.4, 3.5 with x0 := u0,

Fx0(u) := H(u)− v0, y0 := 0 (y0 ∈ Fx0(x0)). □

Theorem 3.12. Let u0 ∈ Ω, v0 ∈ H(u0), z0 ∈ G(x0) ∩ −D and (ui, vi, wi) ∈
X × Y × Z.

(i) (Necessary condition) Suppose that (v1, w1) ∈ (−C) × (−D), i =
1 . . .m − 1, u0 is a quasi-relative efficient solution of (SOP),
(H − v0, G)+ is generalized (C × D)-subconvexlike on S, and
qri(cone((H − v0, G)+(S)) + qri(C × D)) ̸= ∅. Then, there ex-
ists (c∗, d∗) ∈ (C∗ × D∗) \ {(0, 0)} such that for all (v, w) ∈
Dm(H,G)+(x0, y0, z0, u1, v1, w1 . . . um−1, vm−1, wm−1)(Λ), where Λ :=
domDm(H,G)+(x0, y0, z0, u1, v1, w1 . . . um−1, vm−1, wm−1)

(3.12) ⟨c∗, v⟩+ ⟨d∗, w⟩ ≥ 0,

and

(3.13) ⟨d∗, z0⟩ = 0.

If, additionally, there exists x ∈ S: ⟨d∗, G(x)⟩ ∩ −intR+ ̸= ∅, then
c∗ ̸= 0.
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(ii) (Sufficient condition) Assume that the condition (3.8) is fulfilled for
(H,G) and there is (c∗, d∗) ∈ (C∗ × D∗) \ {(0, 0)} such that (3.12)
(being a strict inequality) and (3.13) hold. Then, u0 is a quasi-relative
efficient solution of (SOP).

Proof. It follows from Theorem 3.6 with x0 := u0, Fx0(u) := H(u)−v0, y0 := 0
(y0 ∈ Fx0(x0)). □

Remark 3.13. (i) Remarks 3.1 and 3.7(iii) are still valid for (SOP) and re-
sults similar to Theorem 3.12 in terms of other generalized derivatives can be
established for (SOP).

(ii) If the mapping F and G are single-valued and intC ̸= ∅, (SOP)-
(DMWSOP) reduce to (PVC)-(DVCL) in [21] with respect to weakly efficient
solutions. Thus, Theorems 3.11, 3.12 can be considered as extended results on
duality and optimality conditions of (PVC) and (DVCL) from a single-valued
optimization problem with ordering cones having nonempty interior to a set-
valued optimization problem relative to nonsolid cones.

4. Conclusions

The paper has been devoted to duality for vector equilibrium problems
(VEP) with constraints relative to set-valued mappings. The new results have
been expressed in terms of quasi-relative efficient solutions. They are exten-
sions of weakly efficient solutions when the ordering cone in the objective space
has empty interior. Their applications to optimality conditions for (VEP) have
been established with respect to nonsolid cones. Since (SOP) is a particular
case of (VEP), one has obtained results on duality and optimality conditions
of (SOP) from the corresponding ones of (VEP) immediately. They are exten-
sions of (PVC) and (DVCL) in [21] to the case of nonsolid cones and set-valued
mappings. We have also provided several examples to illustate our results and
to ensure that our assumptions are essential.

In [21], duality theorems of (PVC) and (DVCL) were established in Theo-
rem 14 under some regularity conditions. Thus, for possible developments of
our work, we intend to extend these conditions to the case of set-valued opti-
mization with ordering cones having empty interior. On the other hand, for
an equilibrium problem of the Stampacchia type (like the one under consid-
eration here), the corresponding Minty problem is usually taken for its dual,
see [2, 17, 25]. This dual problem is relative to the dual relationship between
minsup-points and maxinf-points. A natural question arises: is there any con-
nection between such dual scheme and the dual problem proposed in the paper?
Finding the answer for this question is a promising study.
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[13] R.I. Boţ and S.M. Grad, Wolfe duality and Mond-Weir duality via perturbations, Non-
linear Anal. 73 (2010) 374–384.

[14] C.R. Chen, S.J. Li and K.L. Teo, Higher-order weak epiderivatives and applications to
duality and optimality conditions, Comp. Math. Appl. 57 (2009) 1389–1399.

[15] C.R. Chen, S.J. Li and K.L. Teo, Solutions semicontinuity of parametric generalized
vector equilibrium problems, J. Global Optim. 45 (2009) 309–318.
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