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Abstract. For a meromorphic function f in the complex plane, we shall
introduce the notion of five-value rich line of f , and study the uniqueness
of meromorphic functions of finite order in an angular domain by involving

the five-value rich line and Borel directions. Finally, the relationship
between a five-value rich line and a Borel direction is discussed, that
is, every Borel direction of f is its five-value rich line, and the inverse

statement holds when f is of infinite order.
Keywords: Borel direction, five-value rich line, meromorphic function,
sharing value, uniqueness.
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1. Introduction and main results

As usual, the abbreviations IM and CM refer to sharing values ignoring
multiplicities and counting multiplicities in a domain D ⊆ C, respectively,
where C denotes the complex plane. In addition, ρ(f) denotes the order of
growth of a meromorphic function f in C. For further notation and basic
results in Nevanlinna theory, we refer to [8, 20].

In [14], Nevanlinna proved the remarkable five-value theorem and four-value
theorem by using his value distribution theory. We recall the former result as
follows.

Theorem 1.1 ([14]). Let f and g be two non-constant meromorphic functions
in C, and let ai ∈ C̄ = C ∪ {∞}, i = 1, 2, 3, 4, 5, be five distinct values. If f
and g share the values ai, i = 1, 2, 3, 4, 5, IM in C, then f = g.

The five-value and four-value theorems gave birth to a new research field
nowadays known as the uniqueness theory [22]. In [25, 26] Zheng obtained
analogues of these two fundamental theorems valid for meromorphic functions

Article electronically published on 31 October, 2017.

Received: 31 October 2015, Accepted: 17 September 2016.

c⃝2017 Iranian Mathematical Society

1467



Five-value rich lines, Borel directions and uniqueness 1468

in angular domains. Further development on such results can be found in
[1, 10–13,18,24].

In this paper we consider uniqueness theory in an angular domain by using
the concept of proximate order and type. The following result is our starting
point.

Theorem 1.2 ([9]). Let B(r) be a positive and continuous function in [0,∞)

which satisfies lim sup
r→∞

logB(r)

log r
= ∞. Then there exists a continuously differ-

entiable function ρ(r), which satisfies the following conditions.

(i) ρ(r) is continuous and nondecreasing for r ≥ r0 and tends to ∞ as
r → ∞, where r0 > 0 is a constant;

(ii) The function U(r) = rρ(r), r ≥ r0, satisfies the condition

lim
r→∞

logU(R)

logU(r)
= 1, R = r +

r

logU(r)
;

(iii)

lim sup
r→∞

logB(r)

logU(r)
= 1.

Theorem 1.2 is due to Hiong [9]. A simple proof of the existence of ρ(r) was
given by Chuang [2].

Definition 1.3. We call ρ(r) and U(r) discussed in Theorem 1.2 as the proxi-
mate order and type function of B(r), respectively. For a meromorphic function
f of infinite order, we define its proximate order and type function as the prox-
imate order and type function of T (r, f). If ρ(r) is a proximate order of a
meromorphic function f of infinite order in C, we denote by M(ρ(r)) the set
of all meromorphic functions g in C such that

lim sup
r→∞

log T (r, g)

ρ(r) log r
≤ 1.

In order to recall the definition of the Borel direction, we also need the
following notation. For 0 ≤ θ < 2π and δ ∈ (0, π), define

∆(θ, δ) = {z : | arg z − θ| ≤ δ}.
Next we define a Borel direction of order ρ(r). The concept is originally due
to Hiong [9], and it can also be found in [3, p. 140] or [4].

Definition 1.4. Suppose that ρ(r) is a proximate order of a meromorphic
function f of infinite order in C. A ray arg z = θ ∈ [0, 2π) from the origin is
called a Borel direction of order ρ(r) of f , if for any ε > 0,

lim sup
r→∞

log n(r,∆(θ, ε), 1
f−a )

ρ(r) log r
= 1,(1.1)
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for all a ∈ C̄, with at most two exceptions, where n(r,∆(θ, ε), 1
f−a ) denotes the

number of zeros of f − a in ∆(θ, ε) ∩ {z : |z| ≤ r}, each zero of f − a being
counted according to its multiplicity; the zeros are replaced with poles of f if
a = ∞.

It is well known that every meromorphic function of infinite order must have
at least one Borel direction of order ρ(r). The proof can be found in [3, pp.
140-145]. Next we also need the definition of Borel direction of order ρ ∈ (0,∞),
which can be found in [20, pp. 83-84].

Definition 1.5. Let f be a meromorphic function of finite positive order ρ in
C. A ray arg z = θ ∈ [0, 2π) from the origin is called a Borel direction of order
ρ of f , if for any ε > 0,

lim sup
r→∞

log n(r,∆(θ, ε), 1
f−a )

log r
= ρ,(1.2)

for all a ∈ C̄, with at most two exceptions.

According to the fundamental result [20, Theorem 3.8] due to Valiron, a
meromorphic function of finite positive order ρ must have at least one Borel
direction of order ρ. In the theory of angular value distribution of meromorphic
functions, Borel directions play a fundamental role [5,15–17,19,21,23]. In [13]
the authors take advantage of the proximate order, and prove the following
uniqueness result in an angular domain.

Theorem 1.6 ([13]). Let ρ(r) be a proximate order of a meromorphic function
f of infinite order in C, and let g ∈ M(ρ(r)). Suppose that arg z = θ ∈ [0, 2π)
is a Borel direction of order ρ(r) of f . If for any ε > 0, the functions f and g
share five distinct values ai ∈ C̄, i = 1, 2, 3, 4, 5, IM in ∆(θ, ε), then f = g.

By Theorem 1.6, we can pose the question: What can we say if f and g
are two non-constant meromorphic functions of finite order? To approach this
question, we need a new technique. To this end, we introduce the definition of
five-value rich line.

Definition 1.7. Let f be a non-constant meromorphic function in C, and let
ai ∈ C̄, i = 1, 2, 3, 4, 5, be any five distinct values. A ray arg z = θ ∈ [0, 2π)
from the origin is called a five-value rich line of f , if for any ε > 0, either

lim sup
r→∞

log
5∑

i=1

n(r,∆(θ, ε),
1

f − ai
)

log r
= ρ(f)(1.3)
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when f is of finite positive order ρ(f), or

lim sup
r→∞

log
5∑

i=1

n(r,∆(θ, ε),
1

f − ai
)

ρ(r) log r
= 1(1.4)

when f is of infinite order, where ρ(r) is a proximate order of f .

For stating our results, we also need the following definitions.

Definition 1.8. Let f be a non-constant meromorphic function in C, and let
X be a set of all five-value rich lines of f . For any ε > 0, define Xε = ∪∆(θ, ε),
where arg z = θ ∈ X.

Definition 1.9. Let f and g be two non-constant meromorphic functions in
C, and let X be a set of all five-value rich lines of f . We say f and g share
a ∈ C̄ IM in X, if for any ε > 0, f and g share a IM in Xε.

Now we state the following result which gives a partial affirmative answer
to uniqueness question of a meromorphic function of finite order mentioned
above.

Theorem 1.10. Let f be a meromorphic function of finite positive order in
C, and let ai ∈ C̄, i = 1, 2, 3, 4, 5, be five distinct values. Let X be a set of
all five-value rich lines of f . If f and g share the values ai, i = 1, 2, 3, 4, 5,
IM in X for a meromorphic function g in C satisfying the growth condition
log T (r, g) = O(log T (r, f)) as r → ∞, possibly outside a set E of finite linear
measure, then f = g.

In Theorem 1.10 the set X can be replaced with the set of all Borel directions
of f , and the result stays the same by Theorem 1.10, see Theorem 1.11 below.

Theorem 1.11. Let f be a meromorphic function of finite positive order in
C, and let ai ∈ C̄, i = 1, 2, 3, 4, 5, be five distinct values. Let X be a set
of all Borel directions of f . If f and g share the values ai, i = 1, 2, 3, 4, 5,
IM in X for a meromorphic function g in C satisfying the growth condition
log T (r, g) = O(log T (r, f)) as r → ∞, possibly outside a set E of finite linear
measure, then f = g.

The set X of Borel directions of f in Theorem 1.11 can be quite arbitrary.
Indeed, we recall the following result due to Yang and Zhang [23], which can
also be found in [20, Theorem 5.1].

Theorem 1.12 ([23]). If ρ is a positive number and F is a non-empty closed
set of real numbers (mod 2π), then there exists a meromorphic function f of
order ρ such that all its Borel directions constitute exactly {arg z = θ : θ ∈ F}.
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For an entire function of a positive finite order, Drasin and Weitsman [5]
obtained a complete result on the distribution of its Borel directions, see also
[20, p. 148]. According to Theorem 1.12, there exists a meromorphic function
f such that F = [0, 2π], that is, every ray arg z = θ ∈ [0, 2π] is a Borel direction
of f . Hence, if X = {arg z = θ : θ ∈ F} and F = [0, 2π] in Theorem 1.11,
where F defined as in Theorem 1.12, then Theorem 1.11 implies Theorem 1.1
for the case of meromorphic functions of finite order.

Finally, we discuss the relationship between a five-value rich line and a Borel
direction. By Definitions 1.4, 1.5, 1.7, we know that, for a non-constant mero-
morphic function f in C, every Borel direction of f is its five-value rich line. It
is natural to ask the question: For a non-constant meromorphic function f , is
every five-value rich line of f equal to its Borel direction? We proceed to answer
the question by using Nevanlinna theory in an angular domain [7, Chapters 1
and 3] if f is a meromorphic function of infinite order in C.

Theorem 1.13. Let ρ(r) be a proximate order of a meromorphic function f
of infinite order in C. Then every five-value rich line of f is its Borel direction
of order ρ(r).

Remark 1.14. It is an open problem whether the five-value rich line of a mero-
morphic function of finite order is its Borel direction.

This paper is organized as follows. In Section 2, we recall some properties of
the sectorial Nevanlinna characteristic and state some auxiliary results which
are needed in proving our results. The proofs of Theorems 1.10 and 1.13 are
given in Section 3.

2. Auxiliary results

Let f be a non-constant meromorphic function in C, and let ∆(θ, δ) be an
angular domain for any δ ∈ (0, π). We recall the following notations which can
be found in [7, p. 25]:

A (r,∆(θ, δ), f) =
ω

π

∫ r

1

(
1

tω
− tω

r2ω
){log+ |f(tei(θ−δ))|+ log+ |f(tei(θ+δ))|}dt

t
,

B (r,∆(θ, δ), f) =
2ω

πrω

∫ θ+δ

θ−δ

log+ |f(teiφ)| sinω(φ− θ + δ)dφ,

C (r,∆(θ, δ), f) = 2ω

∫ r

1

c(t,∆(θ, δ), f)(
1

tω
+

tω

r2ω
)
dt

t
,

where c(r,∆(θ, δ), f) =
∑

1<|bn|<r,|θn−θ|≤δ

sinω(θn − θ + δ), ω = π/2δ and bn =

|bn|eiθn are the poles of f in ∆(θ, δ) with respect to multiplicities. The func-
tion C(r,∆(θ, δ), f) is called the sectorial counting function of the poles of
f in ∆(θ, δ). In the corresponding counting function C̄(r,∆(θ, δ), f) these
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multiplicities are ignored. For a ∈ C, the definitions of A(r,∆(θ, δ), 1
f−a ),

B(r,∆(θ, δ), 1
f−a ) and C(r,∆(θ, δ), 1

f−a ) are immediate. Finally, the sectorial

Nevanlinna characteristic function is given by

S (r,∆(θ, δ), f) = A (r,∆(θ, δ), f) +B (r,∆(θ, δ), f) + C (r,∆(θ, δ), f) .

We state sectorial analogues of Nevanlinna’s first and second fundamental
theorems as follows.

Lemma 2.1 ([7]). Let f be a meromorphic function in C, and let ∆(θ, δ) be
an angular domain. Then, for any a ∈ C,

S(r,∆(θ, δ),
1

f − a
) = S(r,∆(θ, δ), f) +O(1).

Moreover, let a1, a2, . . . , aq ∈ C̄, q ≥ 3, be distinct numbers. Then

(q − 2)S(r,∆(θ, δ), f) ≤
q∑

j=1

C̄(r,∆(θ, δ),
1

f − aj
) +R(r,∆(θ, δ), f),

where

R(r,∆(θ, δ), f) = A(r,∆(θ, δ),
f ′

f
) +B(r,∆(θ, δ),

f ′

f
)

+

q∑
j=1

{A(r,∆(θ, δ),
f ′

f − aj
) +B(r,∆(θ, δ),

f ′

f − aj
)}+O(1).(2.1)

Nevanlinna conjectured [7, p. 104] that

R′(r,∆(θ, δ), f) = o(S(r,∆(θ, δ), f))(2.2)

as r → ∞ outside an exceptional set of finite linear measure, where

R′(r,∆(θ, δ), f) = A(r,∆(θ, δ),
f ′

f
) +B(r,∆(θ, δ),

f ′

f
),

and he proved that R′(r,∆(θ, δ), f) = O(1), when f is a meromorphic function
of finite order in C. In 1974 Goldberg [6] constructed a counterexample to
show that (2.2) is not valid. However, for any meromorphic function f in C,
the following formula is true [7, Chapter 3]:

R′(r,∆(θ, δ), f) =

{
O(1), ρ(f) < ∞,
O(log rT (r, f))(r → ∞, r ̸∈ E), ρ(f) = ∞,

where E is a set of finite linear measure.
The uniqueness of meromorphic functions in an angular domain is studied

by using the sectorial Nevanlinna characteristic, and the sectorial Nevanlinna
characteristic function plays critical role in proving the uniqueness theorem, see,
for example, [1, 24–26]. As for reasoning that (2.2) is not true, we need care-
fully analyze the error term R(r,∆(θ, δ), f) in proving the uniqueness results
in an angular domain. For the case of meromorphic functions of infinite order,



1473 Long

many five-value theorems in an angular domain have been proved by applying
directly the sectorial Nevanlinna characteristic, see, for example, [12,13,24,26].
However, in the finite order case, the uniqueness of meromorphic functions in
an angular domain has been studied under some additional conditions between
the magnitude of the angular domain and the growth of the sectorial Nevan-
linna characteristic function, see, for example, [1, 12, 24, 25]. In particular, if
f is a meromorphic function of order ρ ∈ (0,∞), and the magnitude of the
angular domain is too small, then the sectorial Nevanlinna characteristic func-
tion is bounded. Therefore, it is of no use to study the value distribution of
meromorphic functions in these angular domains. Typically the angular do-
main ∆(θ, δ) = {z : θ − δ ≤ arg z ≤ θ + δ} relates to the order of growth ρ in
terms of

2δ > π/ρ,(2.3)

or in terms of

lim
r→∞

S(r,∆(θ, δ), f)

log(rT (r, f))
= ∞.(2.4)

In fact, for any a ∈ C̄, from the definition of sectorial counting function and the
facts that c(r,∆(θ, δ), f = a) ≤ n(r,∆(θ, δ), f = a) and 1/tω + tω/r2ω ≤ 2/tω,
we get

C(r,∆(θ, δ),
1

f − a
) ≤ 4ω

∫ r

1

n(t,∆(θ, δ),
1

f − a
)

dt

tω+1

≤ 4ω

∫ r

1

1

tω
d(

∫ t

1

n(s,∆(θ, δ), 1
f−a )

s
ds)

≤ 4ω
N(r,∆(θ, δ), 1

f−a )

rω
+ 4ω2

∫ r

1

N(t,∆(θ, δ), 1
f−a )

tω+1
dt.(2.5)

If 2δ ≤ π/ρ, i.e., ω ≥ ρ, then it follows from this and (2.5) that

C(r,∆(θ, δ),
1

f − a
) ≤ rρ−ω +O(1) = O(1), as r → ∞.

Hence, we get S(r,∆(θ, δ), f) = O(1) by Lemma 2.1. There is an example
to show that the sectorial Nevanlinna characteristic function is bounded if
2δ > π/ρ is not true, see [1, p. 83] for more details.

Lemma 2.2 ([7]). Let f be a meromorphic function of order ρ in C, let ∆(θ, δ)
be an angular domain, and denote ω = π/2δ. Then

A(r,∆(θ, δ),
f ′

f
) ≤ K{(R

r
)ω

∫ R

r

log+ T (t, f)

tω+1
dt+ log+

r

R− r
+ log

R

r
+ 1},

B(r,∆(θ, δ),
f ′

f
) ≤ 4ω

rω
m(r,

f ′

f
),

where 1 < r < R < ∞, and K is a nonzero constant.
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The next result follows from Lemma 2.2 and the lemma on the logarithmic
derivative.

Lemma 2.3. Let f be a meromorphic function in C, and let ∆(θ, δ) be an
angular domain. Then

R(r,∆(θ, δ), f) =

{
O(1), ρ < ∞,
O(logU(r)), ρ = ∞,

where R(r,∆(θ, δ), f) is defined as in (2.1), U(r) = rρ(r) and ρ(r) is a proxi-
mate order of the meromorphic function f of infinite order.

3. Proofs of Theorems 1.10 and 1.13

Proof of Theorem 1.13. Let ρ(r) be a proximate order of f , and let ai ∈ C̄,
i = 1, 2, 3, 4, 5, be any five distinct values. Suppose arg z = θ0 ∈ [0, 2π) is any
five-value rich line of f . For any given δ ∈ (0, π), it follows from Definition 1.7
that there exists at least one value aj , such that

lim sup
r→∞

log n(r,∆(θ0, δ),
1

f−aj
)

ρ(r) log r
= 1,

where ∆(θ0, δ) = {z : | arg z − θ0| ≤ δ}. Without loss of generality, we may
assume that a1 is such a value, that is,

lim sup
r→∞

log n(r,∆(θ0, δ),
1

f−a1
)

ρ(r) log r
= 1.

Therefore, there exist a sequence rn with rn → ∞ as n → ∞, such that

lim
n→∞

log n(rn,∆(θ0, δ),
1

f−a1
)

ρ(rn) log rn
= 1.(3.1)

For any given ε ∈ (0, δ), by the definition of sectorial counting function, we
have

c(rn,∆(θ0, δ),
1

f − a1
) ≥

∑
1<|bm|<rn,|θm−θ0|≤δ−ε

sinω(θm − θ0 + δ)

≥ sin(ωε)[n(rn,∆(θ0, δ − ε),
1

f − a1
)− n(1,∆(θ0, δ − ε),

1

f − a1
)],

where ω = π/2δ and |bm|eiθm are the zeros of f − a1 in the angular domain
∆(θ0, δ), each zero being counted according to its multiplicity. Since 1/tω +
tω/r2ωn ≥ 2/rωn for 1 < t < rn, we obtain

C(rn,∆(θ0, δ),
1

f − a1
) ≥ 4ω sin(ωε)

rωn
N(rn,∆(θ0, δ − ε),

1

f − a1
) +O(1),

(3.2)
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where

N(r,∆(θ0, δ),
1

f − a1
) =

∫ r

0

n(t,∆(θ0, δ),
1

f−a1
)− n(0,∆(θ0, δ),

1
f−a1

)

t
dt

+ n(0,∆(θ0, δ),
1

f − a1
) log r.

Similarly as in [20, pp. 27-28], it follows that

lim sup
r→∞

log n(r,∆(θ0, δ),
1

f−a1
)

ρ(r) log r
= lim sup

r→∞

logN(r,∆(θ0, δ),
1

f−a1
)

ρ(r) log r
.(3.3)

We deduce from (3.1), (3.2), (3.3), and the arbitrariness of ε that

lim
n→∞

logC(rn,∆(θ0, δ),
1

f−a1
)

ρ(rn) log rn
≥ 1.

Hence,

lim sup
r→∞

logC(r,∆(θ0, δ),
1

f−a1
)

ρ(r) log r
≥ 1,

and Lemma 2.1 now yields

lim sup
r→∞

logS(r,∆(θ0, δ), f)

ρ(r) log r
≥ 1.(3.4)

Suppose on the contrary to the assertion that arg z = θ0 is not a Borel
direction of order ρ(r) of f . Then there exist three values, say a2, a3, a4, such
that

lim sup
r→∞

log n(r,∆(θ0, δ),
1

f−aj
)

ρ(r) log r
< 1, j = 2, 3, 4.(3.5)

By the definition of sectorial counting function and the inequalities

c(r,∆(θ0, δ),
1

f − aj
) ≤ n(r,∆(θ0, δ),

1

f − aj
)

and
∫ r

1
(1/tω + tω/r2ω)dt/t ≤ 1/ω, it follows that

C(r,∆(θ0, δ),
1

f − aj
) ≤ 2n(r,∆(θ0, δ),

1

f − aj
)(3.6)

holds for j = 2, 3, 4. Combining (3.5) and (3.6), we get

lim sup
r→∞

logC(r,∆(θ0, δ),
1

f−aj
)

ρ(r) log r
< 1, j = 2, 3, 4.(3.7)

Applying Lemma 2.1, we have

S(r,∆(θ0, δ), f) ≤
4∑

j=2

C(r,∆(θ0, δ),
1

f − aj
) +R(r,∆(θ0, δ), f).(3.8)



Five-value rich lines, Borel directions and uniqueness 1476

Therefore, by (3.7), (3.8) and Lemma 2.3, we have

lim sup
r→∞

logS(r,∆(θ0, δ), f)

ρ(r) log r
< 1.

This contradicts (3.4), and hence the proof is completed. □
Proof of Theorem 1.10. Suppose that X is a set of all five-value rich lines of
f . For any given ε > 0, let Xε be as in Definition 1.8, and set Y = C − Xε.
Suppose on the contrary to the assertion that f ̸= g. By the usual Nevanlinna’s
second fundamental theorem, we obtain

3T (r, f) ≤
5∑

i=1

N̄(r,
1

f − ai
) + S(r, f)

=
5∑

i=1

N̄(r,Xε,
1

f − ai
) +

5∑
i=1

N̄(r, Y,
1

f − ai
) + S(r, f)

≤ N(r,Xε,
1

f − g
) +

5∑
i=1

N(r, Y,
1

f − ai
) + S(r, f)

≤ T (r,
1

f − g
) + rρ1 + S(r, f),

where ρ1 < ρ(f) is a constant. By the usual Nevanlinna’s first fundamental
theorem, we have

2T (r, f) ≤ T (r, g) + rρ1 + S(r, f).(3.9)

By interchanging the roles of f and g, we have

2T (r, g) ≤ T (r, f) +

5∑
i=1

N̄(r, Y,
1

g − ai
) + S(r, g).(3.10)

Combining (3.9) with (3.10) gives

T (r, f) + T (r, g) ≤ rρ1 +
5∑

i=1

N̄(r, Y,
1

g − ai
) + S(r, f) + S(r, g).

By S(r, f) = O(log r) and the growth of g with respect to that of f , this gives
a contradiction. Hence f = g, and the proof is completed. □
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