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Abstract. In this paper, algebraic investigations on sup-Σ-algebras are
presented. A representation theorem for sup-Σ-algebras in terms of nuclei
and quotients is obtained. Consequently, the relationship between the

congruence lattice of a sup-Σ-algebra and the lattice of its nuclei is fully
developed.
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1. Preliminaries

Difference quantale-like structures, such as quantales, locales, quantale mod-
ules, quantale algebras, S-quantales, etc., have been studied in the recent
decades (see [5–8, 10]), and they have been widely applied in algebra, logic,
and computer science [4, 9]. The algebraic approach of kinds of quantale-like
structures has also been investigated [3–5]. The destination of this work is to
consider such approach in sup-Σ-algebras. We will generalize the results con-
cerning quotients and also a well-known representation theorem of quantales
into sup-Σ-algebras.

Throughout the paper, Σ = ⟨S,O⟩ will be a fixed but arbitrary signature,
where S is a set of sorts, O is a family of operation symbols. A Σ-algebra
A is an S-indexed family of sets As, s ∈ S, equipped with operations oA :
As1 × . . .×Asn → As for each operation symbol o of rank s1 . . . sn → s, n ∈ N.

A homomorphism h : A→ B of Σ-algebras A and B is an S-indexed family
of mappings hs : As → Bs, s ∈ S, such that

hs(oA(x1, . . . , xn)) = oB(hs1(x1), . . . , hsn(xn)),

for any o ∈ O with rank s1 . . . sn → s, n ∈ N, xi ∈ Asi , i = 1, . . . , n.
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On nuclei of sup-Σ-algebras 1710

A Σ-algebra A is said to be ordered if for each sort s ∈ S, As is a poset,
and oA : As1 × · · · × Asn → As preserves ordering for each o ∈ O with rank
s1 . . . sn → s, n ∈ N.

Definition 1.1. Let A, B be ordered Σ-algebras, h : A → B an S-indexed
family of mappings hs : As → Bs, s ∈ S. We say that h is a subhomomorphism
if each hs is monotone and

oB(hs1(x1), . . . , hsn(xn)) ≤ hs(oA(x1, . . . , xn)),

for n ∈ N, o ∈ O with rank s1 · · · sn → s, xi ∈ Asi , i = 1, . . . , n.

Homomorphisms between ordered Σ-algebras are defined in the usual way.
By a sup-lattice-ordered Σ-algebra, simply, a sup-Σ-algebra, we mean an

ordered Σ-algebra whose carriers are also sup-lattices and whose operations
are sup-lattice homomorphisms in each variable separately. A homomorphism
of sup-Σ-algebras is a homomorphism of ordered Σ-algebras whose components
are sup-lattice homomorphisms.

2. Mappings and homomorphisms

In a natural way, every poset can be considered as a category, and monotone
mappings between posets can be considered as functors. In such a category
coproducts are joins.

Let A be a sup-Σ-algebra, as1 , . . . , asi−1 , asi+1 , . . . , asn some elements of
Asj , for n ∈ N, j ∈ {1, . . . , n} \ {i}, i = 1, . . . , n. Then for o ∈ O with rank
s1 . . . sn → s, the elementary translation oA(as1 , . . . , asi−1 , , asi+1 , . . . , asn) :
Asi → As is a mapping, which we write as oi with dependence asj from Asj ,
for j ∈ {1, . . . , n} \ {i}. Since an elementary translation oi preserves joins, it
has a right adjoint denoted by o∗i : As → Asi , satisfying

oi(xsi) ≤ as ⇐⇒ xsi ≤ o∗i (as),(2.1)

for all xsi ∈ Asi , as ∈ As, and also

xsi ≤ o∗i (oi(xsi)), oi(o
∗
i (as)) ≤ as.(2.2)

The following proposition can be easily obtained from (2.1) and (2.2).

Proposition 2.1. Let A be a sup-Σ-algebra. Then for n ∈ N, o ∈ O with
rank s1 . . . sn → s, oi with dependence asj from Asj , j ∈ {1, . . . , n} \ {i}, i ∈
{1, . . . , n}, the following conditions hold:

(1) ∀ b ∈ As, oi(o
∗
i (b)) = b ⇐⇒ ( ∃ c ∈ Asi) such that oi(c) = b,

(2) ∀ c ∈ Asi , o
∗
i (oi(c)) = c ⇐⇒ (∃ b ∈ As) such that o∗i (b) = c.

Proof. We only show the sufficiency of (1). Assume that oi(c) = b, for some
c∈Asi . Then c ≤ o∗i (b) by (2.1), which implies that

b = oi(c) ≤ oi(o
∗
i (b)) ≤ b,

by (2.2). □
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Note that for any sup-Σ-algebra homomorphism h : A → B with an S-
indexed family of mappings hs : As → Bs, s ∈ S, since hs preserves arbitrary
joins, it has a right adjoint, denoted by h∗s : Bs → As. Similar to (2.1) and
(2.2), we have

hs(as) ≤ bs ⇐⇒ as ≤ h∗s(bs),(2.3)

as ≤ h∗s(hs(as)), hs(h
∗
s(bs)) ≤ bs,(2.4)

for every s ∈ S, as ∈ As, bs ∈ Bs.
For a subhomomorphism h : A → B between sup-Σ-algebras, which is an

S-indexed family of mappings hs : As → Bs, s ∈ S, and for n ∈ N, o ∈ O with
rank s1 . . . sn → s, oi with dependence asj from Asj , j ∈ {1, . . . , n} \ {i}, i =
1, . . . , n, the elementary translation oi(h) on B induced by h has the form

oi(h) := oB(hs1(as1), . . . , hsi−1(asi−1), , hsi+1(asi+1), . . . , hsn(asn)) : Bsi → Bs.

Furthermore, if h : A → B is a homomorphism of sup-Σ-algebras, then oi(h)
has right adjoint oi(h)

∗ : Bs → Bsi . Therefore,

oi(h)(xsi) ≤ bs ⇐⇒ xsi ≤ oi(h)
∗(bs),(2.5)

for every xsi ∈ Bsi , i ∈ {1, . . . , n}, b ∈ Bs, and

xsi ≤ oi(h)
∗(oi(h)(xsi)), oi(h)(oi(h)

∗(bs)) ≤ bs.(2.6)

Proposition 2.2. Let A and B be sup-Σ-algebras and let h : A → B be
a homomorphism of sup-Σ-algebras with S-indexed family of mappings hs :
As → Bs, s ∈ S. Then for all b ∈ Bs, n ∈ N, i ∈ {1, . . . , n}, o ∈ O with rank
s1 . . . sn → s, oi with dependence asj from Asj , j ∈ {1, . . . , n} \ {i}, we have

h∗si(oi(h)
∗(b)) = o∗i (h

∗
s(b)).

Proof. Since h is a homomorphism of sup-Σ-algebras, by (2.1), (2.3), one has
that

h∗si(oi(h)
∗(b)) ≤ o∗i (h

∗
s(b)) ⇐⇒ oi(h

∗
si(oi(h)

∗(b))) ≤ h∗s(b)

⇐⇒ hs(oi(h
∗
si(oi(h)

∗(b)))) ≤ b

⇐⇒ oi(h)(hsi
((h∗si(oi(h)

∗(b))))) ≤ b

⇐⇒ hsi(h
∗
si(oi(h)

∗(b))) ≤ oi(h)
∗(b),

and the last inequality natural holds by (2.4). Conversely,

o∗i (h
∗
s(b)) ≤ h∗si(oi(h)

∗(b)) ⇐⇒ hsi(o
∗
i (h

∗
s(b))) ≤ oi(h)

∗(b)

⇐⇒ oi(h)hsi((o
∗
i (h

∗
s(b)))) ≤ b

⇐⇒ hs(oi(o
∗
i (h

∗
s(b))) ≤ b

⇐⇒ oi(o
∗
i (h

∗
s(b))) ≤ h∗s(b),

and the last inequality holds by (2.2). □
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Proposition 2.3. Let A and B be sup-Σ-algebras and let h : A → B be a
homomorphism of sup-Σ-algebras with S-indexed family of mappings hs : As →
Bs, s ∈ S. Then h∗ : B → A is a sup-Σ-algebra subhomomorphism.

Proof. Clearly, h∗s is an order preserving mapping for each sort s ∈ S. For
every n ∈ N, o ∈ O with rank s1 . . . sn → s, bsi ∈ Bsi , i ∈ {1, . . . , n}, since

oA(h
∗
s1(bs1), . . . , h

∗
sn(bsn)) ≤ h∗s(oB(bs1 , . . . , bsn))

⇐⇒ hs(oA(h
∗
s1(bs1), . . . , h

∗
sn(bsn))) ≤ oB(bs1 , . . . , bsn)

⇐⇒ oB(hs1(h
∗
s1(bs1)), . . . , hsn(h

∗
sn(bsn))) ≤ oB(bs1 , . . . , bsn),

and the operation oB preserves ordering, it follows that h∗ is a subhomomor-
phism. □

3. Nuclei

Nuclei play an important role in the study of quotients of various quantale-
like structures. In this section, we study properties of nuclei and prenuclei on
sup-Σ-algebras.

Recall that an order preserving mapping j on a poset P is called a closure
operator if it is increasing and idempotent. Let A be a sup-Σ-algebra, a nucleus
j on A is an S-indexed family of closure operators which is subhomomorphic [4].

Similar to [2] Definition 2.3.3, we define a prenucleus on a sup-Σ-algebra.

Definition 3.1. We call a subhomomorphism j on a sup-Σ-algebra A a
prenucleus if it is an S-indexed family of mappings js on As, where js is
monotone, and increasing for each s ∈ S.

Clearly, a nucleus is an idempotent prenucleus. For a prenucleus j on a sup-
Σ-algebra A, we write Aj as an S-indexed family of Asjs , where Asjs={a ∈
As|js(a) = a} for any s ∈ S. Denote by v(j) : A → A an S-indexed family of
mappings v(j)s : As → As, s ∈ S, defined by

v(j)s(a) :=
∧

{b ∈ Asjs
| a ≤ b},

for any a ∈ As.

Proposition 3.2. Let A be a sup-Σ-algebra, j a prenucleus on A with the
S-indexed family of mappings js, s ∈ S. Then the mapping v(j) : A → A is a
nucleus on A.

Proof. It is routine to check that for each sort s ∈ S, v(j)s is a closure operator,
and v(j)s ◦ js = v(j)s. For n ∈ N, si ∈ S, i ∈ {1, . . . , n}, define a mapping
fsi : Asi → Asjs

by

fsi(x) := v(j)s(oi(x)),
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for every x ∈ Asi , o ∈ O with rank s1 . . . sn → s, oi with dependence asj from
Asj , j ∈ {1, . . . , n} \ {i}. Since jsi is increasing for each i ∈ {1, . . . , n}, n ∈ N,
it follows that

fsi(jsi(x)) = v(j)s(oi(jsi(x)))

≤ v(j)s(oi(j)(js
i
(x)))

≤ v(j)s ◦ js(oi(x))
= v(j)s(oi(x))

= fsi(x)

≤ fsi(jsi(x)).

We note that in above proof, due to j being a subhomomorphism, we get the
first inequality. The next two inequalities follow from the fact that v(j)s being
idempotent, and fsi being monotone, correspondingly. So fsi ◦ jsi = fsi , and
thus fsi ◦ v(j)si = fsi by [2, Lemma 2.3.2]. Therefore, for every bsi ∈ Asi ,

oi(v(j)si(bsi)) ≤ v(j)s(oi(v(j)si(bsi)))

= fsi(v(j)si(bsi))

= fsi(bsi)

= v(j)s(oi(bsi)).

Applying this fact n times and by the fact that v(j)s is idempotent, it follows
that for any n ∈ N, asi ∈ Asi , i ∈ {1, . . . , n},

oA(v(j)s1(as1), . . . , v(j)sn(asn)) ≤ v(j)s(oA(as1 , . . . , asn)),

which indicates that v(j) is a nucleus on A. □

Lemma 3.3. If j is a nucleus on a sup-Σ-algebra A with an S-indexed family
of closure operators js, s ∈ S, then for any ai ∈ As, i ∈ I,

js(
∨
i∈I

js(ai)) = js(
∨
i∈I

ai).

Proof. The inequality js(
∨

i∈I ai) ≤ js(
∨

i∈I js(ai)) follows by js being increas-
ing and monotone. Conversely, since js(ai) ≤ js(

∨
i∈I ai) for each i ∈ I, we

have
∨

i∈I js(ai) ≤ js(
∨

i∈I ai). Hence js(
∨

i∈I js(ai)) ≤ js(js(
∨

i∈I ai)) =
js(

∨
i∈I ai) by the fact that js is idempotent. □

Lemma 3.4 ([4, Lemma 2.2.6]). Let j be a nucleus on a sup-Σ-algebra A
with an S-indexed family of closure operators js, s ∈ S. If for n ∈ N, o ∈ O
with rank s1 . . . sn → s, xi, x

′

i ∈ Asi , we have xi ≤ x
′

i ≤ jsi(xi), for any
i ∈ {1, . . . , n}, then

js(oA(x
′

1, . . . , x
′

n)) = js(oA(x1, . . . , xn)).
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Lemma 3.5 ([4, Proposition 2.2.9]). Let h : A → B be a homomorphism of
sup-Σ-algebras with an S-indexed family of mappings hs, s ∈ S, and let h∗

denote the S-indexed family of right adjoints h∗s. Then j = h∗ ◦ h is a nucleus
on A.

Lemma 3.6. Let A be a sup-Σ-algebra, j a prenucleus on A with an S-indexed
family of closure operators js, s ∈ S. Then for n ∈ N, o ∈ O with rank
s1 . . . sn → s, i = 1, . . . , n, oi with dependence asj from Asj , j ∈ {1, . . . , n}\{i},
we have

jsi(o
∗
i (b)) ≤ o∗i (js(b))

for any b ∈ As.

Proof. To prove jsi(o
∗
i (b)) ≤ o∗i (js(b)), it is sufficient to show that

oi(jsi(o
∗
i (b))) ≤ js(b) by (2.1). The latter inequality holds because

oi(jsi(o
∗
i (b))) = oA(as1 , . . . , jsi(o

∗
i (b)), . . . , asn)

≤ oA(js1(as1), . . . , jsi(o
∗
i (b)), . . . , jsn(asn))

≤ js(oA(as1 , . . . , o
∗
i (b), . . . , asn))

= js(oi(o
∗
i (b)))

≤ js(b),

for n ∈ N, asj ∈ Asj , j ∈ {1, . . . , n} \ {i}. □

4. A representation theorem

In this section, we will generalize a well-known representation theorem of
quantales into sup-Σ-algebras. Let A be a sup-Σ-algebra, j a nucleus on A
with an S-indexed family of closure operators js, s ∈ S. Then Aj , which is an
S-indexed family of Asjs

, is a sup-Σ-algebra under the operation induced from
A :

oAj (as1 , . . . , asn) = js(oA(as1 , . . . , asn)),

where n ∈ N, o ∈ O with rank s1 . . . sn → s, asi ∈ Asijsi
, i ∈ {1, . . . , n}, and

by the fact that Asjs
is a complete lattice under joins∨

M = js(
∨
M),

for every M ⊆ Asjs
, s ∈ S.

Proposition 4.1. Let A be a sup-Σ-algebra, and let B be an S-indexed family
of subsets Bs of As, s ∈ S. Then B = Aj for some nucleus j on A if only if Bs

is closed under meets and o∗i (bs) ∈ Bsi for n ∈ N, o ∈ O with rank s1 . . . sn → s,
bs ∈ Bs, i ∈ {1, . . . , n}, oi with dependence asj from Asj , j ∈ {1, . . . , n} \ {i}.

Proof. Necessity. Suppose that j is a nucleus on A with the S-indexed family
of closure operators js, s ∈ S, and B = Aj . Then Bs = Asjs

, for each s ∈ S.
Thus Bs is closed under meets. For n ∈ N, i ∈ {1, . . . , n}, o ∈ O with rank
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s1 . . . sn → s, oi with dependence asj from Asj , j ∈ {1, . . . , n} \ {i}, bs ∈ Bs,
s ∈ S, since o∗i (bs) ≤ jsi(o

∗
i (bs)) ≤ o∗i (js(bs)) = o∗i (bs) by Lemma 3.6, it follows

that o∗i (bs) ∈ Bsi .
Sufficiency. Assume that for every s ∈ S, Bs is closed under meets and

o∗i (bs) ∈ Bsi , for every bs ∈ Bs, i ∈ {1, . . . , n}, n ∈ N. Define a mapping js on
As, s ∈ S, by

js(a) :=
∧

{b ∈ Bs | a ≤ b},
for any a ∈ As. It is routine to check that js is a closure operator and Bs = Asjs

.
Let j be the S-indexed family of closure operators js, s ∈ S. We next show
that j is a subhomomorphism on A.

To prove oA(js1(as1), . . . , jsn(asn)) ≤ js(oA(as1 , . . . , asn)), for any o ∈ O
with rank s1 . . . sn → s, n ∈ N, it is sufficient to show that for each x ∈ Bs,
with oA(as1 , . . . , asn) ≤ x, oA(js1(as1), . . . , jsn(asn)) ≤ x.

Since

oA(as1 , . . . , asn) ≤ x ⇐⇒ as1 ≤ o∗1(x) ∈ Bs1 = As1js1
,

it follows that js1(as1) ≤ o∗1(x), and then

js1(as1) ≤ o∗1(x) ⇐⇒ oA(js1(as1), as2 , . . . , asn) ≤ x ⇐⇒ as2 ≤ o∗2(x).

Similarly, the inequality js2(as2) ≤ o∗2(x) turns out that

oA(js1(as1), js2(as2), as3 , . . . , asn) ≤ x.

Finally, we achieve that

oA(js1(as1), js2(as2), . . . , jsn(asn)) ≤ x,

as required. □

For a sup-Σ-algebra A, let P(As) be the powerset of As, s ∈ S, and P(A)
the S-indexed family of powersets P(A

s
). Then P(As) is a complete lattice

under the inclusion as a partial order. Furthermore, P(A) with the pointwise
operations induced from A :

oP(A)(Xs1 , . . . , Xsn) = {oA(xs1 , . . . , xsn) | xs1 ∈ Xs1 , . . . , xsn ∈ Xsn},

for any o ∈ O, with rank s1 . . . sn → s, n ∈ N, becomes a sup-Σ-algebra.
The following result gives a representation for sup-Σ-algebras in terms of

nuclei and quotients.

Theorem 4.2 (Representation Theorem). Let A be a sup-Σ-algebra. Then
there is a nucleus j : P(A) → P(A), such that A ∼= P(A)j.

Proof. Let j : P(A) → P(A) be an S-indexed family of mapping js on P(As),
s ∈ S, where js is defined by

js(Xs) := (
∨
Xs)↓, ∀Xs ∈ P(As).
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Clearly, js is a closure operator. Next we show that j is subhomomorphic, that
is

oP(A)(js1(Xs1), . . . , jsn(Xsn)) ⊆ js(oP(A)(Xs1 , . . . , Xsn)),

for eachXsi ∈ P(Asi), i ∈ {1, . . . , n}, n ∈ N, and o ∈ O with rank s1 . . . sn → s.
Take oA(ds1 , . . . , dsn) ∈ oP(A)(js1(Xs1), . . . , jsn(Xsn)), where dsi ∈

jsi(Xsi) = (
∨
Xsi)↓, Xsi ⊆ Asi , si ∈ S, i ∈ {1, . . . , n}, n ∈ N. Since

oA(ds1 , . . . , dsn) ≤ oA(
∨
Xs1 , . . . ,

∨
Xsn)

=
∨

{oA(as1 , . . . , asn) | asi ∈ Xsi , i = 1, . . . , n}

=
∨
oP(A)(Xs1 , . . . , Xsn),

and

js(oP(A)(Xs1 , . . . , Xsn)) = (
∨
oP(A)(Xs1 , . . . , Xsn))↓

= {x ∈ As | x ≤
∨
oP(A)(Xs1 , . . . , Xsn)},

we obtain that oP(A)(js1(Xs1), . . . , jsn(Xsn)) ⊆ js(oP(A)(Xs1 , . . . , Xsn)), as
needed. Note that, for any s ∈ S, D ⊆ As, js(D) = D if only if D = ds ↓
for some ds ∈ As. So

P(As)js = {D ∈ P(As) | js(D) = D} = {D ⊆ As | D = ds ↓, for some ds ∈ As},

for each s ∈ S. Let ψ : A → P(A)j be an S-indexed family of ψs : As →
P(As)js , s ∈ S, which defined by

ψs(a) := a↓, ∀a ∈ As.

We need to prove that ψ is a bijective sup-Σ-algebra homomorphism. Clearly,
for any s ∈ S, ψs is a bijective join-preserving mapping. Moreover, for any
o ∈ O, with rank s1 . . . sn → s, n ∈ N, one has that

oP(A)j (ψs1(as1), . . . , ψsn(asn))) = oP(A)j (as1 ↓, . . . , asn ↓)
= js(oP(A)(as1 ↓, . . . , asn ↓))

= (
∨
oP(A)(as1 ↓, . . . , asn ↓))↓

= {x ∈ As | x ≤
∨
oP(A)(as1 ↓, . . . , asn ↓)},

and ψs(oA(as1 , . . . , asn)) = (oA(as1 , . . . , asn)) ↓. However, straightforward
checking shows that oA(as1 , . . . , asn) is the sup of oP(A)(as1 ↓, . . . , asn ↓), i.e.,

oA(as1 , . . . , asn) =
∨
oP(A)(as1 ↓, . . . , asn ↓).

Consequently, we get that ψs(oA(as1 , . . . , asn))=oP(A)j (ψs1(as1), . . . , ψsn(asn)).
□
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5. Quotients of sup-Σ-algebras

We write the set of all nuclei on a sup-Σ-algebra A by Nuc(A). Define a
relation on Nuc(A) by

j ≤ j
′
⇐⇒ js ≤ j

′

s, ∀s ∈ S,

where j (j
′
) is an S-indexed family of mappings of js (j

′

s, respectively), and

js ≤ j
′

s is under pointwise ordering.

Lemma 5.1 ([4, Proposition 2.2.8]). Let A be a sup-Σ-algebra, j, j
′ ∈ Nuc(A).

Then the following conditions hold.
(1) Nuc(A) is a complete lattice,

(2) j ≤ j
′
if and only if As

j
′
s

⊆ Asjs
, for all sorts s ∈ S,

(3) j ≤ j
′
if and only if for every sort s ∈ S, x, y ∈ As, js(x) = js(y) implies

that j
′

s(x) = j
′

s(y).

The final section is devoted to find out the relation between Nuc(A) and
Con(A) for a sup-Σ-algebra.

Recall that a congruence ρ on a sup-Σ-algebra A is an S-indexed family of
equivalence relations ρs on As, s ∈ S, which are compatible with arbitrary joins
and operations. The set of all congruences on A is denoted by Con(A).

Let ρ be a congruence on a sup-Σ-algebra A, we write A/ρ as the S-indexed
family of As/ρs, s ∈ S, where As/ρs = {[a]ρs | a ∈ As}. Define joins on the
quotient set As/ρs, s ∈ S, by

∨
k∈I

[ak]ρs := [
∨
k∈I

ak]ρs .

Clearly, As/ρs is a complete lattice. Define the operation on A/ρ by

oA/ρ([a1]ρs1
, . . . , [an]ρsn

) := [oA(a1, . . . , an)]ρs ,

for n ∈ N, o ∈ O with rank s1 . . . sn → s, ai ∈ Asi , i ∈ {1, . . . , n}. Then
the operation is well defined. Moreover, for arbitrary xk ∈ Ask , k ∈ I, and
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aj ∈ Asj , sj ∈ S, j ∈ {1, . . . , n} \ {i}, the equalities

oA/ρ([a1]ρs1
, . . . ,

∨
k∈I

[xk]ρsi
, . . . , [an]ρsn

)

= oA/ρ([a1]ρs1
, . . . , [

∨
k∈I

xk]ρsi
, . . . , [an]ρsn

)

= [oA(a1, . . . ,
∨
k∈I

xk, . . . , an)]ρs

= [
∨
k∈I

oA(a1, . . . , xk, . . . , an)]ρs

=
∨
k∈I

[oA(a1, . . . , xk, . . . , an)]ρs ,

indicate that A/ρ is a sup-Σ-algebra.
Let the surjective mapping π : A→ A/ρ be an S-indexed family of mappings

πs : As → As/ρs, s ∈ S, which defined by

πs(a) := [a]ρs , ∀a ∈ As.

It is easy to see that π is a homomorphism of sup-Σ-algebras, and its right
adjoint is denoted by π∗.

Lemma 5.2. Let A be a sup-Σ-algebra, π is the mapping mentioned above.
Then π∗π is a nucleus on A.

Proof. It is a consequence of Lemma 3.5. □

Lemma 5.3 ([4, Proposition 2.2.11]). Let h : A → B be a homomorphism of
sup-Σ-algebras. For any sort s ∈ S, x, y ∈ As, one has that

hs(x) = hs(y) ⇐⇒ h∗shs(x) = h∗shs(y).

As usual, for any mapping j : A → B, which is an S-indexed family of
mappings js, s ∈ S, between two sup-Σ-algebras, we denote ker j as the S-
indexed family of equivalence relations kerjs, s ∈ S, where kerjs = {(a, b) ∈
As ×As | js(a) = js(b)}.

Lemma 5.4. Let A be a sup-Σ-algebra, j a nucleus on A with the S-indexed
family of closure operators js, s ∈ S. Then ker j is a congruence on A.

Proof. For each (ak, a
′

k) ∈ kerjs, k ∈ I, since js(ak) = js(a
′

k), and

js(
∨

k∈I js(ak)) = js(
∨

k∈I js(a
′

k)), it follows that kerjs is compatible with joins
by Lemma 3.3.
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For n ∈ N, given (asi , bsi) ∈ kerjsi , i ∈ {1, . . . , n}, then for any o ∈ O with
rank s1 . . . sn → s, by Lemma 3.4, one has that

js(oA(as1 , . . . , asn)) = js(oA(js1(as1), . . . , js1(asn)))

= js(oA(js1(bs1), . . . , js1(bsn)))

= js(oA(bs1 , . . . , bsn)).

So kerjs is compatible with operations. □

Now, we are ready to present the definite relationship between Nuc(A) and
Con(A).

Theorem 5.5. Let A be a sup-Σ-algebra. Then there is an isomorphism ψ :
Nuc(A) → Con(A) of posets. Moreover, for each j ∈ Nuc(A) with the S-
indexed family of closure operators js, s ∈ S, Aj

∼= A/ψ(j) as sup-Σ-algebras.

Proof. Define a mapping ψ : Nuc(A) → Con(A) by

ψ(j) :=ker j,

for each j ∈ Nuc(A).
By Lemma 5.4, kerj is a congruence on A. By Lemma 5.1(3), ψ is an order-

embedding. Next we show that ψ is surjective. If ρ ∈ Con(A), then we consider
the natural surjection π : A → A/ρ. By Lemma 5.2, π∗π is a nucleus on A,
and by Lemma 5.3, ψ(π∗π)=ker(π∗π) =kerπ = ρ, so ψ is surjective.

Next, for a nucleus j on A, let f : A/kerj → Aj be an S-indexed family of
mappings fs : As/kerjs → Asjs

, s ∈ S, which defined by

fs([as] kerjs) := js(as), ∀as ∈ As,

and g: Aj → A/kerj an S-indexed family of mappings gs : Asjs
→ As/kerjs,

s ∈ S, which defined by

gs(as) := [as] kerjs , ∀as ∈ Asjs
.

Then f and g are well-defined. For n ∈ N, o ∈ O with rank s1 . . . sn → s,
asi ∈ Asi , i ∈ {1, . . . , n}, since

fs(oA/kerj([as1 ]kerjs1
, . . . , [asn ]kerjsn

))= fs([oA(as1 , . . . , asn)]kerjs)

= js(oA(as1 , . . . , asn))

= js(oA(js1(as1), . . . , jsn(asn)))

= oAj (js1(as1), . . . , jsn(asn))

= oAj (fs1([as1 ]kerjs1
), . . . , fsn([asn ]kerjsn

)),
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and for ak ∈ As,

fs(
∨
k∈I

[ak]kerjs) = fs([
∨
k∈I

ak]kerjs) = js(
∨
k∈I

ak)

= js(
∨
k∈I

js(ak)) =
∨
k∈I

js(ak) =
∨
k∈I

fs([ak]kerjs),

one can conclude that f is a homomorphism of sup-Σ-algebras.
Similarly, for n ∈ N, o ∈ O with rank s1 . . . sn → s, asi ∈ Asi , i ∈ {1, . . . , n},

we have

o
A/kerj(gs1(as1), . . . , gsn(asn)) = o

A/kerj([as1 ]kerjs1
, . . . , [asn ]kerjsn

)

= [oA(as1 , . . . , asn)]kerjs
= [js(oA(as1 , . . . , asn))]kerjs
= [oAj

(as1 , . . . , asn)]kerjs
= gs(oAj

(as1 , . . . , asn)),

and for ak ∈ As,

gs(
∨
k∈I

ak) = gs(js(
∨
k∈I

ak)) = [js(
∨
k∈I

ak)]kerjs

= [
∨
k∈I

ak]kerjs =
∨
k∈I

[ak]kerjs =
∨
k∈I

gs(ak),

which imply that g is a sup-Σ-algebra homomorphism.
Finally, for every as ∈ Asjs , s ∈ S,

fsgs(as) = fs([as]kerjs) = js(as) = as,

and

gsfs([as]kerjs) = gs(fs(as)) = [js(as)]kerjs = [as]kerjs ,

for any [as]kerjs ∈ As/kerjs. We obtain that Aj
∼= A/ker(j) as needed. □
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