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.

Published by the Iranian Mathematical Society

.

http://bims.ims.ir



Bull. Iranian Math. Soc.
Vol. 43 (2017), No. 6, pp. 1723–1737
Online ISSN: 1735-8515

HIGH-ACCURACY ALTERNATING SEGMENT

EXPLICIT-IMPLICIT METHOD FOR THE FOURTH-ORDER

HEAT EQUATION
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(Communicated by Davod Khojasteh Salkuyeh)

Abstract. Based on a group of new Saul’yev type asymmetric difference

schemes constructed by author, a high-order, unconditionally stable and
parallel alternating segment explicit-implicit method for the numerical
solution of the fourth-order heat equation is derived in this paper. The
truncation error is fourth-order in space, which is much more accurate

than the known alternating segment explicit-implicit methods. Numer-
ical simulations are performed to show the effectiveness of the present
method that are in preference to the prior methods.
Keywords: Fourth-order heat equation, alternating segment explicit-

implicit method, high accuracy, parallel computation, unconditional sta-
bility.
MSC(2010): Primary: 65M06; Secondary: 65M12, 65Y05.

1. Introduction

With the introduction of the parallel computer, the high-performance com-
puters play an important role in scientific and engineering computations. Many
numerical researchers have focused on constructing the parallel algorithms to
various problems.

In the last few years, the alternating schemes were widely studied. Evans and
Abdullah [2,3] first developed the alternating group explicit (AGE) scheme for
solving parabolic equations. Then, the alternating segment explicit-implicit
(ASE-I) scheme [18] and the alternating segment Crank-Nicolson (ASC-N)
scheme [1] were proposed. The alternating scheme uses the explicit scheme
and the implicit scheme alternately in the time and space direction, which has
the intrinsic parallelism and unconditional stability. The results of numerical
experiments show effectiveness of the methods. Afterwards, the alternating
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schemes have been extended to two-dimensional diffusion systems [16], dis-
persive equation [13, 14, 19–22], nonlinear three-order KdV equation [8] and
fourth-order diffusion equation [4]. Meanwhile, the introduction of the alter-
nating schemes leads to the rapid development of the domain decomposition
parallel method [9, 11, 12, 17, 24]. However, the majority of the literature have
focused their attentions on the parallelism. The major problem in the above al-
gorithms is that the truncation error is only near the second order in space. The
construction of the highly accurate parallel difference scheme has been consid-
ered by only a limited number of investigators. In [14,19,20], the fourth-order
accurate AGE and ASC-N schemes have been constructed for the dispersive
equation by a group of new high-order accurate asymmetric difference schemes.

In view of the limited information available of highly accurate parallel differ-
ence method, this paper undertakes a study of the construction of high-order
accurate algorithm for the fourth-order heat equation.

(1.1) Lu =
∂u

∂t
+ α

∂4u

∂x4
= 0, x ∈ [0, L], t ∈ [0, T ],

The fourth-order heat equation is well-known as one of the applied equations,
which can be found in image processing or thin film modeling. The numerical
solving methods were widely studied [4, 6, 7, 10, 15].

Although the unconditionally stable general schemes with intrinsic paral-
lelism for fourth-order heat equation have been derived in [4], the truncation er-
ror is only near the second order in space. In this work, a group of new Saul’yev
asymmetric difference schemes is constructed. Basing on these schemes, we will
derive a high-accuracy alternating segment explicit-implicit method. The new
parallel ASE-I method is not only unconditionally stable but also has fourth-
order accuracy in space. Its numerical simulations show better accuracy than
the known ASE-I, AGE1 and AGE2 schemes in [4]. We hope the result of this
paper makes an essential contribution in this direction.

Here is the outline of the paper. In Section 2, eight basic schemes for con-
structing the high-accuracy ASE-I method are given . In Section 3, the new
ASE-I method is developed and the error analysis and the stability are dis-
cussed. Finally, in Section 4, the numerical experiments are performed.

2. The new asymmetric schemes

2.1. The asymmetric schemes. Divide the domain of definition [0, L]×[0, T ]
by parallel lines x = xj = jh(j = 0, 1, 2, . . . , J), t = tn = nτ(n = 0, 1, 2, . . . , N),
where h = L/J is space mesh length, τ = T/N is time mesh length. J and
N are positive integers. We use Un

j to represent the approximate solution of
u(xj , t

n), where u(x, t) represents the exact solution of (1.1). We first introduce
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Figure 1. The new asymmetric schemes (2.3)− (2.8)

the following explicit and implicit schemes

Un+1
j = rUn

j−3 − 12rUn
j−2 + 39rUn

j−1

+ (1− 56r)Un
j + 39rUn

j+1 − 12rUn
j+2 + rUn

j+3,(2.1)

−rUn+1
j−3 + 12rUn+1

j−2 − 39rUn+1
j−1 + (1 + 56r)Un+1

j

− 39rUn+1
j+1 + 12rUn+1

j+2 − rUn+1
j+3 = Un

j .(2.2)

Then, we give the following six asymmetric schemes (see Figure 1).

−rUn+1
j+3 + 6rUn+1

j+2 − 6rUn+1
j+1 + (1 + r)Un+1

j =

(2.3) − 6rUn
j+2 + 33rUn

j+1 + (1− 55r)Un
j + 39rUn

j−1 − 12rUn
j−2 + rUn

j−3,

(1 + r)Un+1
j − 6rUn+1

j−1 + 6rUn+1
j−2 − rUn+1

j−3 =

(2.4) − 6rUn
j−2 + 33rUn

j−1 + (1− 55r)Un
j + 39rUn

j+1 − 12rUn
j+2 + rUn

j+3,

6rUn+1
j+2 − 33rUn+1

j+1 + (1 + 55r)Un+1
j − 39rUn+1

j−1 + 12rUn+1
j−2 − rUn+1

j−3 =

(2.5) rUn
j+3 − 6rUn

j+2 + 6rUn
j+1 + (1− r)Un

j ,

−rUn+1
j+3 + 12rUn+1

j+2 − 39rUn+1
j+1 + (1 + 55r)Un+1

j − 33rUn+1
j−1 + 6rUn+1

j−2 =

(2.6) (1− r)Un
j + 6rUn

j−1 − 6rUn
j−2 + rUn

j−3,

−rUn+1
j+3 + 12rUn+1

j+2 − 33rUn+1
j+1 + (1 + 28r)Un+1

j − 6rUn+1
j−1 =

(2.7) 6rUn
j+1 + (1− 28r)Un

j + 33rUn
j−1 − 12rUn

j−2 + rUn
j−3,

−6rUn+1
j+1 + (1 + 28r)Un+1

j − 33rUn+1
j−1 + 12rUn+1

j−2 − rUn+1
j−3 =

(2.8) rUn
j+3 − 12rUn

j+2 + 33rUn
j+1 + (1− 28r)Un

j + 6rUn
j−1,

where r = ατ/6h4.

Let L
(2.1)
h , L

(2.2)
h , L

(2.3)
h , L

(2.4)
h , L

(2.5)
h , L

(2.6)
h , L

(2.7)
h , and L

(2.8)
h be the dis-

cretizied operators for L based on schemes (2.1)-(2.8). From the Taylor series
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expansion at (xj , t
n), we obtain the following truncation error expressions for

formulaes (2.1)-(2.8):

(2.9) L
(2.1)
h un

j − [Lu]nj =
τ

2
[
∂2u

∂t2
]nj +O(τ + h4),

(2.10) L
(2.2)
h un

j − [Lu]nj =
τ

2
[
∂2u

∂t2
]nj + 6rh4[

∂5u

∂t∂x4
]nj +O(τ + h4),

L
(2.3)
h un

j − [Lu]nj =3rh[
∂2u

∂t∂x
]nj +

9

2
rh2[

∂3u

∂t∂x2
]nj

+
5

2
rh3[

∂4u

∂t∂x3
]nj +

3

2
rhτ [

∂3u

∂t2∂x
]nj +O(τ + h4),(2.11)

L
(2.4)
h un

j − [Lu]nj =− 3rh[
∂2u

∂t∂x
]nj +

9

2
rh2[

∂3u

∂t∂x2
]nj

− 5

2
rh3[

∂4u

∂t∂x3
]nj − 3

2
rhτ [

∂3u

∂t2∂x
]nj +O(τ + h4),(2.12)

L
(2.5)
h un

j − [Lu]nj =− 3rh[
∂2u

∂t∂x
]nj − 9

2
rh2[

∂3u

∂t∂x2
]nj

− 5

2
rh3[

∂4u

∂t∂x3
]nj − 3

2
rhτ [

∂3u

∂t2∂x
]nj +O(τ + h4),(2.13)

L
(2.6)
h un

j − [Lu]nj =3rh[
∂2u

∂t∂x
]nj − 9

2
rh2[

∂3u

∂t∂x2
]nj

+
5

2
rh3[

∂4u

∂t∂x3
]nj +

3

2
rhτ [

∂3u

∂t2∂x
]nj +O(τ + h4),(2.14)

L
(2.7)
h un

j − [Lu]nj =− 6rh[
∂2u

∂t∂x
]nj + 7rh3[

∂4u

∂t∂x3
]nj

− 3rhτ [
∂3u

∂t2∂x
]nj +O(τ + h4),(2.15)

L
(2.8)
h un

j − [Lu]nj =6rh[
∂2u

∂t∂x
]nj − 7rh3[

∂4u

∂t∂x3
]nj

+ 3rhτ [
∂3u

∂t2∂x
]nj +O(τ + h4).(2.16)
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Figure 2. The diagram of the explicit segment

Figure 3. The diagram of the implicit segment

2.2. The initial and boundary conditions. We consider the following ini-
tial and boundary conditions [4, 7]

u(x, 0) = u0(x), x ∈ [0, l],

u(0, t) = uxx(0, t) = u(l, t) = uxx(l, t) = 0 t ∈ [0, T ],

where u0(x) is a given function, α is a constant.
The discrete initial value condition is

u0
j = u0(xj), j = 0, 1, 2, . . . , J.

According to two-order central difference quotient operator in space, the dis-
crete boundary value conditions are

un
0 = un

J = 0,

un
−1 + un

1 = un
−2 + un

2 = 0,

un
J−1 + un

J+1 = un
J−2 + un

J+2 = 0, n = 0, 1, 2, . . . , N.

We can easily find that the truncation error for points on the boundary is
O(h2).

3. The high-accuracy alternating segment explicit-implicit method

3.1. The high-accuracy ASE-I method. The new parallel ASE-I method
is constructed as follow. Assuming J − 1 = k(2l + 6), we consider the model
of the segment at the (n + 1)st and the (n + 2)nd time levels, where n is an
even number, and l ≥ 1 is a positive integer. We first introduce the explicit
segment and the implicit segment. The nodes in the explicit segment should
be computed by (2.1) (see Figure 2), and the nodes in the implicit segment
should be computed by (2.3)-(2.8) and (2.2) (see Figure 3).

We divide the nodes of the (n+1) st time level into k implicit segments and
k + 1 explicit segments, and divide the nodes of the (n+ 2) nd time level into
k explicit segments and k + 1 implicit segments:
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bb
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aa
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i i
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Figure 4. The diagram of the new ASE-I method

implicit -explicit -· · · -implicit at odd time levels,
explicit -implicit -· · · -explicit at even time levels.

At odd time level, each explicit segment contains l nodes, and each implicit
segment contains l + 6 nodes. At even time level, the first implicit segment
contains 3 nodes, the difference schemes of the nodes are arranged according
to the rule of “(a’)-(c’)-(b) ”, the (k + 1)st implicit segment contains 3 nodes,
the difference schemes of the nodes are arranged according to the rule of “(a)-
(c)-(b’)”. The difference schemes of the nodes in the explicit segments and the
other implicit segments are according to the Figure 2 and Figure 3. Generally
speaking, the asymmetric schemes are used alternately in pairs at two adjacent
points of the (n + 1)st and the (n + 2)nd time level. The rule is displayed in
Figure 4, we use “□” to denote the asymmetric schemes (2.3)-(2.8), “ ◦ ” to
denote the explicit scheme (2.1), “ • ” to denote the implicit scheme (2.2).

The high-accuracy ASE-I scheme can be expressed as

(3.1)

{
(I + rG1)U

n+1 = (I − rG2)U
n,

(I + rG2)U
n+2 = (I − rG1)U

n+1,
n = 0, 2, 4, 6, . . . ,

where Un = (un
1 , u

n
2 , . . . , u

n
J−1)

T , and the matrices G1 and G2 are given by

G1 =



Q(l+6)×(l+6)

Ql×l

Q(l+6)×(l+6)

. . .

Ql×l

Q(l+6)×(l+6)


,

G2 =



Q
(l)
(3)×(3) P3×3

Ql×l

. . .

Q(l+6)×(l+6)

Ql×l

PT
3×3 Qr

(3)×(3)


,
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Q(l+6)×(l+6) =



1 −6 6 −1
−6 28 −33 12 −1
6 −33 55 −39 12 −1
−1 12 −39 56 −39 12 −1

. . .
. . .

. . .

−1 12 −39 56 −39 12 −1
−1 12 −39 55 −33 6

−1 12 −33 28 −6
−1 6 −6 1


,

Ql×l =


0

0
. . .

0
0

 , P3×3 =

 −1 12 −39
0 −1 12
0 0 −1

 ,

Ql
3×3 =

 −55 33 −6
33 −28 6
−6 6 −1

 , Qr
3×3 =

 −1 6 −6
6 −28 33
−6 33 −55

 .

3.2. The analysis of the truncation error. Let us give out the error anal-
ysis for the high-accuracy ASE-I method. In order to analyze the truncation
errors of the ASE-I method, we change the scheme (3.1) into the equivalent
segment schemes of three-level, i.e., adding scheme (a′) at the point (xj , t

n+1)
and scheme (a) at the point (xj , t

n+2) for two adjacent points of the (n+ 1)st
time level and the (n + 2)nd time level, we obtain three-level scheme (3.2).
Similarly, adding (b′) and (b), (a) and (a′), (b) and (b′), (c′) and (c), (c) and
(c′) at the point (xj , t

n+1) of the (n+1)st time level and the point(xj , t
n+2) of

the (n+2)nd time level respectively, we obtain three-level schemes (3.3)-(3.7),
separately:

−rUn+2
j+3 + 6rUn+2

j+2 − 6rUn+2
j+1 + (1 + r)Un+2

j =

−12rUn+1
j+2 + 66rUn+1

j+1 − 110rUn+1
j + 78rUn+1

j−1 − 24rUn+1
j−2 + 2rUn+1

j−3 +

(3.2) rUn
j+3 − 6rUn

j+2 + 6rUn
j+1 + (1− r)Un

j ,

(1 + r)Un+2
j − 6rUn+2

j−1 + 6rUn+2
j−2 − rUn+2

j−3 =

−12rUn+1
j−2 + 66rUn+1

j−1 − 110rUn+1
j + 78rUn+1

j+1 − 24rUn+1
j+2 + 2rUn+1

j+3 +

(3.3) (1− r)Un
j + 6rUn

j−1 − 6rUn
j−2 + rUn

j−3,

6rUn+2
j+2 − 33rUn+2

j+1 + (1 + 55r)Un+2
j − 39rUn+2

j−1 + 12rUn+2
j−2 − rUn+2

j−3 =

2rUn+1
j+3 − 12rUn+1

j+2 + 12rUn+1
j+1 − 2rUn+1

j −
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(3.4) 6rUn
j+2 + 33rUn

j+1 + (1− 55r)Un
j + 39rUn

j−1 − 12rUn
j−2 + rUn

j−3,

−rUn+2
j+3 + 12rUn+2

j+2 − 39rUn+2
j+1 + (1 + 55r)Un+2

j − 33rUn+2
j−1 + 6rUn+2

j−2 =

−2rUn+1
j + 12rUn+1

j−1 − 12rUn+1
j−2 + 2rUn+1

j−3 +

(3.5) 6rUn
j−2 + 33rUn

j−1 + (1− 55r)Un
j + 39rUn

j+1 − 12rUn
j+2 + rUn

j+3,

−rUn+2
j+3 + 12rUn+2

j+2 − 33rUn+2
j+1 + (1 + 28r)Un+2

j − 6rUn+2
j−1 =

12rUn+1
j+1 − 56rUn+1

j + 66rUn+1
j−1 − 24rUn+1

j−2 + 2rUn+1
j−3 +

(3.6) rUn
j+3 − 12rUn

j+2 + 33rUn
j+1 + (1− 28r)Un

j + 6rUn
j−1,

−6rUn+2
j+1 + (1 + 28r)Un+2

j − 33rUn+2
j−1 + 12rUn+2

j−2 − rUn+2
j−3 =

2rUn+1
j+3 − 24rUn+1

j+2 + 66rUn+1
j+1 +−56rUn+1

j + 12rUn+1
j−1 +

(3.7) 6rUn
j+1 + (1− 28r)Un

j + 33rUn
j−1 − 12rUn

j−2 + rUn
j−3.

From the Taylor series expansion at (xj , t
n+1), we obtain the following trun-

cation error expressions for formulae (3.2)-(3.7)

(3.8) T3.2 = 3rτh[
∂3u

∂x∂t2
]n+1
j +

9

2
rτh2[

∂4u

∂x2∂t2
]n+1
j + o(τ + h4),

(3.9) T3.3 = −3rτh[
∂3u

∂x∂t2
]n+1
j − 9

2
rτh2[

∂4u

∂x2∂t2
]n+1
j + o(τ + h4),

(3.10) T3.4 = −3rτh[
∂3u

∂x∂t2
]n+1
j +

9

2
rτh2[

∂4u

∂x2∂t2
]n+1
j + o(τ + h4),

(3.11) T3.5 = 3rτh[
∂3u

∂x∂t2
]n+1
j − 9

2
rτh2[

∂4u

∂x2∂t2
]n+1
j + o(τ + h4),

(3.12) T3.6 = −6rτh[
∂3u

∂x∂t2
]n+1
j + o(τ + h4),

(3.13) T3.7 = 6rτh[
∂3u

∂x∂t2
]n+1
j + o(τ + h4).

On the same time level, the schemes (3.2) and (3.3), (3.4) and (3.5), (3.6)
and (3.7) are used symmetrically in the space direction, respectively, the signs
terms with the parameter h in (3.8) and (3.9) are opposite, and the signs of the
terms with the parameter h in the (3.10) and (3.11), (3.12) and (3.13), are also
opposite. Thus the effect of the terms with h in the errors can be canceled.
Very similar discussion for the explicit scheme and the implicit scheme can
be carried out. Therefore, the truncation error of the new ASE-I method is
approximately o(h4) in space.
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3.3. The analysis of the unconditional stability. To prove the stability,
we have to introduce the following Kellogg Lemma [5].

Lemma 3.1. If ρ > 0, C +CT is nonnegative definite, then (I + ρC)−1 exists
and there holds

||(I + ρC)−1||2 ≤ 1.

Lemma 3.2. Under the conditions of Lemma 3.1, the following inequality holds

||(I − ρC)(I + ρC)−1||2 ≤ 1.

Lemma 3.3. For any real number r, and the symmetric non-negative matri-
ces G1 and G2, matrices rG1 and rG2 are both symmetric and non-negative
definite.

Theorem 3.4. For any real number r, the new ASE-I method (3.1) is uncon-
ditionally stable.

Proof. By eliminating Un+1 from (3.1), we obtain Un+2 = GUn, where G is
the growth matrix

G = (I + rG2)
−1(I − rG1)(I + rG1)

−1(I − rG2).

For any even number n, there holds

Gn = (I + rG2)
−1(I − rG1)(I + rG1)

−1

·[(I − rG2)(I + rG2)
−1(I − rG1)(I + rG1)

−1]n−1(I − rG2).

Since G1 and G2 are all symmetric, for any real number r, we can obtain the
following inequality from the Kellogg Lemma

∥Gn∥2 ≤ ∥(I + rG2)
−1∥2 · ∥(I − rG1)(I + rG1)

−1∥n2
·∥(I − rG2)(I + rG2)

−1∥n−1
2 · ∥(I − rG2)∥2.

Hence

∥Gn∥2 ≤ ∥(I − rG2)∥2 ≤
√
∥(I − rG2)∥∞ · ∥(I − rG2)∥1 ≤

√
1 + 160r

This shows that the new ASE-I method is unconditionally stable. □

4. Numerical experiments

In this section, we perform numerical experiments for (1.1). Let u0(x) =
sinx, α = 1, and L = π. The exact solution of this problem is

u(x, t) = e−t sinx.

We first illustrate the convergence rates in space for the schemes (3.1). Let
vnj = u(xj , t

n) be the exact solution of the problem (1.1) and un
j be the ap-

proximate solution. We introduce the following L∞−norm error and L2−norm
error

E∞,h = max
j

|vnj − un
j |, E2,h =

(∑
j

|vnj − un
j |2h

) 1
2 .
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Thus, we can calculate the rates of convergence by the following definitions

rate =
log(E∞,h1/E∞,h2)

log(h1/h2)
, rate =

log(E2,h1/E2,h2)

log(h1/h2)
.

where h1 and h2 are the space mesh steps.
Let ‘NASE-I’ represents the new high-accuracy ASE-I method described

above, and ‘ASE-I’ represents the ASE-I scheme, ‘AGE4’ represents the AGE
4-points scheme, and ‘AGE8’ represents the AGE 8-points scheme in [4], respec-
tively. We choose l = 4 in the NASE-I method and l = 6 in the ASE-I method.
For the NASE-I, ASE-I, AGE4, AGE8 methods, we give the L∞−norm errors,
L2−norm errors and the convergence rates at the different time t in Tables
1-3, respectively. We can see from these tables that the convergence rate of
the new ASE-I method appears to be O(h4) in space, which is coincident with
our theoretical analysis, while the ASE-I, AGE4 and AGE8 methods appear
to be O(h2) in space in [4]. Because of the particularity of the experimental
example, although the boundary formulation could reduce the accuracy, it does
not affect the O(h4) in space

Table 1. The convergence rate of the NASE-I at t = 0.1, τ = 10−8

h π/11 π/25 π/39 π/53 π/67
L∞ 1.7173E-5 6.5534E-7 1.1165E-7 3.2737E-8 1.3096E-8
Rate − 3.9781 3.9799 3.9998 3.9087
L2 2.1744E-5 8.2297E-7 1.4005E-7 4.1046E-8 1.6411E-8
Rate − 3.9881 3.9824 4.0013 3.9110

Table 2. The convergence rate of the NASE-I at t = 0.01, τ = 10−8

h π/11 π/25 π/39 π/53 π/67
L∞ 1.8790E-6 7.1706E-8 1.2217E-8 3.5829E-9 1.4350E-9
Rate − 3.9781 3.9798 3.9991 3.9036
L2 2.3792E-6 9.0047E-8 1.5324E-8 4.4911E-9 1.7957E-9
Rate − 3.9881 3.9824 4.0013 3.9108

Next, we compare the errors for the NASE-I with the ASE-I, AGE4 and the
AGE8 methods at the different time t in Tables 4–5, respectively, where the

absolute error ae = |un
j −u(xj , t

n)|, the relative error pe =
|un

j − u(xj , t
n)|

|u(xj , tn)|
×%,

and ‘Exact’ represents the values of the exact solution u(xj , t
n). The results

show that the NASE-I method is more accurate than the ASE-I, AGE4 and
AGE8 methods in [4]. In addition, from Figures 5–8, we can see clearly that the



1733 Guo and Lü

Table 3. The convergence rate of the NASE-I at t =
0.001, τ = 10−8

h π/11 π/25 π/39 π/53 π/67

L∞ 1.8690E-7 7.2354E-9 1.2330E-9 3.6146E-10 1.4456E-10

Rate − 3.9781 3.9793 4.0004 3.9098

L2 2.1744E-5 8.2297E-7 1.4005E-7 4.1046E-8 1.6411E-8

Rate − 3.9881 3.9825 4.0011 3.9108

Table 4. The comparison for the results at J = 24, τ =
10−5, t = 1.

scheme error j=4 j=7 j=10 j=12 j=15 j=21

NASE-I ae(10−8) 2.0654 7.3191 9.7617 9.9138 9.7616 2.0654

pe(10−7) 1.1654 2.5821 2.7901 2.8635 2.7900 1.1654

ASE-I ae(10−4) 4.6684 7.4609 9.2091 9.6638 9.2091 4.6648

pe(10−3) 2.6321 2.6321 2.6321 2.6321 2.6321 2.6321

AGE4 ae(10−4) 4.6643 7.4601 9.2081 9.6629 9.2081 4.6643

pe(10−3) 2.6318 2.6318 2.6318 2.6318 2.6318 2.6318

AGE8 ae(10−4) 4.6649 7.4609 9.2092 9.6640 9.2092 4.6649

pe(10−3) 2.6231 2.6231 2.6231 2.6231 2.6231 2.6231

Exact (10−1) 1.7723 2.8346 3.4987 3.6715 3.4987 1.7723

Table 5. The comparison for the results at J = 80, τ =
10−7, t = 0.01.

scheme error j=10 j=25 j=30 j=40 j=55 j=70
NASE-I ae(10−9) 3.6985 4.9936 5.0853 5.3752 5.0002 3.8462

pe(10−9) 9.8775 6.1161 5.5939 5.4303 5.9699 9.3879
ASE-I ae(10−6) 1.0864 2.0467 2.2789 2.4814 2.0996 1.0270

pe(10−6) 2.5068 2.5068 2.5068 2.5068 2.5068 2.5068
AGE4 ae(10−6) 1.0864 2.0467 2.2789 2.4814 2.0996 1.0270

pe(10−6) 2.5068 2.5068 2.5068 2.5068 2.5068 2.5068
AGE8 ae(10−6) 1.0863 2.0468 2.2789 2.4814 2.1000 1.0270

pe(10−6) 2.5069 2.5069 2.5069 2.5069 2.5069 2.5069
Exact (10−1) 3.7444 8.1647 9.0908 9.8986 8.3757 4.0969

NASE-I solutions are much more accurate than the ASE-I, AGE4 and AGE8
solutions.

Third, we verified the stability of the NASE-I method. From Tables 6 and
7, we can easily find that the high-accuracy NASE-I method is unconditionally
stable.
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Figure 5. Comparison of the errors, t = 0.1, h = π/25, τ = 10−5
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Figure 6. Comparison of the errors, t = 0.001, h = π/25, τ = 10−6
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Figure 7. Comparison of the errors, t = 0.1, h = π/81, τ = 10−6
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Table 6. The errors of numerical solution at J = 10, τ =
10−7, t = 0.001, r = τ/(6h4).

r error j=2 j=4 j=6 j=8 j=10
r1 = r ae(10−7) 1.0356 1.7423 1.8959 1.4416 5.3963

re(10−7) 1.9173 1.9173 1.9173 1.9173 1.9173
r2 = 10r ae(10−7) 1.0357 1.7424 1.8959 1.4473 5.3968

re(10−7) 1.9176 1.9173 1.9173 1.9170 1.9175
r3 = 100r ae(10−7) 1.0509 1.7479 1.8977 1.4228 5.4423

re(10−7) 1.9458 1.9235 1.9191 1.8847 1.9337

Table 7. The errors of numerical solution at J = 94, τ =
10−6, t = 0.1, r = τ/(6h4).

r error j=15 j=30 j=45 j=60 j=75
r1 = r ae(10−5) 7.8778 1.3216 1.5449 1.4321 9.9860

re(10−5) 1.8293 1.7446 1.7132 1.7283 1.7968
r2 = 5r ae(10−6) 1.9681 3.3016 3.8594 3.5777 2.4948

re(10−6) 4.1700 4.3585 4.2800 4.3177 4.4889
r3 = 10r ae(10−7) 7.7257 1.2901 1.5131 1.4029 9.7897

re(10−7) 1.7940 1.7094 1.6779 1.6930 1.7615
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Figure 8. Comparison of the errors, t = 0.001, h = π/81, τ = 10−7

At last, let’s give a brief discussion on parallelism of the NASE-I method.
The major difficulty to solve partial differential equations on massive paral-
lel computers is how to compute the values on the sub-domain boundaries.
In this paper, we have constructed a group of asymmetric difference schemes
(2.3)−(2.8), when we compute the interface values by the asymmetric difference
schemes, the global domain of definition is divided into some small independent
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segments (see Figure 4), and can be computed in parallel, the parallelism is
clarity.

5. Conclusion

We have constructed a new kind of alternating parallel difference scheme
with unconditional stability and fourth-order accuracy for the fourth-order heat
equation. The design of the method is new and simple as well. The theoretical
analysis and the numerical experiments indicate that the high-accuracy ASE-I
method constructed in this paper is more accurate than the known alternating
schemes, and it can be extended to apply for nonlinear equations and two
dimensional problems.
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