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Abstract. Let G be a non-abelian group and let Γ(G) be the non-
commuting graph of G. In this paper we define an equivalence relation
∼ on the set of V (Γ(G)) = G ∖ Z(G) by taking x ∼ y if and only if
N(x) = N(y), where N(x) = {u ∈ G ∣ x and u are adjacent in Γ(G)} is

the open neighborhood of x in Γ(G). We introduce a new graph de-
termined by equivalence classes of non-central elements of G, denoted
ΓE(G), as the graph whose vertices are {[x] ∣ x ∈ G∖Z(G)} and join two
distinct vertices [x] and [y], whenever [x, y] ≠ 1. We prove that group

G is AC-group if and only if ΓE(G) is complete graph. Among other
results, we show that the graphs of equivalence classes of non-commuting
graph associated with two isoclinic groups are isomorphic.
Keywords: Non-commuting graph, graph of equivalence classes, Isoclin-

ism.
MSC(2010): Primary: 05C25; Secondary: 20F99.

1. Introduction

Let G be a group and Z(G) be the center of G. The non-commuting graph
Γ(G) associated with G is the graph whose vertex set is G ∖ Z(G) and two
distinct elements x and y are adjacent, denoted x Ð y, if and only if [x, y] ≠
1. According to [2] the non-commuting graph of a finite group G was first
considered by Paul Erdös in connection with the following problem. Let G be
a group whose non-commuting graph Γ(G) has no infinite complete subgraphs.
Is it true that there is a finite bound on the cardinalities of complete subgraphs
of Γ(G)? B.H. Neumann [12] answered positively to this question. In [2]
and [11], some graph theoretical properties of Γ(G) and the relations between
some properties of Γ(G) and the structure of group G were studied. Of course,
there are some other ways to construct a graph associated with a given group.
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We may refer to the works of Bertram et al. [6] and Moghadamfar et al. [11]
or recent papers on non-commuting graph, Engel graph and non-cyclic graph
in [1, 2] and [4], respectively.

Two vertices a and b of a simple graph Γ are said to be equivalent, if their
open neighborhoods are the same, i.e., a ∼ b if and only if N(a) = N(b), where
N(a) = {c ∈ V (Γ) ∣ a and c are adjacent in Γ}. One can see that ∼ is an equiv-
alence relation and we denote the class of a by [a]. The graph of equivalence
classes of Γ, denoted ΓE , is the graph associated with Γ whose vertex set is
{[a] ∶ a ∈ V (Γ)} and two equivalence classes [a] and [b] are adjacent in ΓE
if a and b are adjacent in Γ. In Section 2, we will introduce the graph of
equivalence classes of the non-commuting graph Γ(G). We will state some of
basic graph theoretical properties of ΓE(G), for instance determining diameter,
girth, dominating set, planarity of the graph and we give some relation between
the graph properties of Γ(G) and ΓE(G). In Section 3 of the paper, we state
a connection between the graph of equivalence classes of the non-commuting
graph and isoclinism of groups. We prove that the graphs of equivalence classes
of two isoclinic groups are isomorphic. Moreover, we show that for any group
G with ΓE(G) <∞, there is a finite group K such that ΓE(G) ≅ ΓE(K).

2. Definitions and basic results

Let Γ(G) be the non-commuting graph of a non-abelian group G. For x, y ∈
G∖Z(G), we say that x ∼ y if and only if G∖CG(x) = N(x) = N(y) = G∖CG(y)
if and only if CG(x) = CG(y), where N(x) = {u ∈ G ∣ x and u are adjacent in
Γ(G)}. It is easy to see that ∼ is an equivalence relation and we denote the
class of x by [x].

Definition 2.1. The graph of equivalence classes of Γ(G), denoted ΓE(G), is
the graph associated with G with vertex set {[x] ∶ x ∈ G∖Z(G)} such that two
distinct vertices [x] and [y] are joined by an edge, denoted [x] Ð [y], if and
only if [x, y] ≠ 1.

It is easy to check [x] ↦ CG(x) establishes a one-to-one correspondence
between V (ΓE(G)) and the set of all proper centralizers of group G. Hence
∣V (ΓE(G))∣ = #Cent(G) − 1, where Cent(G) denote the set of centralizers of
single elements of G and #Cent(G) is the size of Cent(G).

Recall that a clique of a graph is a set of mutually adjacent vertices, and
that the maximum size of a clique of a graph Γ, the clique number of Γ, is
denoted ω(Γ). Moreover, a clique of a graph Γ is called a maximum clique if
its size is ω(Γ)

Lemma 2.2. Assume that A = {[x] ∶ CG(x) is an abelian group}. Then A is
a clique in ΓE(G).
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Proof. By the structure of A, it will be enough to prove the induced subgraph
on A is a complete graph. Hence, suppose that [x] and [y] are two distinct ele-
ments of A. We claim that [x] and [y] are adjacent in ΓE(G), or equivalently,
[x, y] ≠ 1. If not, then for every a ∈ CG(y), we get [a, x] = 1, since x ∈ CG(y)
which is an abelian group. Thus, a ∈ CG(x), and so CG(y) ⊆ CG(x). Similarly
CG(x) ⊆ CG(y), and hence CG(x) = CG(y). But then, by definition we have
x ∼ y, which forces [x] = [y], a contradiction. □

Let B = {[x] ∶ CG(x) is minimal among all centralizers of G} i.e., if [x] ∈ B
and CG(y) ⊆ CG(x), then CG(y) = CG(x). Assume that A is as in Lemma 2.2,
[x] ∈ A and CG(y) ⊆ CG(x). For every a ∈ CG(x), [a, y] = 1, since a, y ∈ CG(x)
which is abelian, and so a ∈ CG(y). Therefore [x] ∈ B. It follows that A ⊆ B.
In the following we will give some other facts on the sets A and B.

For a graph Γ and a subset S of vertices, denote by NΓ[S] the set of vertices
in Γ which are in S or adjacent to a vertex in S. If NΓ[S] = V (Γ), then S
is called a dominating set for Γ. The dominating number γ(Γ) of Γ is the
minimum size of a dominating set of the vertices of Γ.

Lemma 2.3. Assume that G is a non-abelian group, and A and B defined as
above.

(i) If [y] ∈ B, then [y] is adjacent to all elements of A ∖ {[y]} in ΓE(G).
(ii) If [z] ∈ V (ΓE(G)) ∖B, then [z] is not adjacent to all elements of B in

ΓE(G).
(iii) If A = B, then every vertex of ΓE(G) is adjacent to at least a vertex of

A. Moreover, A is a maximal clique of ΓE(G) and if ΓE(G) is finite,
then ω(ΓE(G)) = ∣A∣.

Proof. (i) For [y] ∈ B, if [y] ∈ A and [x, y] = 1 for some [x] ∈ A, then [x] = [y]
which is a contradiction. Then [y] is adjacent to all elements of A. Now assume
that [y] ∈ B ∖A and [x, y] = 1 for some [x] ∈ A, then CG(x) ⊆ CG(y) and so
CG(x) = CG(y), since [y] ∈ B. Thus [x] = [y], a contradiction and so [y] is
adjacent to all elements of A.

(ii) Assume that [z] ∈ V (ΓE(G)) ∖ B. Then there is [w] ∈ B such that
CG(w) ⊆ CG(z) and so [z,w] = 1. This means that [z] is not adjacent to [w],
as required.

(iii) Suppose that A = B. If there is [z] ∈ V (ΓE(G)) such that [z] is
not adjacent to elements in A, then [x, z] = 1 for all [x] ∈ A = B and so

⋃[x]∈ACG(x) ⊆ CG(z). On the other hand, there is a non-central element
w ∈ G such that [z] and [w] are adjacent. Thus w ∉ CG(z) and so [w] is
adjacent to all elements of A = B, which will contradict part (ii). Therefore,
A is a dominating set for ΓE(G). Moreover, assume that A ∪ {[y]} is a clique
of ΓE(G), where [y] ∉ A. Then there is [x] ∈ B = A such that CG(x) ⊆ CG(y)
and so [x, y] = 1, a contradiction. Therefore, A is a maximal clique of ΓE(G).
Now suppose that ΓE(G) is finite and Y is a maximum clique of ΓE(G) such
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that ∣A∣ < ∣Y ∣. Then there are [x] ∈ B = A and [y1], [y2] ∈ Y such that
CG(x) ⊆ CG(yi), for i = 1,2. Therefore, y1, y2 ∈ CG(x) and so [y1, y2] = 1,
which is a contradiction. Hence ω(ΓE(G)) = ∣A∣ and the proof is complete. □

A non-abelian group is called an AC-group if the centralizer of every non-
central element is abelian.

Theorem 2.4. A non-abelian group G is an AC-group if and only if ΓE(G) is
a complete graph. In particular, if G is an AC-group with n =#Cent(G) <∞,
then ΓE(G) ≅Kn−1, where Kn−1 is a complete graph with n − 1 vertices.

Proof. Suppose that ΓE(G) is a complete graph and a, b ∈ CG(x) Ó Z(G).
Then [a] = [x] = [b] and so [a, b] = 1. Therefore, CG(x) is an abelian group.
Now, assume that G is an AC-group. Then V (ΓE(G)) = A and the result
follows from Lemma 2.2. Furthermore, assume that #Cent(G) = n < ∞. If
CG(x1),CG(x2), . . . ,CG(xn−1) are all proper centralizers of G, then [xi, xj] ≠ 1
for all 1 ≤ i ≠ j ≤ n and so V (ΓE(G)) = {[x1], [x2], . . . , [xn−1]} is the maximum
clique of ΓE(G). Thus ΓE(G) ≅Kn−1. □
Corollary 2.5. Let G and H be two non-abelian groups. If ΓE(G) ≅ ΓE(H),
then G is an AC-group if and only if H is an AC-group.

Corollary 2.6.

(i) Let G = D2n = ⟨a, b∣an = b2 = (ab)2 = 1⟩ be the dihedral group of order
2n. Then

ΓE(G) ≅ {
Kn+1 n is odd
Kn

2 +1 n is even

(ii) If G = Q4n is the generalized quaternion group of order 4n, then
ΓE(G) ≅Kn+1.

Proof. It is easy to check that Cent(G) = {G,CG(a),CG(aib), 0 ≤ i ≤ n − 1},
when n is odd and Cent(G) = {G,CG(a),CG(aib), 0 ≤ i ≤ n/2 − 1} when n is
even. Furthermore Cent(G) = {G,CG(a),CG(aib), 0 ≤ i ≤ n−1} when G = Q4n.
Now the results follows from Theorem 2.4. □

From Theorem 2.4 we note that in some cases the graph of the equivalence
classes of groups are not complete. The smallest counterexample is the sym-
metric group S4. It is easy to check that CG((1 2)(3 4)) and CG((1 3)(2 4))
are non-abelian and distinct, and the vertices [(1 2)(3 4)] and [(1 3)(2 4)] are
not adjacent in ΓE(S4).

Proposition 2.7. Assume that G is a non-abelian group. Then
diam(ΓE(G)) ⩽ 2 and girth(ΓE(G)) = 3. In particular ΓE(G) is connected.

Proof. Let [x] and [y] be two distinct vertices of ΓE(G). If [x] Ð [y] then
d([x], [y]) = 1. Thus we may assume that [x] Ð [y]. Since x, y are non-
central, there exist [x′], [y′] ∈ V (ΓE(G)) such that {[x], [x′]} and {[y], [y′]}
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are edges. If [y] Ð [x′] or [x] Ð [y′] then d([x], [y]) = 2. Otherwise
the vertex [x′y′] is adjacent to both [x] and [y] and again d([x], [y]) = 2.
Therefore, diam(ΓE(G)) ⩽ 2. Moreover, for every edge {[x], [y]} of ΓE(G),
{[x], [y], [xy]} is a triangle. Hence the girth of ΓE(G) is 3. □

A subset X of the vertices of a graph Γ is called an independent set if the
induced subgraph on X has no edges. The maximum size of an independent
set in a graph Γ is called the independence number of Γ and denoted by α(Γ).

Proposition 2.8. Let G be a non-abelian group.

(i) If C is a dominating set for Γ(G), then C = {[x] ∶ x ∈ C} is a dominating
set for ΓE(G).

(ii) If D is an independent set of Γ(G), then D = {[x] ∶ x ∈ D} is an
independent set of ΓE(G).

Proof. (i) Let [x] be a vertex of ΓE(G) that is not in C so x ∉ C. Therefore

there is y ∈ C such that [x, y] ≠ 1 and this means that there is [y] ∈ C such that
[x]Ð [y].
(ii) If [x] and [y] are two elements of D, then x, y ∈ D and this means that
[x, y] = 1. Therefore [x] and [y] are not adjacent. □

By Proposition 2.8 one can see that γ(ΓE(G)) ≤ γ(Γ(G)) and α(ΓE(G)) ≤
α(Γ(G)). In the following, we will prove that the graphs Γ(G) and ΓE(G)
have the same clique number and vertex chromatic number.

Let k > 0 be an integer. A k-vertex coloring of a graph Γ is an assignment of
k colors to the vertices of Γ such that no two adjacent vertices have the same
color. The vertex chromatic number χ(Γ) of a graph Γ, is the minimum k for
which Γ has a k-vertex coloring.

Proposition 2.9. Let G be a finite non-abelian group. Then ω(ΓE(G)) =
ω(Γ(G)), χ(ΓE(G)) = χ(Γ(G)).

Proof. Since ΓE(G) is isomorphic to a subgraph of Γ(G), then ω(ΓE(G)) ≤
ω(Γ(G)). Assume that ω(Γ(G)) = n and {x1, x2, . . . , xn} is a maximum clique
of Γ(G). Then for every 1 ⩽ i ≠ j ⩽ n, [xi, xj] ≠ 1 and so, [xi] and [xj] are
adjacent for all 1 ⩽ i ≠ j ⩽ n. This means that {[x1], [x2], . . . , [xn]} is a clique
in ΓE(G) and so ω(Γ(G)) ≤ ω(ΓE(G)).

Now, let χ(ΓE(G)) = t and χ(Γ(G)) = k. By [2, Lemma 4.1] k is the
minimum number of abelian subgroups ofG whose union isG, thenG is covered
by abelian subgroups A1, . . . ,Ak. Assume that V (ΓE(G)) = {[x1], . . . , [xn]},
T = {x1, . . . , xn} and Ti = {[x] ∶ x ∈ T ∩ Ai} for 1 ≤ i ≤ k. Then the vertices
of ΓE(G) in Ti are independent and so t ⩽ k. Now suppose that B1, . . . ,Bt
are independent subsets of V (ΓE(G)) such that ⋃tj=1Bj = V (ΓE(G)). Then
Aj = ⟨⋃x∈Bj

[x], Z(G)⟩ is an abelian subgroup of G, for 1 ≤ j ≤ t and G is
covered by these t abelian subgroups. It follows that k ≤ t. □
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Proposition 2.10. If Γ(G) ≅ Γ(H), then ΓE(G) ≅ ΓE(H).

Proof. Let φ ∶ V (Γ(G)) Ð→ V (Γ(H)) be a bijective map such that for ev-
ery two distinct elements x, y ∈ V (Γ(G)), we have [x, y] = 1 if and only if
[φ(x), φ(y)] = 1. Define ψ ∶ V (ΓE(G)) Ð→ V (ΓE(H)) such that ψ([x]) =
[φ(x)]. One can check that ψ is a bijective map and [x]Ð [y] in ΓE(G) if and
only if ψ([x]) = [φ(x)]Ð [φ(y)] = ψ([y]) in ΓE(H). □

Proposition 2.11. Let G or H be non-abelian AC-groups. Then ω(ΓE(G ×
H)) = ω(ΓE(G))ω(ΓE(H)).

Proof. Assume that G is an AC-group and V (ΓE(G)) = {[x1], [x2], . . . , [xn]}
and {[y1], [y2], . . . , [ym]} are maximum clique of ΓE(G) and ΓE(H), respec-
tively. We show that Ω = {[(xi, yj)] ∶ 1 ⩽ i ⩽ n,1 ⩽ j ⩽m} is a maximum clique
of ΓE(G ×H). Suppose, for a contradiction, that Ω ≠ Ω ∪ {[(u, v)]} is a clique
of ΓE(G ×H). Then [(xi, yj)]Ð [(u, v)] for all 1 ⩽ i ⩽ n and 1 ⩽ j ⩽m.

Case 1. [u] = [xt] or [v] = [ys] for some 1 ⩽ t ⩽ n and 1 ⩽ s ⩽m. It is clear
that {[y1], [y2], . . . , [ym], [v]} or {[x1], [x2], . . . , [xn], [u]} is a clique of ΓE(H)
or ΓE(G), respectively, which is a contradiction.

Case 2. [u] ≠ [xi] for all 1 ⩽ i ⩽ n. Since G is an AC-group, [u] is adjacent
to [xi] for every 1 ⩽ i ⩽ n and so {[x1], [x2], . . . , [xn], [u]} is a clique of ΓE(G),
a contradiction. □

Proposition 2.12. Let H be a finite subgroup of G. Then ΓE(G) ≅ ΓE(H) if
and only if G =HZ(G).

Proof. Define φ ∶ V (ΓE(G)) Ð→ V (ΓE(H)) by φ([hz]) = [h], which is a bi-
jective map. Since [h1z1, h2z2] ≠ 1 if and only if [h1, h2] ≠ 1, then [h1z1] and
[h2z2] are adjacent in ΓE(G) if and only if [h1] and [h2] are adjacent in ΓE(H)
and so φ is a graph isomorphism.

Conversely, assume that V (ΓE(H)) = {[h1], [h2], . . . , [hn]}, so that we may
have V (ΓE(G)) = {[h1], [h2], . . . , [hn]} and Z(H) ⊆ Z(G). Since the map
φ ∶ H

Z(H) Ð→
G

Z(G) by φ(hZ(H)) = hZ(G) is an isomorphism, for every g ∈ G
there exists h ∈ H such that gZ(G) = φ(hZ(H)) = hZ(G). Thus h−1g ∈ Z(G)
and so g = hz ∈HZ(G) for some z ∈ Z(G) and the proof is complete. □

Corollary 2.13. ΓE(G ×A) ≅ ΓE(G) if and only if A is an abelian group.

Proposition 2.14. Let N be a normal subgroup of G. Then ΓE(G) ≅
ΓE(G/N), if N ∩G′ = 1.

Proof. Assume that N∩G′ = 1. Then the map φ ∶ V (ΓE(G))Ð→ V (ΓE(G/N))
by φ([x]) = [xN] is a bijection. Now assume that [x] is not adjacent to [y] in
ΓE(G). Since [x, y] = 1, then [xN, yN] = N and so [xN]Ð [yN]. On the other
hand, if [xN] and [yN] are not adjacent in ΓE(G/N), then [xN, yN] = 1G/N .
Thus [x, y] ∈ N ∩G′ = 1 and so [x] and [y] are not adjacent in ΓE(G). □
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Proposition 2.15. Assume that ΓE(G1) ≅ ΓE(H1) and ΓE(G2) ≅ ΓE(H2).
Then ΓE(G1 ×G2) ≅ ΓE(H1 ×H2).

Proof. Let φi ∶ V (ΓE(Gi)) Ð→ V (ΓE(Hi)) be a graph isomorphism for i =
1,2. Then it is easy to see that ψ ∶ V (ΓE(G1 × G2)) Ð→ V (ΓE(H1 × H2))
such that ψ([(x, y)]) = [(φ1(x), φ2(y))], where CH1(φ1(x)) ∶= φ1(CG1(x))
and CH2(φ2(y)) ∶= φ2(CG2(y)) is a graph isomorphism between ΓE(G1 ×G2)
and ΓE(H1 ×H2). □

3. Isoclinism classes and the graph of equivalences classes

The notion of isoclinism of groups was introduced by Philip Hall [9] as the
following

Definition 3.1. Let G and H be two groups; a pair (φ,ψ) is called an
isoclinism from G to H if :
(1) φ is an isomorphism from G/Z(G) to H/Z(H);
(2) ψ is an isomorphism from G′ to H ′ ;
(3) the following diagram is commutative:

G

Z(G)
× G

Z(G)
φ×φÐÐÐÐ→ H

Z(H)
× H

Z(H)
aG
×××Ö

aH
×××Ö

G′
ψÐÐÐÐ→ H ′

where, aG(g1Z(G), g2Z(G)) = [g1, g2] and aH(h1Z(H), h2Z(H)) = [h1, h2].

If there is an isoclinism from G to H, we say that G and H are isoclinic
and denote it by G ∼H. One may easily check that the groups Q8 and D8 are
isoclinic but are not isomorphic.

In the following, we prove that the graphs of equivalences classes of non-
commuting graphs associated with two isoclinic groups are isomorphic.

Theorem 3.2. Assume that G and H are two isoclinic groups. Then ΓE(G) ≅
ΓE(H).

Proof. Let (φ,ψ) be an isoclinism from G to H, where φ ∶ G/Z(G) Ð→
H/Z(H) and ψ ∶ G′ Ð→ H ′ are isomorphisms and if φ(g1Z(G)) = h1Z(H),
φ(g2Z(G)) = h2Z(H), then ψ([g1, g2]) = [h1, h2]. Now assume that CG(x) ∈
Cent(G) such that φ(CG(x)/Z(G)) =K/Z(H), we will show that K = CH(y),
where φ(xZ(G)) = yZ(H). For k ∈ K there is g ∈ CG(x) such that
φ(gZ(G)) = kZ(H). Since [x, g] = 1 and by commutativity

[y, k] = aH(φ × φ(xZ(G), gZ(G))) = ψ(aG(xZ(G), gZ(G))) = ψ([x, g]),



The graph of equivalence classes 1808

then [y, k] = 1 and so k ∈ CH(y). Conversely, for h ∈ CH(y) there is g ∈ G such
that φ(gZ(G)) = hZ(H) and

ψ([x, g]) = ψ(aG(xZ(G), gZ(G))) = aH(φ × φ(xZ(G), gZ(G))) = [y, k] = 1.

Therefore g ∈ CG(x) and so h ∈ K, as required. Thus #Cent(G) = #Cent(H)
and so θ ∶ V (ΓE(G)) → V (ΓE(H)) by θ([x]) = [y] is a bijective map, where
φ(CG(x)/Z(G)) = CH(y)/Z(H).

Furthermore if [a] and [b] are adjacent in ΓE(G), then CG(a) ≠ CG(b) and
[a, b] ≠ 1. Since (φ,ψ) is an isoclinism, [a′] and [b′] are adjacent in ΓE(H),
where φ(CG(a)/Z(G)) = CH(a′)/Z(H) and φ(CG(b)/Z(G)) = CH(b′)/Z(H).
In the same way we can show that, [a′]Ð [b′] in ΓE(H) implies that [a]Ð [b]
in ΓE(G) and so ΓE(G) ≅ ΓE(H). □

Theorem 3.3. Let G be a group such that ΓE(G) is finite. Then there is a
finite group K such that Z(K) ⊆K ′, K ∼ G and ΓE(K) ≅ ΓE(G).

Proof. Thanks to [10, Proposition 2.5] there is a group K isoclinic to G such
that Z(K) ⊆ K ′. On the other hand, since ΓE(G) is finite, ω(Γ(G)) =
ω(ΓE(G)) < ∞ and so by the main theorem of [13], we have [K ∶ Z(K)] =
[G ∶ Z(G)] ≤ cω(Γ(G)) for some constant c. Now, Schur’s Theorem follows that
K ′ and so Z(K) is finite. Therefore K is finite and the result follows from
Theorem 3.2. □

Theorem 3.4. ΓE(G) ≅K3 if and only if G ∼D8.

Proof. It is clear that if G is isoclinic to D8, then ΓE(G) ≅K3.
Now assume that ΓE(G) ≅K3. By Theorem 3.3, we might as well assume that
G is a finite group such that Z(G) ⊆ G′ and by Theorem 2.4, G is an AC-
group. Since group G is the union of its proper centralizers, there are proper
centralizers CG(x), CG(y), CG(z) of G such that G = CG(x)∪CG(y)∪CG(z).
On the other hand, [xy, x] ≠ 1 and [xy, y] ≠ 1. Thus, CG(xy) = CG(z) and so
G = CG(x)∪CG(y)∪CG(xy). We claim that for every u ∈ G∖Z(G), u2 ∈ Z(G).
Suppose, for a contradiction, that u2 is not central and for example u ∈ CG(x),
then CG(x) = CG(u) and so [u2y, x] ≠ 1 and [u2y, y] ≠ 1. Hence, CG(u2y) =
CG(xy), since G has four distinct centralizers. Moreover, CG(xy) = CG(uy),
since [uy, x] ≠ 1 and [uy, y] ≠ 1. Then CG(u2y) = CG(uy) and so uy = yu,
which is a contradiction. Therefore, G/Z(G) is an elementary abelian 2-group.
On the other hand, one can see that for every u ∈ G ∖ Z(G) if for example
u ∈ CG(x), then uZ(G) = xZ(G) and so [G ∶ Z(G)] = 4, which implies that
G/Z(G) ≅ C2 ×C2 and so Z(G) = G′. Now by [14, Corollary 3.1], G′ ≅ C2 and
one can see that G is isoclinic to D8, as required. □

Theorem 3.5. ΓE(G) ≅ K4 if and only if G is isoclinic to S3 or an extra
special group of order 27.
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Proof. If G ∼ S3, then ΓE(G) ≅ ΓE(S3) ≅ K4 by Theorem 3.2. Moreover,
assume that E is an extra special group of order 27 and G is isoclinic to E.
By using GAP, we can see that E has four abelian proper centralizers and so
ΓE(G) ≅ ΓE(E) ≅ K4. For the converse, let ΓE(G) ≅ K4. From Theorem 3.3,
we may assume, up to isoclinism, that G is a finite group such that Z(G) ⊆ G′.
Then we have #Cent(G) = 5 and so G/Z(G) is isomorphic to C3 ×C3 or S3

by [5, Fact 5]. First assume that G/Z(G) ≅ S3 and S is a non-central Sylow
p-subgroup of G (p is a prime). Then SZ(G)/Z(G) ∈ Sylp(G/Z(G)) and
Sylow subgroups of G/Z(G) ≅ S3 are cyclic groups of order 2 or 3. Thus,
SZ(G)/Z(G) is cyclic which implies that SZ(G) is abelian and so is S. Hence
all Sylow subgroups of G are abelian and by [7, Corollary 4.5], G′ ∩ Z(G) = 1
and this implies that Z(G) = 1. Then we conclude that G ∼ S3, as required.
Now let G/Z(G) ≅ C3 ×C3. By a similar argument as Theorem 3.4, we can
see that Z(G) = G′ and G′ ≅ C3. It remains to prove that G is isoclinic to an
extra special group of order 27. Let G/Z(G) = ⟨xZ(G)⟩ × ⟨yZ(G)⟩ and E be
an extra special group of order 27 i.e., E′ = Z(E) ≅ C3 and E/Z(E) ≅ C3×C3 =
⟨aZ(E)⟩ × ⟨bZ(E)⟩, where x, y ∈ G and a, b ∈ E.

Define φ ∶ G/Z(G) → E/Z(E) by the rules φ(xZ(G)) = aZ(E) and
φ(yZ(G)) = bZ(E), which is an isomorphism. Furthermore, one can check
that G′ =< [x, y] > and E′ =< [a, b] > and so the map ψ ∶ G′ → E′ by the rule
ψ([x, y]) = [a, b] is an isomorphism. Now we prove that the following diagram
is commutative,

G

Z(G)
× G

Z(G)
φ×φÐÐÐÐ→ E

Z(E)
× E

Z(E)
aG
×××Ö

aE
×××Ö

G′
ψÐÐÐÐ→ E′

For any 0 ≤ t, s, u, v ≤ 2, we have

aEφ × φ(xtysZ(G), xuyvZ(G)) = aE(atbsZ(E), aubvZ(E))
= [atbs, aubv] = [a, b]tv−su

= ψ([x, y]tv−su) = ψ([xtys, xuyv])
= ψaG(xtysZ(G), xuyvZ(G)).

Therefore G and E are isoclinic by Definition 3.1 as required.
□

Corollary 3.6. Let G be an AC-group. Then ΓE(G) is planar if and only if
G is isoclinic to S3, D8 or an extra special group of order 27.

Proposition 3.7. If ω(ΓE(G)) ⩽ 20, then G is solvable.
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Proof. By Theorem 3.3, we may assume that G is a finite group with
ω(ΓE(G)) = ω(Γ(G)) ⩽ 20. Therefore, the result follows from [3, Theorem
1.4]. □

It must be note that A5 is an AC-group with #Cent(A5) = 22 and so
ω(ΓE(A5)) = 21, by Theorem 2.4. Therefore, the above upper bound is sharp.
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