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ABSTRACT. Let G be a non-abelian group and let I'(G) be the non-
commuting graph of G. In this paper we define an equivalence relation
~ on the set of V(I'(G)) = G ~ Z(G) by taking z ~ y if and only if
N(z) = N(y), where N(z) = {u € G | z and u are adjacent in I'(G)} is
the open neighborhood of z in I'(G). We introduce a new graph de-
termined by equivalence classes of non-central elements of G, denoted
T'r(G), as the graph whose vertices are {[z] | z € G\ Z(G)} and join two
distinct vertices [z] and [y], whenever [z,y] # 1. We prove that group
G is AC-group if and only if I'g(G) is complete graph. Among other
results, we show that the graphs of equivalence classes of non-commuting
graph associated with two isoclinic groups are isomorphic.

Keywords: Non-commuting graph, graph of equivalence classes, Isoclin-
ism.

MSC(2010): Primary: 05C25; Secondary: 20F99.

1. Introduction

Let G be a group and Z(G) be the center of G. The non-commuting graph
I'(G) associated with G is the graph whose vertex set is G \ Z(G) and two
distinct elements x and y are adjacent, denoted = — y, if and only if [z,y] #
1. According to [2] the non-commuting graph of a finite group G was first
considered by Paul Erdos in connection with the following problem. Let G be
a group whose non-commuting graph I'(G) has no infinite complete subgraphs.
Is it true that there is a finite bound on the cardinalities of complete subgraphs
of I'(G)? B.H. Neumann [12] answered positively to this question. In [2]
and [11], some graph theoretical properties of I'(G) and the relations between
some properties of I'(G) and the structure of group G were studied. Of course,
there are some other ways to construct a graph associated with a given group.
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We may refer to the works of Bertram et al. [6] and Moghadamfar et al. [11]
or recent papers on non-commuting graph, Engel graph and non-cyclic graph
in [1,2] and [4], respectively.

Two vertices a and b of a simple graph I' are said to be equivalent, if their
open neighborhoods are the same, i.e., a ~ b if and only if N(a) = N(b), where
N(a)={ceV(I') | a and c are adjacent in I'}. One can see that ~ is an equiv-
alence relation and we denote the class of a by [a]. The graph of equivalence
classes of I', denoted I'g, is the graph associated with I" whose vertex set is
{[a] : @ € V(T')} and two equivalence classes [a] and [b] are adjacent in I'g
if a and b are adjacent in I'. In Section 2, we will introduce the graph of
equivalence classes of the non-commuting graph I'(G). We will state some of
basic graph theoretical properties of I' g (G), for instance determining diameter,
girth, dominating set, planarity of the graph and we give some relation between
the graph properties of I'(G) and I'g(G). In Section 3 of the paper, we state
a connection between the graph of equivalence classes of the non-commuting
graph and isoclinism of groups. We prove that the graphs of equivalence classes
of two isoclinic groups are isomorphic. Moreover, we show that for any group
G with T'g(G) < oo, there is a finite group K such that I'g(G) 2 Tg(K).

2. Definitions and basic results

Let I'(G) be the non-commuting graph of a non-abelian group G. For z,y €
GNZ(G), we say that z ~ y if and only if GNCg(2) = N(x) = N(y) = G~Ca(y)
if and only if Cg(x) = Cq(y), where N(z) = {u € G |  and u are adjacent in
I'(G)}. Tt is easy to see that ~ is an equivalence relation and we denote the
class of = by [z].

Definition 2.1. The graph of equivalence classes of I'(G), denoted I'g(G), is
the graph associated with G with vertex set {[z]:z € G\ Z(G)} such that two
distinct vertices [x] and [y] are joined by an edge, denoted [z] — [y], if and
only if [z,y] # 1.

It is easy to check [xz] — Cg(x) establishes a one-to-one correspondence
between V(I'g(G)) and the set of all proper centralizers of group G. Hence
[V(Te(G))| = #Cent(G) - 1, where Cent(G) denote the set of centralizers of
single elements of G and #Cent(G) is the size of Cent(G).

Recall that a clique of a graph is a set of mutually adjacent vertices, and
that the maximum size of a clique of a graph I'; the clique number of I'; is
denoted w(I'). Moreover, a clique of a graph I' is called a maximum clique if
its size is w(I")

Lemma 2.2. Assume that A = {[z] : Ca(z) is an abelian group}. Then A is
a cliqgue in Tg(QG).
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Proof. By the structure of A, it will be enough to prove the induced subgraph
on A is a complete graph. Hence, suppose that [z] and [y] are two distinct ele-
ments of A. We claim that [x] and [y] are adjacent in 'y (G), or equivalently,
[z,y] # 1. If not, then for every a € Cg(y), we get [a,z] = 1, since z € Cq(y)
which is an abelian group. Thus, a € Cg(z), and so Cg(y) € Cg(x). Similarly
Ca(z) € Ce(y), and hence Cg(x) = Ci(y). But then, by definition we have
x ~y, which forces [z] = [y], a contradiction. O

Let B = {[x] : Cg(z) is minimal among all centralizers of G} i.e., if [z] € B
and Cg(y) € Cg(x), then Cg(y) = Ca(x). Assume that A is as in Lemma 2.2,
[z] € A and Cg(y) € Cg(x). For every a € Cg(x), [a,y] =1, since a,y € Cg(x)
which is abelian, and so a € Cg(y). Therefore [z] € B. It follows that A c B.
In the following we will give some other facts on the sets A and B.

For a graph I" and a subset .S of vertices, denote by Nr[.S] the set of vertices
in T which are in S or adjacent to a vertex in S. If Np[S] = V(T'), then S
is called a dominating set for I'. The dominating number (I') of T' is the
minimum size of a dominating set of the vertices of T'.

Lemma 2.3. Assume that G is a non-abelian group, and A and B defined as
above.

(i) If [y] € B, then [y] is adjacent to all elements of AN {[y]} in Tp(G).
(ii) If [2] e V(P E(G)) \ B, then [z] is not adjacent to all elements of B in
T'e(G).
(iii) If A = B, then every vertez of T'g(G) is adjacent to at least a vertex of
A. Moreover, A is a mazimal clique of Tp(G) and if Tg(G) is finite,
then w(Tg(G)) = |A|.

Proof. (i) For [y] € B, if [y] € A and [z,y] = 1 for some [z] € A, then [z] = [y]
which is a contradiction. Then [y] is adjacent to all elements of .A. Now assume
that [y] € BN A and [z,y] = 1 for some [z] € A, then Cg(z) € Ce(y) and so
Cg(x) = Cs(y), since [y] € B. Thus [z] = [y], a contradiction and so [y] is
adjacent to all elements of A.

(ii) Assume that [z] € V(I'g(G)) \ B. Then there is [w] € B such that
Ca(w) € Cg(z) and so [z,w] = 1. This means that [z] is not adjacent to [w],
as required.

(iii) Suppose that A = B. If there is [z] € V(T'g(G)) such that [z] is
not adjacent to elements in A, then [x,z] = 1 for all [x] € A = B and so
Ulz]ea Ca(z) € Cg(z). On the other hand, there is a non-central element
w € G such that [z] and [w] are adjacent. Thus w ¢ Cg(z) and so [w] is
adjacent to all elements of A = B, which will contradict part (ii). Therefore,
A is a dominating set for I'g(G). Moreover, assume that Au {[y]} is a clique
of I'g(G), where [y] ¢ A. Then there is [z] € B = A such that Ce(x) € Ca(y)
and so [z,y] = 1, a contradiction. Therefore, A is a maximal clique of T'g(G).
Now suppose that I'g(G) is finite and Y is a maximum clique of I'g(G) such
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that |A| < |Y|. Then there are [z] € B = A and [y1],[y2] € Y such that
Ca(z) € Cg(y;), for i = 1,2. Therefore, y1,y2 € Ca(x) and so [y1,y2] = 1,
which is a contradiction. Hence w(I'g(G)) = |A| and the proof is complete. [

A non-abelian group is called an AC-group if the centralizer of every non-
central element is abelian.

Theorem 2.4. A non-abelian group G is an AC-group if and only if T g(G) is
a complete graph. In particular, if G is an AC-group with n = #Cent(G) < oo,
then T'g(G) 2 K,,—1, where K,,_1 is a complete graph with n —1 vertices.

Proof. Suppose that T'g(G) is a complete graph and a,b € Cq(x) \ Z(G).
Then [a] = [x] = [b] and so [a,b] = 1. Therefore, Ce(x) is an abelian group.

Now, assume that G is an AC-group. Then V(I'g(G)) = A and the result
follows from Lemma 2.2. Furthermore, assume that #Cent(G) = n < co. If
Cea(z1),Ca(x2),...,Cq(xn-1) are all proper centralizers of G, then [z;,z;] # 1
forall1<i#j<nandso V(I'g(G))={[z1],[x2],.-.,[®n-1]} is the maximum
clique of Tg(G). Thus T'g(G) 2 K,,—1. O

Corollary 2.5. Let G and H be two non-abelian groups. If Tg(G) 2Tg(H),
then G is an AC-group if and only if H is an AC-group.

Corollary 2.6.
(i) Let G = Day, = (a,bla™ = b* = (ab)? = 1) be the dihedral group of order
2n. Then
K1 n s odd

I'e(G) ;{ K%H n 1S even

(ii) If G = Qun is the generalized quaternion group of order 4n, then
Ie(G) 2 Kpy-

Proof. It is easy to check that Cent(G) = {G,Cq(a),Cq(a’b), 0<i<n -1},
when 7 is odd and Cent(G) = {G,Cg(a),Cs(a’b), 0 <i<n/2-1} when n is
even. Furthermore Cent(G) = {G, Cg(a),Cq(a'b), 0 <i<n-1} when G = Q4.
Now the results follows from Theorem 2.4. O

From Theorem 2.4 we note that in some cases the graph of the equivalence
classes of groups are not complete. The smallest counterexample is the sym-
metric group Sy. It is easy to check that Ca((1 2)(3 4)) and Ce((1 3)(2 4))
are non-abelian and distinct, and the vertices [(1 2)(3 4)] and [(1 3)(2 4)] are
not adjacent in T'g(Sy).

Proposition 2.7. Assume that G is a mnon-abelian group. Then
diam(T'g(G)) €2 and girth(T'g(G)) = 3. In particular Tg(G) is connected.

Proof. Let [z] and [y] be two distinct vertices of T'g(G). If [z] — [y] then
d([z],[y]) = 1. Thus we may assume that [x] + [y]. Since z,y are non-
central, there exist [2'],[y'] € V(Tg(G)) such that {[«],[z']} and {[y],[v']}
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are edges. If [y] — [2'] or [z] — [y'] then d([z],[y]) = 2. Otherwise
the vertex [x'y’] is adjacent to both [z] and [y] and again d([z],[y]) = 2.
Therefore, diam(I'g(G)) < 2. Moreover, for every edge {[z],[y]} of I'g(G),
{[z], [v], [xy]} is a triangle. Hence the girth of I'g(G) is 3. O

A subset X of the vertices of a graph I' is called an independent set if the
induced subgraph on X has no edges. The maximum size of an independent
set in a graph T is called the independence number of I' and denoted by «(T).

Proposition 2.8. Let G be a non-abelian group.
(i) IfC is a dominating set for I'(G), then C = {[z] : x € C} is a dominating
set for Tg(G).
(i) If D is an independent set of T'(G), then D = {[z] : © € D} is an
independent set of Tg(G).

Proof. (i) Let [z] be a vertex of I'g(G) that is not in C so x ¢ C. Therefore
there is y € C such that [x,y] # 1 and this means that there is [y] € C such that
(o] — [y]. ~

(ii) If [z] and [y] are two elements of D, then x,y € D and this means that
[2,y] = 1. Therefore [z] and [y] are not adjacent. O

By Proposition 2.8 one can see that v(I'g(G)) < v(T'(G)) and a(Tg(G)) <
a(T'(G)). In the following, we will prove that the graphs I'(G) and I'g(G)
have the same clique number and vertex chromatic number.

Let k£ > 0 be an integer. A k-vertex coloring of a graph I is an assignment of
k colors to the vertices of I' such that no two adjacent vertices have the same
color. The vertex chromatic number x(I') of a graph T', is the minimum k for
which I" has a k-vertex coloring.

Proposition 2.9. Let G be a finite non-abelian group. Then w(T'g(G)) =
w(I'(G)), x(T'e(G)) = x(I'(G)).

Proof. Since I'g(G) is isomorphic to a subgraph of I'(G), then w(Tg(G)) <
w(T'(G)). Assume that w(I'(G)) =n and {z1,z2,...,2,} is a maximum clique
of I'(G). Then for every 1 <i# j < n, [2;,z;] # 1 and so, [x;] and [z;] are
adjacent for all 1 < # j <n. This means that {{z1], [x2],...,[zn]} is a clique
in 'g(G) and so w(I'(G)) <w(Te(Q)).

Now, let x(Tr(G)) =t and x(T'(G)) = k. By [2, Lemma 4.1] k is the
minimum number of abelian subgroups of G whose union is G, then G is covered
by abelian subgroups Ay, ..., Ax. Assume that V(I'g(G)) = {[z1],...,[z.]},
T={z1,...,z,} and T; = {[z] : x e Tn A;} for 1 < i < k. Then the vertices
of T'g(G) in T; are independent and so ¢ < k. Now suppose that By,..., B,
are independent subsets of V(I'g(G)) such that U'_, B; = V(I'g(G)). Then
Aj = (Uzen, [7], Z(G)) is an abelian subgroup of G, for 1 < j < ¢ and G is
covered by these ¢ abelian subgroups. It follows that k < ¢. O
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Proposition 2.10. IfT'(G) 2T'(H), then Tg(G) 2 Tg(H).

Proof. Let ¢ : V(I'(G)) — V(I'(H)) be a bijective map such that for ev-
ery two distinct elements x,y € V(I'(G)), we have [z,y] = 1 if and only if
[o(2),¢(1)] = 1. Define s V(p(G)) — V(Tp(H)) such that ([z]) =
[¢(z)]. One can check that v is a bijective map and [z] — [y] in I'g(G) if and
only if $([z]) = [(2)] — [p(y)] = 6([y]) in Tp(H). .

Proposition 2.11. Let G or H be non-abelian AC-groups. Then w(Lg(G x
H)) =w(l'p(G))w(le(H)).

Proof. Assume that G is an AC-group and V(T'g(G)) = {[x1], [z2],---,[zn]}
and {[y1], [y2];---,[ym]} are maximum clique of I'p(G) and I'g(H), respec-
tively. We show that € = {[(z;,y;)]:1<i<n,1<j<m} is a maximum clique
of T'g(G x H). Suppose, for a contradiction, that Q # Qu {[(u,v)]} is a clique
of g(G x H). Then [(z;,y;)] — [(u,v)] forall 1<i<n and 1<j<m.

Case 1. [u] = [x¢] or [v] = [ys] for some 1 <t <n and 1< s<m. It is clear
that {[y1], [y2],- -, [Ym], [v]} or {[z1], [z2],---, [zn], [u]} is a clique of T (H)
or I'g (@), respectively, which is a contradiction.

Case 2. [u] # [z;] for all 1 <i < n. Since G is an AC-group, [u] is adjacent
to [x;] for every 1 <i<n and so {[z1],[x2],-..,[2n], [u]} is a clique of T'g(G),
a contradiction. O

Proposition 2.12. Let H be a finite subgroup of G. Then U'g(G) 2T g(H) if
and only if G = HZ(G).

Proof. Define ¢ : V(I5(G)) — V(Tp(H)) by o([h=]) = [A], which is a bi
jective map. Since [h121,he2o] # 1 if and only if [h1,hs] # 1, then [hy21] and
[hoz2] are adjacent in T' g (G) if and only if [h;] and [hs] are adjacent in I'g (H)
and so ¢ is a graph isomorphism.

Conversely, assume that V(T'g(H)) = {[h1],[h2],---,[hn]}, so that we may
have V(T'g(G)) = {[h1],[h2],...,[hn]} and Z(H) ¢ Z(G). Since the map
p: % — % by ¢(hZ(H)) = hZ(G) is an isomorphism, for every g € G
there exists h € H such that ¢Z(G) = ¢(hZ(H)) = hZ(G). Thus h™lg e Z(G)
and so g = hz € HZ(G) for some z € Z(G) and the proof is complete. O

Corollary 2.13. Tg(G x A) 2T g(G) if and only if A is an abelian group.

Proposition 2.14. Let N be a normal subgroup of G. Then I'g(G) =
IF'e(G/N), if NnG' =1.

Proof. Assume that NnG’ = 1. Then the map ¢ : V(I'g(G)) — V(I'g(G/N))
by ¢([z]) = [#N] is a bijection. Now assume that [z] is not adjacent to [y] in
I'g(G). Since [x,y] =1, then [xN,yN] = N and so [xN] + [yN]. On the other
hand, if [zN] and [yN] are not adjacent in I'p(G/N), then [zN,yN] = 1g/n.
Thus [2,y] e NNnG' =1 and so [z] and [y] are not adjacent in T'g(G). O
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Proposition 2.15. Assume that I'p(G1) 2 Tg(Hy) and Tr(Gs3) = T'g(Hs).
Then FE(Gl X GQ) = FE(Hl X HQ)

Proof. Let ¢; : V(I'g(G;)) — V(I'g(H;)) be a graph isomorphism for i =
1,2. Then it is easy to see that ¢ : V(I'g(G1 x G2)) — V('g(H; x Hy))
such that $([(2,)]) = [(#1(2), 22(5))], where Cir,(91(2)) = 91(Ca, (2))
and Cp, (p2(y)) = ¢2(Ca, (v)) is a graph isomorphism between I'p (G x G3)
and 'y (H; x Hy). O

3. Isoclinism classes and the graph of equivalences classes

The notion of isoclinism of groups was introduced by Philip Hall [9] as the
following

Definition 3.1. Let G and H be two groups; a pair (p,%) is called an
isoclinism from G to H if :

(1) ¢ is an isomorphism from G/Z(G) to H/Z(H);

(2) v is an isomorphism from G’ to H' ;

(3) the following diagram is commutative:

G (& oxp H H
2(G) " Z(G) Z(H) " Z(H)
a . "

where, ag(91Z(G),92Z(G)) = [91,92] and ag(h1 Z(H),haZ(H)) = [h1, h2].

If there is an isoclinism from G to H, we say that G and H are isoclinic
and denote it by G ~ H. One may easily check that the groups (s and Dg are
isoclinic but are not isomorphic.

In the following, we prove that the graphs of equivalences classes of non-
commuting graphs associated with two isoclinic groups are isomorphic.

Theorem 3.2. Assume that G and H are two isoclinic groups. ThenT'g(G) =
I'p(H).

Proof. Let (p,) be an isoclinism from G to H, where ¢ : G/Z(G) —
H/Z(H) and ¢ : G' — H' are isomorphisms and if (g1 Z(G)) = hhZ(H),
0(92Z(@)) = hoZ(H), then ¥([g1,92]) = [h1,h2]. Now assume that Cg(x) €
Cent(G) such that ¢(Cq(2)/Z(G)) = K|Z(H), we will show that K = Cy(y),
where ¢(zZ(G)) = yZ(H). For k ¢ K there is g € Cg(z) such that
©(9Z(G)) =kZ(H). Since [z,g] =1 and by commutativity

(y.k] = au(p x 0(22(G),92(G))) =¥(ac(zZ(G), gZ(G))) = ¥([z. g]),
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then [y,k] =1 and so k € Cy(y). Conversely, for h € Cy(y) there is g € G such
that ¢(¢Z(G)) =hZ(H) and

([2,9]) = ¥(ac(zZ(G),92(G))) = au(p x p(zZ(G),9Z(G))) = [y, k] = 1.

Therefore g € C(x) and so h € K, as required. Thus #Cent(G) = #Cent(H)
and so 0 : V(I'g(G)) - V(I'g(H)) by 0([x]) = [y] is a bijective map, where
o(Calr)]Z(G)) = Cr () Z(H).

Furthermore if [a] and [b] are adjacent in I'g(G), then Cg(a) # Ce(b) and
[a,b] # 1. Since (p, ) is an isoclinism, [a’] and [b'] are adjacent in T'g(H),
where ¢(Ca(a)/Z(G)) = Cra (&) Z(H) and o(Ca(b)/Z(G)) = Cpr (V') Z(H).
In the same way we can show that, [a'] — [b'] in T'g(H) implies that [a] — [b]
in Tg(G) and so T'g(G) 2Tg(H). O

Theorem 3.3. Let G be a group such that Tg(G) is finite. Then there is a
finite group K such that Z(K) < K', K ~G and T'g(K) 2T g(G).

Proof. Thanks to [10, Proposition 2.5] there is a group K isoclinic to G such
that Z(K) ¢ K’. On the other hand, since I'g(G) is finite, w(I'(G)) =
w(Tg(G)) < oo and so by the main theorem of [13], we have [K : Z(K)] =
[G:Z(G)] < T for some constant ¢. Now, Schur’s Theorem follows that
K’ and so Z(K) is finite. Therefore K is finite and the result follows from
Theorem 3.2. 0

Theorem 3.4. T'g(G) 2 K3 if and only if G ~ Dg.

Proof. Tt is clear that if G is isoclinic to Dg, then I'g(G) = K3.

Now assume that I'g(G) 2 K3. By Theorem 3.3, we might as well assume that
G is a finite group such that Z(G) € G’ and by Theorem 2.4, G is an AC-
group. Since group G is the union of its proper centralizers, there are proper
centralizers Ce(x), Ca(y), Ca(z) of G such that G = Cq(x) uCq(y) uCa(2).
On the other hand, [xy,z] # 1 and [zy,y] # 1. Thus, Ce(zy) = Cg(z) and so
G = Cg(x2)uCq(y)uCq(zy). We claim that for every u e G\ Z(G), u? € Z(Q).
Suppose, for a contradiction, that u? is not central and for example u € Cg(z),
then Cg(x) = Cg(u) and so [u?y,z] # 1 and [u?y,y] # 1. Hence, Cq(u?y) =
Ca(zy), since G has four distinct centralizers. Moreover, Co(zy) = Ca(uy),
since [uy,z] # 1 and [uy,y] # 1. Then Cg(u?y) = Cq(uy) and so uy = yu,
which is a contradiction. Therefore, G/Z(G) is an elementary abelian 2-group.
On the other hand, one can see that for every u € G\ Z(QG) if for example
u € Cg(x), then uZ(QG) = 2Z(G) and so [G : Z(G)] = 4, which implies that
G/Z(G) 2 CyxCy and so Z(G) = G'. Now by [14, Corollary 3.1], G’ 2 C and
one can see that G is isoclinic to Dg, as required. O

Theorem 3.5. I'p(G) = K, if and only if G is isoclinic to Ss or an extra
special group of order 27.
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Proof. If G ~ S3, then T'p(G) = T'g(S;3) 2 K4 by Theorem 3.2. Moreover,
assume that E is an extra special group of order 27 and G is isoclinic to F.
By using GAP, we can see that FE has four abelian proper centralizers and so
I'g(G) 2Tg(F) 2 K4. For the converse, let I'g(G) 2 K4. From Theorem 3.3,
we may assume, up to isoclinism, that G is a finite group such that Z(G) ¢ G'.
Then we have #Cent(G) = 5 and so G/Z(G) is isomorphic to C3 x C3 or S3
by [5, Fact 5]. First assume that G/Z(G) ~ S3 and S is a non-central Sylow
p-subgroup of G (p is a prime). Then SZ(G)/Z(G) € Syl,(G/Z(G)) and
Sylow subgroups of G/Z(G) = S; are cyclic groups of order 2 or 3. Thus,
SZ(G)]Z(G) is cyclic which implies that SZ(G) is abelian and so is S. Hence
all Sylow subgroups of G are abelian and by [7, Corollary 4.5], G'n Z(G) =1
and this implies that Z(G) = 1. Then we conclude that G ~ S3, as required.
Now let G/Z(G) = C3 x C3. By a similar argument as Theorem 3.4, we can
see that Z(G) = G’ and G’ = C5. Tt remains to prove that G is isoclinic to an
extra special group of order 27. Let G/Z(G) = (zZ(G)) x (yZ(G)) and E be
an extra special group of order 27 i.e., E' = Z(F) 2 C3 and E/Z(E) 2 C5xC5 =
(aZ(E)) x (bZ(E)), where x,y € G and a,be E.

Define ¢ : G/Z(G) - E/Z(E) by the rules p(zZ(G)) = aZ(E) and
©(yZ(G)) = bZ(F), which is an isomorphism. Furthermore, one can check
that G’ =< [z,y] > and E’ =< [a,b] > and so the map ¢ : G’ - E’ by the rule
¥([z,y]) = [a,b] is an isomorphism. Now we prove that the following diagram
is commutative,

G G o E E
2(Q) " Z(@) Z2(E) " Z(E)
G/ 11[} El

For any 0 <t,s,u,v <2, we have

ape xp(z'y* Z(G), 2"y’ Z(G))

ap(a'b*Z(E),a"b" Z(E))
[atbs7aubv] — [a7b]tv—su
d([z,y]" ) = o[y, 2"y ])
vag(a'y* Z(G), 2"y  Z(G)).

Therefore G and E are isoclinic by Definition 3.1 as required.
|

Corollary 3.6. Let G be an AC-group. Then T'g(G) is planar if and only if
G is isoclinic to Ss, Dg or an extra special group of order 27.

Proposition 3.7. If w(T'g(G)) €20, then G is solvable.
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Proof. By Theorem 3.3, we may assume that G is a finite group with
w(Te(G)) = w(I'(G)) < 20. Therefore, the result follows from [3, Theorem
1.4]. O

It must be note that As is an AC-group with #Cent(As) = 22 and so
w(T'g(A5)) =21, by Theorem 2.4. Therefore, the above upper bound is sharp.
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