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Abstract. In this paper, we introduce a new entropy-like invariant,
named Hausdorff metric entropy, for finitely generated semigroups acting

on compact metric spaces from a set-valued view and study its properties.
We establish the relation between Hausdorff metric entropy and topolog-
ical entropy of a semigroup defined by Bís. Some examples with positive
or zero Hausdorff metric entropy are given. Moreover, some notions of

chaos are also well generalized for finitely generated semigroups from a
set-valued view.
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1. Introduction

Suppose that(X, d) is a compact metric space. Let F = {f1, f2, . . . , fp}
be a p-tuple of continuous maps from X to itself, and G be the semigroup
generated by F . In this paper, we are interested in the dynamical system
(X,F )(or (X,G,F )). In classical discrete topological dynamics, the concept of
topological entropy for a continuous transformation plays an important role.
This notion was introduced by Adler, Konheim and McAnderew in [1] as an
invariant of topological conjugacy. Later, Bowen [8] and Dinaburg [10] gave an
equivalent description to this notion on metric space, namely (Bowen’s) metric
entropy. For a continuous map f on a compact metric space, denote h(f) the
topological entropy (or equivalently, metric entropy) of f . For finitely generated
semigroups acting on compact metric spaces, there had been some entropy-
like invariants introduced. For instance, Friedland introduced the entropy of
a graph in [12], which is called Friedland entropy now; Bufetov [9] gave a
definition of the topological entropy of free semigroup actions in a different way
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and identified this notion of topological entropy with fiber entropy of a certain
skew-product transformation; Bís in [5] introduced topological entropy of a
semigroup, inverse image entropy, preimage relation entropy and point entropy,
and established their relations; by using the Carathéodory-Pesin structure, Ma
and Wu [21] generalized the notions of topological pressure and topological
entropy to a semigroup of continuous maps.

The aim of the present paper is to introduce a new entropy-like invariant,
named Hausdorff metric entropy, for finitely generated semigroups acting on
compact metric spaces from a set-valued view. We will give the definition
in next section and study the basic properties of Hausdorff metric entropy in
Section 3. In Section 4, we will establish the relations between Hausdorff metric
entropy, topological entropy of a semigroup defined by Bís and max{h(fi); fi ∈
F}. In fact, two examples are given. One shows that the Hausdorff metric
entropy of a tuple F can be positive when each element in F has zero entropy;
the other one shows that the Hausdorff metric entropy of a tuple F can be zero
when there exists an element in F with positive entropy. At the last section,
some remarks and problems are given. In particular, some notions of chaos are
also well generalized for finitely generated semigroups.

2. Definition of Hausdorff metric entropy

Suppose that(X, d) is a compact metric space. Let F = {f1, f2, . . . , fp} be a
p-tuple of continuous maps from X to itself, and G be the semigroup generated
by F . Then for every n ≥ 1,

Fn = {gn ◦ gn−1 ◦ · · · ◦ g1; gj ∈ {f1, f2, . . . , fp}, for all j = 1, 2, . . . , n}
is a finite set of continuous maps at most pn. Put F 0 = {idX}, where
idX is the identity map on X. Notice that for any point x ∈ X, F (x) =
{f1(x), f2(x) . . . , fn(x)} is a non-empty compact subset of X, we can give a
new definition of metric entropy from a set-valued view. First of all, let us
review some notions with respect to set-valued spaces (see for example the
monograph [2]).

Let
K(X) = {K;K is a non-empty compact subset of X}.

Then the metric d on X induces a metric on K(X). For any A,B ∈ K(X),
define

dist(A,B) = sup
x∈A

d(x,B) = sup
x∈A

inf
y∈B

d(x, y).

Furthermore, we define the Hausdorff metric dH by

dH(A,B) = max{dist(A,B), dist(B,A)}.
Moreover, (K(X), dH) is a compact metric space. In addition, the topology
induced by the Hausdorff metric dH on K(X) coincides with the Vietoris topol-
ogy [18]. Denote by J the topology induced the metric d on X. The Vietoris
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topology JV is generated by the base B consisting of sets of the form

B(U1, U2, . . . , Um) = {K ∈ K(X);K ⊆
m∪
i=1

Ui, and K
∩

Ui ̸= ∅, 1 ≤ i ≤ m.},

where U1, U2, . . . , Um are non-empty open subsets of X.
Given any n ≥ 0. For any x ∈ X,

Fn(x) = {gn◦· · ·◦g1(x); gj ∈ {f1, f2, . . . , fp}, for all j = 1, 2, . . . , n.} ∈ K(X).

Then Fn can be seemed as a continuous map from X to K(X). In fact, for any
subset A in X,

Fn(A) =
∪
a∈A

Fn(a),

In particular, if A ∈ K(X) we have Fn(A) ∈ K(X). Thus, F induces naturally

a map F̃ : K(X) → K(X) defined by

F̃n(A) = Fn(A), for any A ∈ K(X).

Moreover, F̃n is a continuous map from (K(X), dH) to itself. In addition, there
exists a natural isometric embedding φ : X → K(X) defined by

φ(x) = {x}, for every x ∈ X,

since for any x, y ∈ X,
d(x, y) = dH({x}, {y}).

Then Fn = F̃n◦φ. The following lemma guarantees the continuity of F̃n (Fn).

Lemma 2.1. Let (X, d) be a compact metric space and F = {f1, f2, . . . , fp} be

a p-tuple of continuous maps from X to itself. Then F̃ : K(X) → K(X) is a
continuous map.

Proof. Given arbitrary element B(U1, U2, . . . , Um) in the base B. It follows
from the continuity of f1, f2, . . . , fp that for each 1 ≤ i ≤ m and each 1 ≤ j ≤ p,

f−1
j (Ui) is a non-empty open subset of X and consequently

F−1(Ui) =

p∪
j=1

f−1
j (Ui)

is a non-empty open subset of X. Thus,

F̃−1B(U1, U2, . . . , Um) = B(F−1(U1), F
−1(U2), . . . , F

−1(Um)) ∈ B,

which implies F̃ is a continuous map. □

Now let us introduce a metric entropy for a finite set of continuous maps
from a set-valued view likes the concept of Bowen’s metric entropy. For any
x, y ∈ X, denote

dnH(x, y) = max
0≤i≤n

dH(F i(x), F i(y))
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For any n ≥ 0 and any ϵ > 0, a subset M in X is said to be a Hausdorff metric
(n, ϵ)-spanning set of X with respect to F , if for each x ∈ X, there exists a
point y ∈ M such that

dnH(x, y) < ϵ.

It follows from the compactness of X and the continuity of F that,

rH(n, ϵ,X, F )

=min{Card(M);M is a Hausdorff metric (n, ϵ)-spanning set of X}

is a finite positive integer.

Definition 2.2. Let

hH(G,F ) = lim
ϵ→0+

lim sup
n→+∞

1

n
log rH(n, ϵ,X, F ).

The quantity hH(G,F ) is called the Hausdorff metric entropy of a semigroup
G generated by F .

We can also describe the Hausdorff metric entropy of a semigroup G gen-
erated by F in terms of Hausdorff metric (n, ϵ)-separated sets. Namely, for
any n ≥ 0 and any ϵ > 0, a subset E in X is said to be a Hausdorff metric
(n, ϵ)-separated set of X with respect to F , if for any distinct x, y ∈ E,

dnH(x, y) ≥ ϵ.

It follows from the compactness of X and the continuity of F that,

sH(n, ϵ,X, F )

=max{Card(E);E is a Hausdorff metric (n, ϵ)-separated set of X}

is a finite positive integer.

Proposition 2.3. For any semigroup G generated by a finite set F , the fol-
lowing equality

lim
ϵ→0+

lim sup
n→+∞

1

n
log rH(n, ϵ,X, F ) = lim

ϵ→0+
lim sup
n→+∞

1

n
log sH(n, ϵ,X, F )

holds.

Proof. Let E be a Hausdorff metric (n, ϵ)-separated set of maximal cardinality.
Then E is also a Hausdorff metric (n, ϵ)-spanning set of X, and consequently

rH(n, ϵ,X, F ) ≤ sH(n, ϵ,X, F ).

Now let M be a Hausdorff metric (n, ϵ/2)-spanning set of minimal cardi-
nality. Define a map φ : E → M by choosing for each x ∈ E, some point
φ(x) ∈ M such that

dnH(x, φ(x)) <
ϵ

2
.



1825 Hou and Wang

Then φ is injective and hence the cardinality of E is not greater than that of
M , i.e.,

sH(n, ϵ,X, F ) ≤ rH(n,
ϵ

2
, X, F ).

Therefore, by

rH(n, ϵ,X, F ) ≤ sH(n, ϵ,X, F ) ≤ rH(n,
ϵ

2
, X, F ),

we have

lim
ϵ→0+

lim sup
n→+∞

1

n
log rH(n, ϵ,X, F ) = lim

ϵ→0+
lim sup
n→+∞

1

n
log sH(n, ϵ,X, F ).

□

3. Fundamental properties of Hausdorff metric entropy

First of all, one can see when a finite set of continuous transformation con-
tains only one element, the Hausdorff metric entropy is actually the classical
topological entropy.

Proposition 3.1. Let (X, d) be a compact metric space and G be a semigroup
generated by F = {f}. Then hH(G,F ) = h(f), where h(f) is the classical
topological entropy of f .

Proof. For any x ∈ X and any n > 0, we have Fn(x) = {fn(x)}. Then for any
x, y ∈ X,

d(Fn(x), Fn(y)) = dH({fn(x)}, {fn(y)}) = d(fn(x), fn(y)).

Thus, hH(G,F ) = h(f). □

Next, similar to the research of the topological entropy of a single map,
we will study the basic properties of the Hausdorff metric entropy for finitely
generated semigroups.

Proposition 3.2. Let (X, d) be a compact metric space and G be a semigroup
generated by a finite set F = {f1, f2, . . . , fp}. Then hH(G,F ) ≥ 0.

Proof. It follows from rH(n, ϵ,X, F ) > 0 that

hH(G,F ) = lim
ϵ→0+

lim sup
n→+∞

1

n
log rH(n, ϵ,X, F ) ≥ 0.

□

Proposition 3.3. For every positive integer m, hH(G,Fm) = m · hH(G,F ).



Entropy of a semigroup of maps from a set-valued view 1826

Proof. Firstly, one can see that G is also the semigroup generated by Fm.
Given any m > 0, n > 0 and ϵ > 0. A Hausdorff metric (mn, ϵ)-spanning set of
X with respect to F must be a Hausdorff metric (n, ϵ)-spanning set of X with
respect to Fm, then

rH(n, ϵ,X, Fm) ≤ rH(mn, ϵ,X, F ).

Consequently,

1

n
log rH(n, ϵ,X, Fm) ≤ m

mn
log rH(mn, ϵ,X, F ).

Thus,

hH(G,Fm) ≤ m · hH(G,F ).

On the other hand, it follows from the uniform continuity of F ( F̃ ) that
for any ϵ > 0, there exists δ > 0 such that if d(x, y) < δ, dmH(x, y) < ϵ. Then
a Hausdorff metric (n, δ)-spanning set of X with respect to Fm must be a
Hausdorff metric (mn, ϵ)-spanning set ofX with respect to F , and consequently

rH(n, δ,X, Fm) ≥ rH(mn, ϵ,X, F ).

Thus,

hH(G,Fm) ≥ m · hH(G,F ).

□

Definition 3.4. Let (X, d) be a compact metric space and G be a semigroup
generated by a finite set F = {f1, f2, . . . , fp}. Y ⊆ X is called an invariant
subset of X, if for any y ∈ Y , F (y) ⊆ Y , i.e., F (Y ) ⊆ Y . Moreover, if Y ⊆ X
is an invariant closed subset of X, we call (Y, F |Y ) is a subsystem of (X,F ).

Proposition 3.5. Let (X, d) be a compact metric space and G be a semigroup
generated by a finite set F = {f1, f2, . . . , fp}. If Y ⊆ X is an invariant closed
subset of X, then hH(G|Y , F |Y ) ≤ hH(G,F ).

Proof. Given any n > 0 and ϵ > 0. A Hausdorff metric (n, ϵ)-separated set of
Y with respect to F |Y must be a Hausdorff metric (n, ϵ)-separated set of X
with respect to F , then

sH(n, ϵ, Y, F |Y ) ≤ sH(n, ϵ,X, F ).

Consequently,

1

n
log sH(n, ϵ, Y, F |Y ) ≤

1

n
log sH(n, ϵ,X, F ).

Thus,

hH(G|Y , F |Y ) ≤ hH(G,F ).

□
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Definition 3.6. Let (X, d) and (Y, ρ) be two compact metric spaces. Let G
and G′ be two semigroups generated by finite set F = {f1, f2, . . . , fp} and finite
set F ′ = {f ′

1, f
′
2, . . . , f

′
q}, respectively. If there exists a continuous surjective

T : X → Y such that for any x ∈ X,

{Tf1(x), T f2(x), . . . , T fp(x)} = {f ′
1T (x), f

′
2T (x), . . . , f

′
pT (x)},

i.e.,
TF (x) = F ′(Tx),

then T is called a topological semiconjugacy from (X,F ) to (Y, F ′). Moreover,
if T is a homeomorphism, we call T a topological conjugacy from (X,F ) to
(Y, F ′).

Theorem 3.7. Let (X, d) and (Y, ρ) be two compact metric spaces. Let G
and G′ be two semigroups generated by finite sets F = {f1, f2, . . . , fp} and
F ′ = {f ′

1, f
′
2, . . . , f

′
q}, respectively. If there exists a topological semiconjugacy

T from (X,F ) to (Y, F ′), then hH(G,F ) ≥ hH(G′, F ′). Moreover, if T is a
topological conjugacy, then hH(G,F ) = hH(G′, F ′).

Proof. For any n > 0, it follows from the uniform continuity of T that for any
ϵ > 0, there exsits δ > 0 such that if dnH(x, y) < δ, dnH(Tx, Ty) < ϵ. Then,
if M is a Hausdorff metric (n, δ)-spanning set of X with respect to F , T (M)
must be a Hausdorff metric (n, ϵ)-spanning set of Y with respect to F ′, and
consequently

rH(n, δ,X, F ) ≥ rH(n, ϵ, Y, F ′).

Thus,
hH(G,F ) ≥ hH(G′, F ′).

Notice that if T is a topological conjugacy from (X,F ) to (Y, F ′), T−1 is a
topological conjugacy from (Y, F ′) to (X,F ). Therefore,

hH(G,F ) = hH(G′, F ′).

□

Let (X, d) and (Y, ρ) be two compact metric spaces. Let G and G′

be two semigroups generated by finite sets F = {f1, f2, . . . , fp} and F ′ =
{f ′

1, f
′
2, . . . , f

′
q}, respectively. Now consider the Cartesian product space X×Y

with metric γ defined by, for any (x, y), (u, v) ∈ X × Y ,

γ((x, y), (u, v)) = max{d(x, u), ρ(y, v)}.
Denote

F × F ′ = {g × g′; g ∈ F, g ∈ F ′}.
Then F × F ′ is a finite set of continuous maps on X × Y , and it is easy to see
for any n > 0, (F ×G)n = Fn ×Gn. Moreover, denote G×G′ the semigroup
generated by F × F ′ and hH(G×G′, F × F ′) the Hausdorff metric entropy of
Cartesian product system (X × Y, F × F ′).
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Lemma 3.8. For any A×B,C ×D ∈ K(X)×K(Y ) ⊆ K(X × Y ), we have

γH(A×B,C ×D) = max{dH(A,C), ρH(B,D)}.

Proof. Firstly, we will prove for any (x, y) ∈ X × Y and any E ×K ∈ K(X)×
K(Y ),

γ((x, y), E ×K) = max{d(x,E), ρ(y,K)}.
One hand, since E × K is a compact subset of X × Y , there exists a point
(e, k) ∈ E ×K such that

γ((x, y), E ×K) = γ((x, y), (e, k))

= max{d(x, e), ρ(y, k)}
≥ max{d(x,E), ρ(y,K)}.

On the other hand , since E and K are compact subsets in X and Y , respec-
tively, there exist e′ ∈ E and k′ ∈ K such that

d(x,E) = d(x, e′), ρ(y,K) = ρ(y, k′).

Then

max{d(x,E), ρ(y,K)} = max{d(x, e′), ρ(y, k′)}
= γ((x, y), (e′, k′))

≥ γ((x, y), E ×K).

Therefore,

γ((x, y), (E,K)) = max{d(x,E), ρ(y,K)}
and consequently,

γH(A×B,C ×D)

=max{ sup
(a,b)∈A×B

γ((a, b), C ×D), sup
(c,d)∈C×D

γ((c, d), A×B)}

=max{ sup
(a,b)∈A×B

max{d(a,C), ρ(b,D)}, sup
(c,d)∈C×D

max{d(c, A), ρ(d,B)}}

=max{distd(A,C), distρ(B,D), distd(C,A), distρ(D,B)}
=max{dH(A,C), ρH(B,D)}.

□

Theorem 3.9. The equality

hH(G×G′, F × F ′) = hH(G,F ) + hH(G′, F ′)

holds.

Proof. By the above lemma, for any (a, b), (c, d) ∈ X × Y and any n > 0,

γH((F×G)n(a, b), (F×G)n(c, d)) = max{dH(Fn(a), Fn(c)), ρH(Gn(b), Gn(d))}.
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Then

γn
H((a, b), (c, d)) = max{dnH(a, c), ρnH(b, d)}.

One hand, if M is a Hausdorff metric (n, ϵ)-spanning set of X with respect
to F and M ′ is a Hausdorff metric (n, ϵ)-spanning set of Y with respect to F ′,
then M ×M ′ is a Hausdorff metric (n, ϵ)-spanning set of X × Y with respect
to F × F ′, and consequently

rH(n, ϵ,X × Y, F × F ′) ≤ rH(n, ϵ,X, F ) · rH(n, ϵ, Y, F ′).

Therefore,

hH(G×G′, F × F ′) ≤ hH(G,F ) + hH(G′, F ′).

On the other hand, if E is a Hausdorff metric (n, ϵ)-separated set of X with
respect to F and E′ is a Hausdorff metric (n, ϵ)-separated set of Y with respect
to F ′, then E × E′ is a Hausdorff metric (n, ϵ)-separated set of X × Y with
respect to F × F ′, and consequently

sH(n, ϵ,X × Y, F × F ′) ≥ sH(n, ϵ,X, F ) · sH(n, ϵ, Y, F ′),

Therefore,

hH(G×G′, F × F ′) ≥ hH(G,F ) + hH(G′, F ′).

Thus,

hH(G×G′, F × F ′) = hH(G,F ) + hH(G′, F ′).

□

4. Further discussions

We will give an example to show that the Hausdorff metric entropy of a
tuple F can be positive when each element in F has zero entropy. In fact, the
following example is contained in a result of Bís and Urbański ( [6, Theorem
4.1], where they discussed Bís’s topological entropy of a semigroup).

Example 4.1. Denote X by the unit interval [0, 1]. Let F = {f1, f2}, where
f1, f2 : X → X defined by

f1(x) =

 x, if 0 ≤ x ≤ 1/3
3x− 2/3, if 1/3 ≤ x ≤ 4/9
3x/5 + 2/5, if 4/9 ≤ x ≤ 1

and

f2(x) =

 3x/5, if 0 ≤ x ≤ 5/9
3x− 4/3, if 5/9 ≤ x ≤ 2/3

x, if 2/3 ≤ x ≤ 1.

Then

h(f1) = h(f2) = 0 and hH(G,F ) ≥ log 2 > 0.
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Denote Y the subinterval [1/3, 2/3]. Then f−1
1 (Y ) = [1/3, 4/9] ⊆ Y ,

f−1
2 (Y ) = [5/9, 2/3] ⊆ Y and d(f−1

1 (Y ), f−1
2 (Y )) = 1/9. Fix ϵ ∈ (0, 1/15).

Since every map g : X → X, g ∈ G, is a homeomorphism, one can select for
every g ∈ G exactly one point zg ∈ g−1(Y ). For every n ≥ 0, consider the set
An = {zg; g ∈ Fn}. We will show that An is a Hausdorff metric (n, ϵ)-separated
set consisting of exactly 2n elements.

Now it suffices to prove that, for two arbitrary elements g ̸= h in Fn,
dnH(zg, zh) ≥ 1/15. Write g = gn◦gn−1◦· · ·◦g1 and h = hn◦hn−1◦· · ·◦h1, where
gj , hj ∈ {f1, f2} for all j = 1, 2, . . . , n. Since g ̸= h, there exists k ∈ {1, 2, . . . , n}
such that g1 = h1, g2 = h2, . . ., gk−1 = hk−1 and gk ̸= hk. Then

gk−1 ◦ · · · ◦ g1(zg) ∈ g−1
k (Y )

and

gk−1 ◦ · · · ◦ g1(zh) ∈ h−1
k (Y ).

Hence,

d(gk−1 ◦ · · · ◦ g1(zg), gk−1 ◦ · · · ◦ g1(zh) ≥
1

9
>

1

15
> ϵ.

Given any w = wn ◦ wn−1 ◦ · · · ◦ w1 ∈ Fn, where wj ∈ {f1, f2} for all j =
1, 2, . . . , n. There are two cases as follows.

Case 1. g1 = w1, g2 = w2, . . ., gk−1 = wk−1. Then

wk−1 ◦ · · · ◦ w1(zg) = gk−1 ◦ · · · ◦ g1(zg)

and

wk−1 ◦ · · · ◦ w1(zh) = hk−1 ◦ · · · ◦ h1(zh).

Case 2. There exists t ∈ {1, 2, . . . , k − 1} such that

g1 = w1, g2 = w2, . . . , gt−1 = wt−1 and gt ̸= wt.

Then

gt−1 ◦ · · · ◦ g1(zg) ∈ g−1
t (Y ) and gt−1 ◦ · · · ◦ g1(zh) ∈ g−1

t (Y ),

and consequently

wt ◦ gt−1 ◦ · · · ◦ g1(zg), wt ◦ gt−1 ◦ · · · ◦ g1(zh) ∈ [
11

15
,
4

5
]
∪

[
1

5
,
4

15
].

Furthermore,

wk−1 ◦ · · · ◦ wt ◦ wt−1 ◦ · · · ◦ w1(zg) ∈ [
11

15
, 1]

∪
[0,

4

15
]

and

wk−1 ◦ · · · ◦ wt ◦ wt−1 ◦ · · · ◦ w1(zh) ∈ [
11

15
, 1]

∪
[0,

4

15
].

This implies

d(gk−1 ◦ · · · ◦ g1(zg), wk−1 ◦ · · · ◦ w1(zh) ≥ d(Y, [
11

15
, 1]

∪
[0,

4

15
]) =

1

15
> ϵ.
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and

d(gk−1 ◦ · · · ◦ g1(zh), wk−1 ◦ · · · ◦ w1(zg) ≥ d(Y, [
11

15
, 1]

∪
[0,

4

15
]) =

1

15
> ϵ.

Therefore,
dH(F k−1(zg), F

k−1(zh)) > ϵ,

which implies that zg and zh are Hausdorff metric (n, ϵ)-separated. Notice that
the map g → zg is bijective, then

sH(n, ϵ,X, F ) ≥ Card(Fn) = 2n.

In consequence,
hH(G,F ) ≥ log 2 > 0.

Now we will discuss the relation between Hausdorff metric entropy and Bís’s
topological entropy of a semigroup. Let us review the concept of the topological
entropy h(G,F ) defined by Bís in [5]. Let (X, d) be a compact metric space
and G be a semigroup generated by a finite set F = {f1, f2, . . . , fp}. In [5], Bís
assumed the identity map is in F . We will show an equivalent version of this
definition without the assumption. Following [13] we will say that two points
x, y ∈ X are (n, ϵ)-separated by G (with respect to the metric dnmax) if there
exists g ∈ Fn such that d(g(x), g(y)) ≥ ϵ, e.g.

dnmax(x, y) = max{dk(x, y); 0 ≤ k ≤ n} ≥ ϵ,

where
dk(x, y) = max{d(g(x), g(y)); g ∈ F k}.

A subset A of X is (n, ϵ)-separated if any two distinct points of A have this
property. Write

s(n, ϵ,X) = max{Card(A);A is an (n, ϵ)-separated subset of X},
and consequently, define

h(G,F ) = lim
ϵ→0+

lim sup
n→+∞

1

n
log s(n, ϵ,X).

The topological entropy h(G,F ) also can be described by (n, ϵ)-spanning
subset. A subset B of X is called (n, ϵ)-spanning if for any x ∈ X, there exists
a point a ∈ A such that

dnmax(x, a) < ϵ.

Write

r(n, ϵ,X) = min{Card(A);A is an (n, ϵ)-spanning subest of X}.
One can see

h(G,F ) = lim
ϵ→0+

lim sup
n→+∞

1

n
log r(n, ϵ,X).

Notice that for any x, y ∈ X and k ∈ N,
dH(F k(x), F k(y)) ≤ dk(x, y)
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and consequently
dkH(x, y) ≤ dkmax(x, y).

Then an (n, ϵ)-spanning subset must be a Hausdorff metric (n, ϵ)-spanning
subset. Thus, we have the following result.

Proposition 4.2. Let (X, d) be a compact metric space and G be a semigroup
generated by a finite set F = {f1, f2, . . . , fp}. Then

hH(G,F ) ≤ h(G,F ).

The following example will tell us that hH(G,F ) could be strictly less than
h(G,F ). In fact, it shows that the Hausdorff metric entropy of a tuple F can
be zero when there exists an element in F with positive entropy.

Example 4.3. Let f be a minimal homeomorphism with positive topologi-
cal entropy on a compact metric space X. Let F = {f, idX} and G be the
semigroup generated by F . Then hH(G,F ) = 0.

The theorem of Jewett-Krieger [16, 19] ensures the existence of minimal
systems with positive topological entropy, more concrete examples can be found
in [4, 14,15,22]. Now it suffices to prove the following result.

Proposition 4.4. Let f be a minimal homeomorphism on a compact metric
space X. Let F = {f, idX} and G be the semigroup generated by F . Then
hH(G,F ) = 0.

Proof. Notice that for any x ∈ X and any k ∈ N,
F k(x) = {x, f(x), . . . , fk(x)}

and for any n ≥ k,
Fn(x) ⊇ F k(x).

Given any ϵ > 0. For each x ∈ X, by the minimality of f , there exists a
positive integer Nx such that FNx(x) is an ϵ/2-net, i.e.,

dH(FNx(x), X) <
ϵ

2
.

According to the compactness of X and the continuity of F̃ , there exists a
positive integer N such that

dH(FN (x), X) <
ϵ

2
, for any x ∈ X.

Furthermore, for any x, y ∈ X and n ≥ N ,

dH(Fn(x), Fn(y)) < ϵ.

Now one can see that a Hausdorff metric (N, ϵ)-spanning set is also a Hausdorff
metric (n, ϵ)-spanning set for every n ≥ N . Thus

hH(G,F ) = lim
ϵ→0+

lim sup
n→+∞

1

n
rH(n, ϵ,X, F ) = 0.
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□

Remark 4.5. Following [5], for any semigroup G generated by a finite set F ,

h(G,F ) ≥ max{h(fi); fi ∈ F}.
One may ask ”What is the relation between the Hausdorff metric entropy
of F and max{h(fi); fi ∈ F}?” Proposition 3.1, Example 4.1 and Example
4.3 show that hH(G,F ) is possible to be less than, equal to, or more than
max{h(fi); fi ∈ F}.

5. Some remarks and problems

From a set-valued view, we can also well generalize Li-Yorke chaos ( [20]) and
distributional chaos (there are three versions of distributional chaos denoted
by DC1, DC2 and DC3 in brief, DC1 was originally introduced in [23], and the
generalizations DC2 and DC3 were introduced in [3, 24]).

Definition 5.1. Let (X, d) be a compact metric space and G be a semigroup
generated by a finite set F = {f1, f2, . . . , fp}. A set {x, y} ⊂ X is called a
Hausdorff metric Li-Yorke pair, if

lim sup
n→+∞

dH(Fn(x), Fn(y)) > 0 and lim inf
n→+∞

dH(Fn(x), Fn(y)) = 0.

Moreover, if there exists an uncountable subset S ofX such that for any distinct
points x, y ∈ S, {x, y} is a Hausdorff metric Li-Yorke pair, the system (X,F )
is called Hausdorff metric Li-Yorke chaotic and the set S is called a Hausdorff
metric scrambled set of X with respect to F .

Let (X, d) be a compact metric space and G be a semigroup generated by
a finite set F = {f1, f2, . . . , fp}. For any {x, y} ⊂ X and any n ∈ N, define
distributional function ϕn

xy(F, ·) : R+ → [0, 1] by

ϕn
xy(F, t) =

1

n
Card{0 ≤ i ≤ n− 1 : dH(F i(x), F i(y)) < t}.

Let

ϕxy(F, t) = lim inf
n→∞

ϕn
xy(F, t),

ϕ∗
xy(F, t) = lim sup

n→∞
ϕn
xy(F, t).

Then we call ϕxy(F, t) and ϕ∗
xy(F, t) are lower distributional function and upper

distributional function generated by F, x, y, respectively.

Definition 5.2. Let (X, d) be a compact metric space and G be a semigroup
generated by a finite set F = {f1, f2, . . . , fp}. A pair {x, y} ⊂ X is called
Hausdorff metric distributionally chaotic of type k ∈ {1, 2, 3} (briefly, HDC1,
HDC2 and DC3, respectively), if it satisfies condition (k) as follows

(1)ϕ∗
xy ≡ 1 and ∃ τ0 > 0, ϕxy(F, τ0) = 0.
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(2)ϕ∗
xy ≡ 1 and ϕ∗

xy > ϕxy.
(3)ϕ∗

xy > ϕxy.
Furthermore, F is called Hausdorff metric distributionally chaotic of type

k ∈ {1, 2, 3}, if there exists an uncountable subset D ⊆ X such that each pair
of two distinct points is a Hausdorff metric distributionally chaotic pair of type
k. Moreover, D is called a Hausdorff metric distributionally scrambled set of
type k.

For a single continuous map, Blanchard et al. [7] used ergodic methods to
prove that positive entropy implies Li-Yorke chaos, later, Kerr and Li gave a
combinatorial proof [17] to this result; T. Downarowicz [11] proved that positive
entropy implies distributional chaos of type 2. Now we may ask ”What is the
relationship between positive Hausdorff metric entropy and Hausdorff metric
chaos?”

Problem 5.3. Let (X, d) be a compact metric space and G be a semigroup
generated by a finite set F = {f1, f2, . . . , fp}. Does positive entropy imply
Hausdorff metric Li-Yorke chaos for F?

Problem 5.4. Let (X, d) be a compact metric space and G be a semigroup
generated by a finite set F = {f1, f2, . . . , fp}. Does positive entropy imply
Hausdorff metric distributional chaos of type 2 for F?

The answers seems to be positive. However, we are not able to simply use
the methods appeared in [7, 11, 17] to solve them.

As well-known, for a homeomorphism f : X → X, the equality h(f−1) =
h(f) holds. Then how about the Hausdorff metric entropy? (This question
for topological entropy of a semigroup defined by Bís is also unsolved.) Let
(X, d) be a compact metric space and G be a semigroup generated by a finite
set F = {f1, f2, . . . , fp}. If fj is invertible for all 1 ≤ j ≤ p, let F−1 =

{f−1
1 , f−1

2 , . . . , f−1
p } and G−1 be the semigroup generated by F−1.

Problem 5.5. Let (X, d) be a compact metric space and G be a semigroup
generated by a finite set F = {f1, f2, . . . , fp}, where fj is invertible for all
1 ≤ j ≤ p. Does hH(G−1, F−1) = hH(G,F ) hold?

Problem 5.6. What are the relations between the Hausdorff metric entropy
and other entropy-like invariants?

From Proposition 4.2 and Remark 4.5, we have known the relations between
hH(G,F ), h(G,F ) and max{h(fi); fi ∈ F}.
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