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Abstract. A graph is said to be symmetric if its automorphism group
is transitive on its arcs. A complete classification is given of pentavalent
symmetric graphs of order 24p for each prime p. It is shown that a

connected pentavalent symmetric graph of order 24p exists if and only if
p = 2, 3, 5, 11 or 17, and up to isomorphism, there are only eleven such
graphs.
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1. Introduction

Throughout this paper, all graphs are assumed to be finite, simple, connected
and undirected.

Let Γ be a graph. We denote by V Γ , EΓ , AΓ and AutΓ its vertex set,
edge set, arc set and full automorphism group respectively. We say Γ is vertex-
transitive graph if AutΓ is transitive on V Γ and Γ is arc-transitive graph or
symmetric graph if AutΓ is transitive on AΓ . Let s be a positive integer. An
s-arc in a graph Γ is an (s+1)-tuple (v0, v1, . . . , vs) of s+1 vertices such that
(vi−1, vi) ∈ AΓ for 1 ≤ i ≤ s and vi−1 ̸= vi+1 for 1 ≤ i ≤ s − 1. Let X
be a subgroup of AutΓ . We say Γ is (X, s)-arc-transitive if X is transitive on
the s-arcs of Γ and Γ is (X, s)-transitive if it is (X, s)-arc-transitive but not
(X, s + 1)-arc-transitive. In the case where X = AutΓ , we say an (X, s)-arc-
transitive or (X, s)-transitive graph is an s-arc-transitive or s-transitive graph.

The study of symmetric graphs has a long history, beginning with a seminal
work by Tutte [33, 34] on the cubic case. Since then the study of symmetric
graphs with restricted order has been a current topic in the literature. For
example, all symmetric graphs of order p, 2p or 3p were determined in [2,3,35],
where p is a prime. For distinct primes p and q, Praeger et al. determined
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symmetric graphs of order pq in [30,31]. Li gave a characterization of symmetric
graphs of prime-power order or odd order in [18,19].

Recently, classifying symmetric graphs with certain valency and with re-
stricted order has received considerable attention. For example, Conder and
Dobcsańyi [4] determined all cubic symmetric graphs of orders up to 768. The
classification of cubic symmetric graphs of order kp or kp2 with 4 ≤ k ≤ 10 was
given in [8–10]. Cubic symmetric graphs of order 2p2, 14p or 16p were classified
in [7, 26, 27]. For the tetravalent symmetric graphs, Zhou and Feng classified
tetravalent 1-regular graphs of order 2pq in [38]. Tetravalent s-transitive graphs
of order 4p, 2p2 or 4p2 were classified in [11, 37, 39]. More recently, numerous
papers of pentavalent symmetric graphs have been published. The stabilizers
of pentavalent symmetric graphs were determined in [13, 40]. The classifica-
tion of pentavalent symmetric graphs of order 8p, 12p, 18p, 30p, 2pq or 4pq
were presented in [14–16,24, 29, 36], where p and q are distinct primes. Li and
Feng gave a classification of pentavalent one-regular graphs of square-free order
in [22].

The main motivation for this paper arises from one result of Conder et
al. [5] which proved that for any given positive integer k, there exist only
finitely many connected d-valent 2-arc-transitive graphs whose order is kp or
kp2, where p is a prime and d ≥ 4. In this paper, we classify pentavalent
symmetric graphs of order 24p with p a prime. By using the Magma codes in
Appendices, determining graphs in this paper is more simple than some related
papers. Since the cases p = 3 and p = 5 have been treated in the classification
of pentavalent symmetric graphs of order 36p or 40p in [21,23], we only consider
the case when p = 2 or p > 5. The main result of this paper is the following
theorem.

Theorem 1.1. Let Γ be a pentavalent symmetric graph of order 24p, where p
is a prime. Then p = 2, 3, 5, 11 or 17. Furthermore, AutΓ, (AutΓ )v and Γ
are described in Table 1, where v ∈ V Γ.

The properties in Table 1 are determined with the help of the Magma system
[1].

2. Preliminary Results

We give some necessary preliminary results in this section.
Let Γ be a graph and let X be a vertex-transitive subgroup of AutΓ . Let

N be an intransitive normal subgroup of X on V Γ . Denote VN the set of
N -orbits in V Γ . The normal quotient graph ΓN is the graph with vertex set
VN and two N -orbits B,C ∈ VN are adjacent in ΓN if and only if some vertex
of B is adjacent in Γ to some vertex of C. The following Lemma ([20, Lemma
2.5]) provides a basic reduction method for studying our pentavalent symmetric
graphs.
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Table 1. Pentavalent symmetric graphs of order 24p

Γ AutΓ (AutΓ )v Girth Diameter Bipartite? Cayley?
C48 SL(2, 5):D8 F20 6 4 Yes Yes
C1
72 PGL(2, 9) D10 4 4 No Yes

C2
72 Aut(A6)×Z2 F20×Z2 6 5 Yes No

C1
120 A5×D10×Z2 D10 6 6 Yes Yes

C2
120 S5×D10 D10 4 6 Yes Yes

C1
264 PGL(2, 11)×Z2 D10 4 7 Yes No

C2
264 PGL(2, 11)×Z2 D10 6 6 Yes No

C3
264 PSL(2, 11):D8 D20 6 6 Yes No

C4
264 PGL(2, 11)×Z2 D10 4 7 Yes No

C1
408 PSO−(4, 4) D20 6 6 No No

C2
408 PSL(2, 16) D10 8 5 No No

Lemma 2.1. Let Γ be an X-arc-transitive graph of prime valency p > 2, where
X ≤ AutΓ, and let N⊴X have at least three orbits on V Γ. Then the following
statements hold.

(i) N is semiregular on V Γ, X/N ≤ AutΓN , and ΓN is an X/N -arc-
transitive graph of valency p;

(ii) Γ is (X, s)-transitive if and only if ΓN is (X/N, s)-transitive, where
1 ≤ s ≤ 5 or s = 7.

By [13,40], we have the following lemma.

Lemma 2.2. Let Γ be a pentavalent (G, s)-transitive graph for some G ≤ AutΓ
and s ≥ 1. Let v ∈ V Γ. Then the order of Gv equals one of the following
values: 5, 10, 20, 40, 60, 80, 120, 720, 960, 1440, 1920, 2880, 5760 or 23040.
In particular, the order of Gv is a divisor of 29 · 32 · 5.

From [12, pp. 12-14], one may obtain the following proposition by checking
the 3-prime factor nonabelian simple groups.

Proposition 2.3. Let G be a {2, 3, 5}-nonabelian simple group. Then G = A5,
A6 or PSU(4, 2).

By checking the orders of nonabelian simple groups, see [12, pp. 134-136]
for example, we have the following proposition.

Proposition 2.4. Let p > 5 be a prime and let G be a {2, 3, 5, p}-nonabelian
simple group such that |G| divides 212 · 33 · 5 · p and 60p divides |G|. Then
G = A7, A8, M11, M12, PSL(2, 11), PSL(2, 19), PSL(2, 16), PSL(2, 31) or
PSL(3, 4).
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By [16, 25], some information about pentavalent symmetric graphs of order
6p is given in the following lemma.

Lemma 2.5. Let Γ be a pentavalent symmetric graph. Let p be a prime. If
|V Γ | = 6p, then Γ is isomorphic to one of the graphs in Table 2.

Table 2. Pentavalent symmetric graphs of order 6p

Γ AutΓ Remark
Icosahedral Graph A5×Z2 p = 2

K6,6 − 6K2 A6×Z2 p = 2
C42 Aut(PSL(3, 4)) p = 7
C66 PGL(2, 11) p = 11
C114 PGL(2, 19) p = 19

By [15] and with the help of Magma system [1], we give some information
of pentavalent symmetric graphs of order 8p in the following lemma.

Lemma 2.6. Let Γ be a pentavalent symmetric graph. Let p be a prime. If
|V Γ | = 8p, then Γ is isomorphic to one of the graphs in Table 3.

Table 3. Pentavalent symmetric graphs of order 8p

Γ AutΓ Remark
CL16 Z4

2:S5 p = 2

I(2) (A5×Z2
2):Z2 p = 3

C248 PSL(2, 31) p = 31

By [14], we give some information of pentavalent symmetric graphs of order

12p in the following lemma. In fact, in [14, Theorem 4.1], C(2)
66 is isomorphic

to C5
132, Aut(C5

132)
∼= Aut(C(2)

66 ) ∼= PGL(2, 11)×Z2, Aut(I
(2)
12 )

∼= (A5×Z2
2):Z2 and

Aut(C60) ∼= A5×D10 by Magma [1].

Lemma 2.7. Let Γ be a pentavalent symmetric graph. Let p be a prime. If
|V Γ | = 12p, then Γ is isomorphic to one of the graphs in Table 4.

In the following, we need to introduce the concept of Schur multiplier. Let
G be a perfect group, that is, G′ = G. A central extension of G is a group H
satisfying H/N ∼= G for N ≤ Z(H). If H is perfect, we call H a covering group
of G. It was shown by Schur [32] that all covering groups of G are finite, and
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Table 4. Pentavalent symmetric graphs of order 12p

Γ AutΓ Remark

I
(2)
12 (A5×Z2

2):Z2 p = 2
C36 Aut(A6) p = 3
C60 A5×D10 p = 5
C1
132 PSL(2, 11)×Z2 p = 11

Ci
132 PGL(2, 11) p = 11, 2 ≤ i ≤ 4

C5
132 PGL(2, 11)×Z2 p = 11

there is a unique maximal covering group M . This group M is called the full
covering group of G, and define the Schur multiplier of G, written Mult(G),
to be the center of M . The following lemma follows from a theorem of Schur
(see [17]) and its proof can be seen in [28, Lemma 2.11].

Lemma 2.8. Let M = N.T d be a central extension, where d ≥ 1 and T is
a nonabelian simple group. Then M = NM ′ and M ′ = Z.T d, where Z is a
factor group of Mult(T )d and Z ≤ N .

3. The proof of Theorem 1.1

In this section, we will prove Theorem 1.1 by giving some lemmas. Now let
Γ be a pentavalent symmetric graph of order 24p, where p is a prime. If p = 3,
then |V Γ | = 72, and Γ is isomorphic to C1

72 or C2
72 by [21]. If p = 5, then

|V Γ | = 120, and Γ is isomorphic to C1
120 or C2

120 by [23]. Suppose p = 2 or
p > 5 in the following. Let A = AutΓ and let X be a subgroup of A. We say
X is a minimal arc-transitive subgroup of A if X is arc-transitive on Γ and if
a subgroup M of X is arc-transitive on Γ , then M equals X.

The next two simple lemmas are helpful to our argument.

Lemma 3.1. Let X ≤ A be a subgroup of A which is arc-transitive on Γ .
Let N be an insoluble normal subgroup of X. Then N has at most two orbits
on V Γ. Furthermore, if N is not isomorphic to PSL(2, 7), then the following
statements hold.

(1) For each v ∈ V Γ, 5
∣∣ |NΓ(v)

v |.
(2) 60p divides the order of N .

Proof. Suppose that N has at least three orbits on V Γ . Lemma 2.1 implies
that Nv = 1 for each v ∈ V Γ . Hence |N |

∣∣ 24p. If p ̸= 7, then a group of order
24p is soluble, which follows that N is soluble, a contradiction. If p = 7, then
|N |

∣∣ 24 · 7 = 168. It implies that |N | = 168 as N is insoluble, a contradiction
with N has at least three orbits on V Γ . Hence N has at most two orbits on
V Γ .
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(1) For each v ∈ V Γ , if Nv = 1, then, arguing as the above paragraph, a
contradiction occurs. Thus, Nv ̸= 1. Since X is transitive on V Γ , we have

|NΓ(v)
v | ̸= 1. It follows that 5

∣∣ |NΓ(v)
v |, since N

Γ(v)
v ⊴ X

Γ(v)
v and X

Γ(v)
v acts

primitively on Γ (v).
(2) Since N has at most two orbits on V Γ , that is, 22 · 3 · p divides |N : Nv|

and by (1), 5
∣∣ |Nv|, which implies that 60p

∣∣ |N |, as required. □
Lemma 3.2. Let N be a minimal normal subgroup of A. Assume A has no
soluble minimal normal subgroup. Then N is isomorphic to a nonabelian simple
group. Furthermore, if N is not isomorphic to PSL(2, 7), then A ≤ Aut(N).

Proof. Let N be an insoluble minimal normal subgroup of A. Then N = T d

with T a nonabelian simple group. We first prove that d = 1. By Lemma 3.1,
N has at most two orbits on V Γ , and so 12p divides |N |. It implies that p

∣∣ |T |.
Suppose that d ≥ 2. Then N = T1×T2× · · ·×Td and pd

∣∣ |N |. By Lemma 2.2,

|Av|
∣∣ 29 · 32 · 5, we have |N |

∣∣ |A| ∣∣ 212 · 33 · 5 · p. Then the only possible case is
(d, p) = (2, 5), a contradiction with our assumption p ̸= 5. Hence d = 1 and N
is a nonabelian simple group. Let C = CA(N). If C ̸= 1, then C is insoluble,
because A has no soluble minimal normal subgroup. By Lemma 3.1(2), we
have 60p

∣∣ |N |. Since |N |
∣∣ |A| ∣∣ 212 · 33 · 5 · p and C ∩N = Z(N) = 1, we have

|C|
∣∣ 210 · 32. By the Burnside theorem, C is soluble, a contradiction. Hence

C = 1. By ‘N/C’ theorem, A ≤ Aut(N). □
Proof of Theorem 1.1. In the following, we prove Theorem 1.1 via a series
of Lemmas.

Lemma 3.3. If p = 2, then Γ is isomorphic to C48 in Table 1.

Proof. Let N be a minimal normal subgroup of A. Suppose first that N is
soluble. Then N is isomorphic to Zd

r for some prime r. On the other hand,
for each v ∈ V Γ , |vN | is a prime power and a divisor of 48, N has at least
three orbits on V Γ . By Lemma 2.1, N is semiregular on V Γ . It follows that
|N |

∣∣ |V Γ | = 23 · 3 and so N ∼= Z2,Z2
2,Z3

2 or Z3. If N ∼= Z3
2, then Lemma 2.1

implies that ΓN is a pentavalent symmetric graph of odd order, a contradiction.
IfN ∼= Z2, then ΓN is a pentavalent symmetric graph of order 24. By Lemma

2.7, ΓN is isomorphic to I(2) with AutΓN
∼= (A5×Z2

2):Z2. By Magma [1], a mini-
mal arc-transitive subgroup of AutΓN is isomorphic to S5 or A5×Z2. By Lemma
2.1, A/N contains a subgroup isomorphic to S5 or A5×Z2, which implies that
A contains an arc-transitive subgroup isomorphic to Z2.S5 or Z2.(Z2×A5). By
Magma [1] (see our Magma codes in Appendix), Γ is isomorphic to C48 in Table
1.

If N ∼= Z2
2, then ΓN is a pentavalent symmetric graph of order 12. By

Lemma 2.5, ΓN is isomorphic to I with AutΓN
∼= A5×Z2 or K6,6 − 6K2 with

AutΓN
∼= S6×Z2. For the former case, since A/N is arc-transitive on ΓN , we

have 60
∣∣ |A/N |. Thus, by Magma [1], A/N contains an arc-transitive subgroup
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H/N ∼= A5. Since the Schur multiplier of A5 is Z2, we have H ∼= Z2
2×A5 or

Z2×SL(2, 5) and H is arc-transitive on Γ . By Magma [1], no pentavalent
symmetric graphs of order 48 appears for this case. For the latter case, by
Magma [1], a minimal arc-transitive subgroup of AutΓN is isomorphic to S5
or A5×Z2. Lemma 2.1 implies that A contains an arc-transitive subgroup
isomorphic to Z2

2.S5 or Z2
2.(A5×Z2). By Magma [1], we have Γ is isomorphic

to C48.
If N ∼= Z3, then ΓN is a pentavalent symmetric graph of order 16. By

Lemma 2.6, ΓN
∼= CL16 and AutΓ ∼= Z4

2:S5. By Magma [1], the minimal
arc-transitive subgroup of AutΓN is isomorphic to Z4

2:Z5. Therefore, Lemma
2.1 implies that A/N contains H/N ∼= Z4

2:Z5, that is, A contains an arc-
transitive subgroup H ∼= Z3.(Z4

2:Z5). By Magma [1] (see our Magma codes in
Appendices), H ∼= Z3×(Z4

2:Z5) and no pentavalent symmetric graph of order
48 appears for this case.

Now we suppose that A has no soluble minimal normal subgroup. Then,
by Lemma 3.2, N ⊴ A, where N is a {2, 3, 5}-nonabelian simple group. By
Proposition 2.3, N is isomorphic to A5, A6 or PSU(4, 2). If N ∼= A5, then
Lemma 3.1 implies that N has at most two orbits on V Γ , that is, 23 · 3

∣∣ |N |,
a contradiction with |N | = 22 · 3 · 5. If N ∼= A6, then |Nv| = |N |

24 = 15, a
contradiction with A6 has no subgroup of order 15. If N ∼= PSU(4, 2), then

|Nv| = |N |
24 = 540 or |Nv| = |N |

48 = 1080, a contradiction with PSU(4, 2) has no
subgroup of order 540 or 1080. □

Now we consider the case when p > 5. First we suppose that A contains a
soluble minimal normal subgroup N . Then we have the following lemma.

Lemma 3.4. If A has a soluble minimal normal subgroup N , then Γ is iso-
morphic to Ci

264 in Table 1, where 1 ≤ i ≤ 4.

Proof. Let N be a soluble minimal normal subgroup. Then N ∼= Z2, Z2
2, Z3

2,
Z3 or Zp. If N ∼= Z3

2, then ΓN is a pentavalent symmetric graph of odd order,
which is impossible.

If N ∼= Z2, then ΓN is a pentavalent symmetric graph of order 12p.
By Lemma 2.7, we have ΓN

∼= Ci
132, where 1 ≤ i ≤ 5. Furthermore,

A/N ≤ Aut(Ci
132) and p = 11. By Magma [1], a minimal arc-transitive sub-

group of Aut(Ci
132) is isomorphic to PSL(2, 11) or PGL(2, 11). Since A/N is

arc-transitive on ΓN , we have A/N has an arc-transitive subgroup H/N iso-
morphic to PSL(2, 11) or PGL(2, 11). Since Z2.PSL(2, 11) ∼= Z2×PSL(2, 11)
or SL(2, 11) and Z2.PGL(2, 11) ∼= Z2×PGL(2, 11) or SL(2, 11):Z2, we have
A has an arc-transitive subgroup H isomorphic to Z2×PSL(2, 11), SL(2, 11),
Z2×PGL(2, 11) or SL(2, 11):Z2. By Magma [1], Γ is isomorphic to Ci

264 in
Table 1, where 1 ≤ i ≤ 4.

If N ∼= Z2
2, then ΓN is a pentavalent symmetric graph of order 6p. By

Lemma 2.5, ΓN is isomorphic to C42, C66 or C114. Assume ΓN
∼= C42. Then
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A/N ≤ AutΓN
∼= Aut(PSL(3, 4)) and p = 7. By Lemma 2.1, A/N is arc-

transitive on ΓN . By Magma [1], a minimal arc-transitive subgroup of AutΓN

is isomorphic to PSL(3, 4):Z2. Hence A/N contains an arc-transitive subgroup
H/N isomorphic to PSL(3, 4):Z2. Then H ∼= Z2

2.(PSL(3, 4):Z2) is arc transitive
on Γ . By Magma [1], no pentavalent symmetric graph of order 24 · 7 appears
for this case.

Assume ΓN is isomorphic to C66. Then A/N ≤ AutΓN
∼= PGL(2, 11) and

p = 11. By Lemma 2.1, A/N is arc-transitive on ΓN . By Magma [1], A/N
contains an arc-transitive subgroup H/N isomorphic to PSL(2, 11). Since the
Schur multiplier of PSL(2, 11) is isomorphic to Z2 (see Atlas [6] for example),
we have H ∼= Z2

2×PSL(2, 11) or Z2×SL(2, 11). Furthermore, H is arc-transitive
on Γ . By Magma [1], Γ is isomorphic to C1

264, C2
264 or C3

264 in Table 1.
Assume ΓN

∼= C114. Then A/N ≤ AutΓN
∼= PGL(2, 19) and p = 19. By

Lemma 2.1, A/N is arc-transitive on ΓN . By Magma [1], the minimal arc-
transitive subgroup of AutΓN is isomorphic to PGL(2, 19). Hence A/N is
isomorphic to PGL(2, 19). Then A = Z2

2.PGL(2, 19) ∼= Z2
2×PGL(2, 19) or

Z2×(SL(2, 19):Z2). By Magma [1], no pentavalent symmetric graph of order
24 · 19 appears for this case.

If N ∼= Z3, then ΓN is a pentavalent symmetric graph of order 8p. Since
p > 5, Lemma 2.6 implies that ΓN

∼= C248 and p = 31. By Lemma 2.1,
A/N ≲ AutΓN

∼= PSL(2, 31) and A/N is arc-transitive on ΓN . Hence 5 ·
248

∣∣ |A/N |. By checking the maximal subgroup of PSL(2, 31), we have A/N ∼=
PSL(2, 31). On the other hand, by Atlas [6], the Schur multiplier of PSL(2, 31)
is isomorphic to Z2, Lemma 2.8 implies that A = Z3×PSL(2, 31). By Magma
[1], no pentavalent symmetric graph of order 24 · 31 appears for this case.

IfN ∼= Zp, then ΓN is a pentavalent symmetric graph of order 24. By Lemma

2.7, ΓN is isomorphic to I(2). By Lemma 2.1, A/N ≤ AutΓN
∼= (A5×Z2

2):Z2.
Since A/N is arc-transitive on ΓN , we have 120

∣∣ |A/N |. It implies that A/N
contains a normal subgroup H/N isomorphic to A5. Since p > 5 and the Schur
multiplier of A5 isomorphic to Z2, Lemma 2.8 implies that H ∼= Zp×A5 and
H ′ = A5. Since H ′ is a characteristic subgroup of H and H ⊴ A, we have
H ′ ⊴A. By Lemma 3.1, H ′ has at most two orbits on V Γ , which implies that
|V Γ | ≤ 120, a contradiction with p > 5. □

Now we may treat the case when A has no soluble minimal normal subgroup
and the next lemma completes the proof of Theorem 1.1.

Lemma 3.5. If A has no soluble minimal normal subgroup, then Γ is isomor-
phic to C1

408 or C2
408 in Table 1.

Proof. Let N be an insoluble minimal normal subgroup of A. By Lemma 3.2,
d = 1 and N ⊴A. Assume that N is isomorphic to PSL(2, 7). Let C = CA(N).
If C ̸= 1, then C ∩N = Z(N) = 1, and so CN = C×N . Since A has no soluble
minimal normal subgroup, we have C is insoluble. Since |A|

∣∣ 212 · 33 · 5 · 7 and



1863 Ling

C ∩ N = 1, we have |C|
∣∣ 29 · 32 · 5. Hence C contains a normal subgroup of

A which is isomorphic to A5 or A6. It implies that A has a normal subgroup
isomorphic to A5×PSL(2, 7) or A6×PSL(2, 7). Let H1 = A5×PSL(2, 7) and
H2 = A6×PSL(2, 7). If A has a normal subgroup isomorphic to H1, then,
with similar discussion as above, we have CA(H1) = 1. By ‘N/C’ theorem,
A ≤ Aut(H1) ∼= S5×PGL(2, 7). By Magma [1], no pentavalent symmetric
graph of order 24 · 7 appears for this case. A similar argument shows that
no pentavalent symmetric graph of order 24 · 7 appears when A has a normal
subgroup isomorphic to H2. Hence N is not isomorphic to PSL(2, 7). By
Lemma 3.1, 60p

∣∣ |N |. Since |A|
∣∣ 212 · 33 · 5 · p, we have |N | is a divisor of

212 · 33 · 5 · p. By Proposition 2.4, N is isomorphic to A7, A8, M11, M12,
PSL(2, 11), PSL(2, 19), PSL(2, 16), PSL(2, 31) or PSL(3, 4).

Assume N ∼= A7. Then p = 7, and by Lemma 3.2, A7 ≤ A ≤ S7. It implies

that |Av| = |A7|
24·7 = 15 or |Av| = |S7|

24·7 = 30, this is impossible by Lemma 2.2.
Similarly, N is not isomorphic to M11 or PSL(2, 19).

Assume N ∼= PSL(2, 31). Then p = 31, and Lemma 3.2 implies that

PSL(2, 31) ≤ A ≤ PGL(2, 31). It follows that |Av| = |PSL(2,31)|
24·31 = 20 or

|Av| = |PGL(2,31)|
24·31 = 40. However, by Atlas [6], PSL(2, 31) has no subgroup of

order 20 and PGL(2, 31) has no subgroup of order 40, a contradiction.
Assume N ∼= M12. Then p = 11 and |V Γ | = 264. By Lemma 3.2,

A ≤ Aut(M12) = M12.Z2. If A = M12, then |Av| = |M12|
24·11 = 360. This is

impossible by Lemma 2.2. Hence A = M12.Z2. By Magma [1] (see the Magma
codes in Appendices), no pentavalent symmetric graph of order 24 · 11 satisfies
our condition. With similar discussion, we have N is not isomorphic to A8,
PSL(2, 11) or PSL(3, 4).

Finally, assume N ∼= PSL(2, 16). Then p = 17, and by Lemma 3.2,
PSL(2, 16)
≤ A ≤ PΣL(2, 16). By Magma [1], Γ is isomorphic to C1

408 or C2
408 in Table

1. □
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Appendix

Magma codes

/*

Input : a positive integer n and two finite groups G, N
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Output: all groups X of order n, satisfying that X has a

normal subgroup isomorphic to N and the quotient group

X/N isomorphic to G

*/

f:=function(n,G,N);

P:=SmallGroupProcess(n);

X:=[];

repeat GG:=Current(P);

NN:=NormalSubgroups(GG);

for i in [1..#NN] do

if IsIsomorphic(NN[i]‘subgroup,N) eq true then

F:=quo<GG|NN[i]‘subgroup>;

if IsIsomorphic(F,G) eq true then

_,a:=CurrentLabel(P);

Append(~X,SmallGroup(n,a));

end if;

end if;

end for;

Advance(~P);

until IsEmpty(P);

return X;

end function;

/*

Input : a finite group G and a positive integer n

Output: all graphs of order |G|/n, which admit G as an

arc-transitive automorphism group

*/

Graph:=function(G,n);

graph:=[];

i:=0;

H:=Subgroups(G:OrderEqual:=n);

for j in [1..#H] do

HH:=H[j]‘subgroup;

CA:=CosetAction(G,HH);

O:=Orbits(CA(HH));

for k in [1..#O] do

OO:=SetToSequence(O[k]);

GR:=OrbitalGraph(CA(G),1,{OO[1]});

if (IsConnected(GR) eq true) and (Valence(GR) eq 5) and

(not exists{t:t in graph|IsIsomorphic(GR,t) eq true}) then
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Append(~graph,GR);

i:=i+1;

end if;

end for;

end for;

return i,graph;

end function;
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