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Abstract. The proximal point algorithm, which is a well-known tool

for finding minima of convex functions, is generalized from the classical
Hilbert space framework into a nonlinear setting, namely, geodesic metric
spaces of nonpositive curvature. In this paper we propose an iterative
algorithm for finding a common element of the minimizers of a finite

family of convex functions and common fixed points of a finite family of
quasi-nonexpansive multivalued mappings in Hadamard spaces.
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1. Introduction

Let (X, d) be a metric space and f : X → (−∞,∞] be a proper and convex
function. One of the major problems in optimization is to find x ∈ X such that

f(x) = min
y∈X

f(y).

We denote by argminy∈Xf(y) the set of minimizers of f . A successful and
powerful tool for solving this problem is the well-known proximal point algo-
rithm (PPA). The proximal point algorithm is a method for finding a minimizer
of a convex lower semicontinuous function defined on a Hilbert space. Its origin
goes back to Martinet and Rockafellar [20, 21]. Indeed, let f be a proper con-
vex and lower semi-continuous function on a Hilbert space H which attains its
minimum. The proximal point algorithm seeks a minimizer of f by successive
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approximations

xn+1 = argminy∈H

(
f(y) +

1

2rn
∥ y − xn ∥2

)
, n ∈ N,

where rn > 0 for all n ∈ N. It was proved that the sequence {xn} converges
weakly to a minimizer of f provided

∑∞
n=1 rn = ∞. A natural question, posed

by Rockafellar in [21], as to whether this convergence can be improved to
strong one was answered in the negative by Guler [14]. In 2000, Kamimura
and Takahashi [17] combined the PPA with Halpern,s algorithm [15] so that
the strong convergence is guaranteed [5]. Recently, Bačak [4, Theorem 6.3.1]
investigated the convergence of the proximal point algorithm for convex func-
tions in Hadamard spaces, which are also known as complete CAT (0) space
(X, d) as follows: x1 ∈ X and

xn+1 = argminy∈X

(
f(y) +

1

2rn
d(y, xn)

2
)
, n ∈ N,

where rn > 0 for all n ∈ N. Based on the concept of the Fejer monotonicity,
it was shown that, if f has a minimizer and

∑∞
n=1 rn = ∞, then {xn} △-

converges to the minimizer of f . Recently, Cholamjiak et al. [9] introduced the
following modified proximal point algorithm using the S-type iteration process
for two nonexpansive mappings in CAT (0) spaces,

zn = argminy∈X

(
f(y) +

1

2rn
d(y, xn)

2
)
,

yn = (1− βn)xn ⊕ βnT1zn,

xn+1 = (1− αn)T1xn ⊕ αnT2yn,

and it was shown that, {xn} △-converges to a common element of

F (T1) ∩ F (T2) ∩ argminy∈Xf(y),

under some mild conditions. Abkar and Eslamian in [2], introduced an iterative
process for a finite family of generalized nonexpansive multivalued mappings,
and proved △-convergence and strong convergence theorems for the proposed
iterative process in CAT (0) spaces. In this paper, motivated and inspired
by [2], we propose an iterative method for finding a common element of the
minimizers of a finite family of convex functions and common fixed points of a
finite family of quasi-nonexpansive multivalued mappings in Hadamard spaces.

2. Preliminaries

Let (X, d) be a metric space. A geodesic path joining x to y in X is a
mapping γ from a closed interval [0, l] ⊆ R to X such that γ(0) = x, γ(l) = y
and d(γ(s), γ(t)) = |s− t| for all s, t ∈ [0, l]. In particular, the mapping γ is an
isometry and d(x, y) = l. The image of γ is called a geodesic segment joining
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x and y which when is unique denoted by [x, y]. We denote the unique point
z ∈ [x, y] such that

d(x, z) = αd(x, y) and d(y, z) = (1− α)d(x, y),(2.1)

by (1− α)x⊕ αy, where 0 ≤ α ≤ 1.
The metric space (X, d) is called a geodesic space if any two points of X

are joined by a geodesic, and X is said to be uniquely geodesic if there is ex-
actly one geodesic segment joining x and y for each x, y ∈ X. A geodesic
triangle ∆(x1, x2, x3) in a geodesic space (X, d) consists of three points in
X (the vertices of ∆) and a geodesic segment between each pair of points
(the edges of ∆). A comparison triangle for ∆(x1, x2, x3) in (X, d) is a
triangle ∆(x1, x2, x3) := ∆(x1, x2, x3) in the Euclidean plane R2 such that
dR2(xi, xj) = d(xi, xj) for all i, j ∈ {1, 2, 3}.
A geodesic space X is called a CAT (0) space if all geodesic triangles of appro-
priate size satisfy the following comparison axiom:
Let ∆ be a geodesic triangle in X and let ∆ be a comparison triangle in R2.
Then the triangle ∆ is said to satisfy the CAT (0) inequality if

d(x, y) ≤ dR2(x, y),

for all x, y ∈ ∆ and all comparison points x, y ∈ ∆. A subset C of a CAT (0)
space is convex if [x, y] ⊆ C for all x, y ∈ C. It is well known that any complete
simply connected Riemannian manifold of nonpositive sectional curvature is
a CAT (0) space. Other examples include Pre- Hilbert spaces, R-trees [6],
Euclidean buildings, the complex Hilbert ball with a hyperbolic metric [13]
and many others. If x, y1, y2 are points in a CAT (0) space and if y0 is the
midpoint of the geodesic segment [y1, y2], then the CAT (0) inequality implies
the so-called (CN) inequality, i.e.,

d(x, y0)
2 ≤ 1

2
d(x, y1)

2 +
1

2
d(x, y2)

2 − 1

4
d(y1, y2)

2.

It is known that a uniquely geodesic space is a CAT (0) space if and only if it
satisfies the (CN) inequality [6].
Let {xn} be a bounded sequence in a CAT (0) space X. For x ∈ X, we set

r(x, {xn}) = lim sup
n→∞

d(xn, x).

The asymptotic radius r(xn) of {xn} is given by:

r({xn}) = inf{r(x, {xn}) : x ∈ X},

and the asymptotic center A({xn}) of {xn} is the set

A({xn}) = {x ∈ X : r(x, {xn}) = r({xn})}.

It is known that in a CAT (0) space, A({xn}) consists of exactly one point [11].
A sequence {xn} in a CAT (0) space X is said to be △-convergent to x ∈ X if
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x is the unique asymptotic center of every subsequence of {xn}.
We will use the following lemmas.

Lemma 2.1 ([19]). Every bounded sequence in an Hadamard space has a △-
convergent subsequence.

Lemma 2.2 ([10]). If D is a closed convex subset of an Hadamard space and
{xn} is a bounded sequence in D, then the asymptotic center of {xn} is in D.

Lemma 2.3 ([12]). If {xn} is a bounded sequence in an Hadamard space X
with A({xn}) = {x} and {un} is a subsequence of {xn} with A({un}) = {u}
and the sequence {d(xn, u)} converges, then x = u.

Lemma 2.4 ([12]). Let X be a CAT (0) space. Then for all x, y, z ∈ X and
all t ∈ [0, 1], we have

(i) d((1− t)x⊕ ty, z) ≤ (1− t)d(x, z) + td(y, z),
(ii) d((1− t)x⊕ ty, z)2 ≤ (1− t)d(x, z)2 + td(y, z)2 − t(1− t)d(x, y)2.

Let D be a nonempty subset of CAT (0) space X. Then a mapping T of D
into itself is called nonexpansive if d(Tx, Ty) ≤ d(x, y) for all x, y ∈ D. A point
x ∈ D is called a fixed point of T if Tx = x. We denote by F (T ) the set of all
fixed points of T . W.A. Kirk showed that the fixed point set of a nonexpansive
mapping T is closed and convex [18].

Lemma 2.5 ([12]). Let D be a closed and convex subset of an Hadamard space
X and T : D → D be a nonexpansive mapping. Let {xn} be a bounded sequence
in D such that limn→∞ d(xn, Txn) = 0 and △−limn→∞ xn = x. Then Tx = x.

Firmly nonexpansive mappings were first introduced by Browder [7], under
the name of firmly contractive, in the setting of Hilbert spaces, and later by
Bruck [8] in the context of Banach spaces. Recently Bruck’s definition was
extended to a nonlinear setting in [3].

Definition 2.6. Let D be a nonempty subset of a CAT (0) space (X, d). We
say that a mapping T : D −→ X is firmly nonexpansive if

d(Tx, Ty) ≤ d((1− λ)x⊕ λTx, (1− λ)y ⊕ λTy),

for all x, y ∈ D and λ ∈ (0, 1).

Remark 2.7. Any firmly nonexpansive mapping is nonexpansive.

For λ > 0, define the Moreau-Yosida resolvent of f in CAT (0) space (X, d)
as

Proxf
λ(x) := argminy∈X

(
f(y) +

1

2λ
d(x, y)2

)
,

for all x ∈ X. The mapping Proxf
λ is well defined for all λ > 0 [16]. Recall that

a function f : X −→ (−∞,+∞] defined on a convex subset D of a CAT (0)
space is convex if, for any geodesic γ : [a, b] −→ D, the function foγ is convex.
The following lemmas play an important role in this paper.
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Lemma 2.8 ([3]). Let (X, d) be an Hadamard space and f : X −→ (−∞,+∞]
be a proper convex and lower semicontinuous function. Then for every λ > 0,

(i) Proxf
λ is a firmly nonexpansive mapping.

(ii) F (Proxf
λ) = argminy∈Xf(y).

Lemma 2.9 ([16]). Let (X, d) be an Hadamard space and f : X → (−∞,∞]
be a proper convex and lower semi-continuous function. Then the following
identity holds:

Proxf
λx = Proxf

µ(
λ− µ

λ
Proxf

λx⊕ µ

λ
x),

for all x ∈ X and λ > µ > 0.

Let D be a subset of a CAT (0) space X. We denote by CB(D), K(D),
KC(D) and P (D) the collection of all nonempty closed bounded subsets,
nonempty compact subsets, nonempty convex compact subsets and proximi-
nal bounded subsets of D, respectively. The Hausdorff metric H on CB(X) is
defined by:

H(A,B) := max{sup
x∈A

dist(x,B), sup
y∈B

dist(y,A)},

for all A,B ∈ CB(X), where dist(x,B) = inf{d(x, z) : z ∈ B}.
Let T : X → 2X be a multivalued mapping. An element x ∈ X is said to be a

fixed point of T , if x ∈ Tx. The set of fixed points of T will be denoted by F (T ).

Definition 2.10. A multivalued mapping T : X → CB(X) is called

(i) Nonexpansive if H(Tx, Ty) ≤ d(x, y) for all x, y ∈ X;
(ii) Quasi-nonexpansive if F (T ) ̸= ∅ and H(Tx, Tp) ≤ d(x, p) for all x ∈ X

and all p ∈ F (T ).

We state the multivalued analogs of the conditions (E) in the following way
(see [1]).

Definition 2.11. A multivalued mapping T : X → CB(X) is said to satisfy
condition (Eµ) provided that

dist(x, Ty) ≤ µ dist(x, Tx) + d(x, y), x, y ∈ X.

We say that T satisfies condition (E) whenever T satisfies (Eµ) for some µ ≥ 1.

We will use the following lemma.

Lemma 2.12 ([2]). Let D be a nonempty closed convex subset of an Hadamard
space X and T : D → K(D) satisfies the condition (E). If {xn} is a sequence
in D such that limn→∞ dist(Txn, xn) = 0 and △− limn xn = v, then v ∈ Tv.
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3. Main results

Let D be a nonempty convex subset of an Hadamard space X and fi :
D → (−∞,∞] (i = 1, 2, . . . , r) be r proper convex and lower semi-continuous
functions. Let Tj : D → CB(D) (j = 1, . . . ,m) be m given mappings. Then
for x0 ∈ D, an,j ∈ [0, 1] (j = 0, 1, . . . ,m) and λi

n > 0 (i = 1, . . . , r), we consider
the following iterative process:

wn = Proxfr
λr
n
◦ · · · ◦ Proxf1

λ1
n
xn,

yn,0 = (1− an,0)xn ⊕ an,0wn,

yn,1 = (1− an,1)xn ⊕ an,1zn,1,

yn,2 = (1− an,2)xn ⊕ an,2zn,2,
.
.
.
yn,m−1 = (1− an,m−1)xn ⊕ an,m−1zn,m−1,

xn+1 = (1− an,m)xn ⊕ an,mzn,m,

(3.1)

where zn,j ∈ Tj(yn,j−1) for j = 1, . . . ,m.
We shall make use of the following lemma.

Lemma 3.1. Let D be a nonempty closed convex subset of an Hadamard space
X and fi : D → (−∞,∞] (i = 1, 2, . . . , r) be r proper convex and lower semi-
continuous functions. Let Tj : D → CB(D) (j = 1, . . . ,m) be a finite family
of quasi-nonexpansive multivalued mappings satisfying the condition (E) such
that

Ω = ∩m
j=1F (Tj)

∩
∩r
i=1argminy∈Dfi(y)

is nonempty and Tj(p) = {p} for each p ∈ Ω. Let {xn} be the iterative process
defined by (3.1), an,j ∈ [a, b] ⊂ (0, 1)(j = 0, 1, . . . ,m) and {λi

n} is a sequence
such that λi

n ≥ λ0 > 0 for all n ∈ N (i = 1, . . . , r) and for some λ0. Then

(i) limn→∞ d(xn, p) exists for all p ∈ Ω,

(ii) limn→∞ d(xn, P roxfi
λi
n
◦ · · · ◦ Proxf1

λ1
n
xn) = 0 (i = 1, . . . , r),

(iii) limn→∞ dist(Tjxn, xn) = 0 (j = 1, . . . ,m).

Proof. Let p ∈ Ω. By Lemma 2.8, p = Proxfi
λi
n
p for any i = 1, . . . , r and n ∈ N.

(i) We show that limn→∞ d(xn, p) exists.

We denote by Si
n the composition Proxfi

λi
n
◦ · · · ◦Proxf1

λ1
n
for any i = 1, 2, . . . , r

and n ∈ N. Therefore wn = Sr
nxn. We also assume that S0

n = I where I is the
identity operator. By Lemma 2.8, we have

d(Si
nxn, p) = d(Proxfi

λi
n
◦ · · · ◦ Proxf1

λ1
n
xn, P roxfi

λi
n
p)

≤ d(xn, p).(3.2)
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By employing Lemma 2.4, we obtain

d(yn,0, p) = d((1− an,o)xn ⊕ an,own, p)

≤ (1− an,o)d(xn, p) + an,od(wn, p)

≤ d(xn, p).(3.3)

So by (3.3), we obtain

d(yn,1, p) = d((1− an,1)xn ⊕ an,1zn,1, p)

≤ (1− an,1)d(xn, p) + an,1d(zn,1, p)

= (1− an,1)d(xn, p) + an,1 dist(zn,1, T1(p))

≤ (1− an,1)d(xn, p) + an,1H(T1(yn,0), T1(p))

≤ (1− an,1)d(xn, p) + an,1d(yn,0, p)

≤ (1− an,1)d(xn, p) + an,1d(xn, p)

= d(xn, p),

and

d(yn,2, p) = d((1− an,2)xn ⊕ an,2zn,2, p)

≤ (1− an,2)d(xn, p) + an,2d(zn,2, p)

= (1− an,2)d(xn, p) + an,2 dist(zn,2, T2(p))

≤ (1− an,2)d(xn, p) + an,2H(T2(yn,1), T2(p))

≤ (1− an,2)d(xn, p) + an,2d(yn,1, p)

≤ d(xn, p).

By induction, we have

d(yn,m−1, p) = d((1− an,m−1)xn ⊕ an,m−1zn,m−1, p)

≤ (1− an,m−1)d(xn, p) + an,m−1d(zn,m−1, p)

= (1− an,m−1)d(xn, p) + an,m−1 dist(zn,m−1, Tm−1(p))

≤ (1− an,m−1)d(xn, p) + an,m−1H(Tm−1(yn,m−2), Tm−1(p))

≤ (1− an,m−1)d(xn, p) + an,m−1d(yn,m−2, p)

≤ d(xn, p),
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and also

d(xn+1, p) = d((1− an,m)xn ⊕ an,mzn,m, p)

≤ (1− an,m)d(xn, p) + an,md(zn,m, p)

= (1− an,m)d(xn, p) + an,m dist(zn,m, Tm(p))

≤ (1− an,m)d(xn, p) + an,mH(Tm(yn,m−1), Tm(p))

≤ (1− an,m)d(xn, p) + an,md(yn,m−1, p)

≤ d(xn, p).

This shows that limn→∞ d(xn, p) exists.

(ii) We show that limn→∞ d(xn, P roxfi
λi
n
◦ · · · ◦ Proxf1

λ1
n
xn) = 0 (i = 1, . . . , r).

Since d(Si
nxn, p)− d(xn, p) ≤ d(xn, p)− d(xn, p), we get

lim sup
n→∞

(
d(Si

nxn, p)− d(xn, p)
)
≤ 0,(3.4)

for all (i = 1, . . . , r). By using Lemma 2.4 and nonexpansivity of Proxfi
λi
n
,

for all i = 1, . . . , r, we have

d(yn,0, p) = d((1− an,o)xn ⊕ an,own, p)

≤ (1− an,o)d(xn, p) + an,od(wn, p)

≤ (1− an,o)d(xn, p) + an,od(S
i
nxn, p),

and

d(yn,1, p) = d((1− an,1)xn ⊕ an,1zn,1, p)

≤ (1− an,1)d(xn, p) + an,1d(zn,1, p)

= (1− an,1)d(xn, p) + an,1 dist(zn,1, T1(p))

≤ (1− an,1)d(xn, p) + an,1H(T1(yn,0), T1(p))

≤ (1− an,1)d(xn, p) + an,1d(yn,0, p)

≤ (1− an,1)d(xn, p) + an,1((1− an,o)d(xn, p) + an,od(S
i
nxn, p))

= d(xn, p) + an,1an,0(d(S
i
nxn, p)− d(xn, p)).

Similarly, we have

d(yn,m−1, p) = d((1− an,m−1)xn ⊕ an,m−1zn,m−1, p)

≤ (1− an,m−1)d(xn, p) + an,m−1d(zn,m−1, p)

= (1− an,m−1)d(xn, p) + an,m−1 dist(zn,m−1, Tm−1(p))

≤ (1− an,m−1)d(xn, p) + an,m−1H(Tm−1(yn,m−2), Tm−1(p))

≤ (1− an,m−1)d(xn, p) + an,m−1d(yn,m−2, p)

≤ d(xn, p) + an,m−1, . . . , an,0(d(S
i
nxn, p)− d(xn, p)),
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and also

d(xn+1, p) = d((1− an,m)xn ⊕ an,mzn,m, p)

≤ (1− an,m)d(xn, p) + an,md(zn,m, p)

= (1− an,m)d(xn, p) + an,m dist(zn,m, Tm(p))

≤ (1− an,m)d(xn, p) + an,mH(Tm(yn,m−1), Tm(p))

≤ (1− an,m)d(xn, p) + an,md(yn,m−1, p)

≤ d(xn, p) + an,m, . . . , an,0(d(S
i
nxn, p)− d(xn, p)),

and hence

lim inf
n→∞

(
d(Si

nxn, p)− d(xn, p)
)
≥ 0.

From the above inequality and (3.4), we obtain that

lim
n→∞

(
d(Si

nxn, p)− d(xn, p)
)
= 0.

Using Lemma 2.4 and firmly nonexpansivity of Proxfi
λi
n
for all i = 1, 2, . . . , r

and n ∈ N, we obtain

d(Si
nxn, p)

2 =d(Proxfi
λi
n
(Si−1

n xn), P roxfi
λi
n
p)2

≤d((1− λ)Si−1
n xn ⊕ λSi

nxn, (1− λ)p⊕ λp)2

≤(1− λ)d(Si−1
n xn, p)

2 + λd(Si
nxn, p)

2

− λ(1− λ)d(Si−1
n xn, S

i
nxn)

2

≤(1− λ)d(xn, p)
2 + λd(xn, p)

2 − λ(1− λ)d(Si−1
n xn, S

i
nxn)

2

=d2(xn, p)− λ(1− λ)d(Si−1
n xn, S

i
nxn)

2,

for all λ ∈ (0, 1), which implies that

d(Si−1
n xn, S

i
nxn)

2 ≤ 1

λ(1− λ)
(d(xn, p)

2 − d(Si
nxn, p)

2).

Therefore

lim
n→∞

d(Si−1
n xn, S

i
nxn) = 0,

and hence for all i = 1, 2, . . . , r,

d(xn, S
i
nxn) ≤ d(xn, S

1
nxn) + · · ·+ d(Si−1

n xn, S
i
nxn) → 0.
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(iii) We show that limn→∞ dist(xn, Tjxn) = 0 (j = 1, . . . ,m). By using Lemma
2.4 and (3.3), we get

d(yn,1, p)
2 = d((1− an,1)xn ⊕ an,1zn,1, p)

2

≤ (1− an,1)d(xn, p)
2 + an,1d(zn,1, p)

2 − an,1(1− an,1)d(xn, zn,1)
2

= (1− an,1)d(xn, p)
2 + an,1 dist(zn,1, T1(p))

2 − an,1(1− an,1)d(xn, zn,1)
2

≤ (1− an,1)d(xn, p)
2 + an,1H(T1(yn,0), T1(p))

2 − an,1(1− an,1)d(xn, zn,1)
2

≤ (1− an,1)d(xn, p)
2 + an,1d(yn,0, p)

2 − an,1(1− an,1)d(xn, zn,1)
2

≤ (1− an,1)d(xn, p)
2 + an,1d(xn, p)

2 − an,1(1− an,1)d(xn, zn,1)
2

= d(xn, p)
2 − an,1(1− an,1)d(xn, zn,1)

2.

By induction, we have

d(xn+1, p)
2 = d((1− an,m)xn ⊕ an,mzn,m, p)2

≤ (1− an,m)d(xn, p)
2 + an,md(zn,m, p)2 − an,m(1− an,m)d(xn, zn,m)2

= (1− an,m)d(xn, p)
2 + an,m dist(zn,m, Tm(p))2

− an,m(1− an,m)d(xn, zn,m)2

≤ (1− an,m)d(xn, p)
2 + an,mH(Tm(yn,m−1), Tm(p))2

− an,m(1− an,m)d(xn, zn,m)2

≤ (1− an,m)d(xn, p)
2 + an,md(yn,m−1, p)

2 − an,m(1− an,m)d(xn, zn,m)2

≤ d(xn, p)
2 − an,m(1− an,m)d(xn, zn,m)2

− an,man,m−1(1− an,m−1)d(xn, zn,m−1)
2

− · · · − an,man,m−1an,m−2 · · · an,1(1− an,1)d(xn, zn,1)
2.

So we obtain

am(1− b)d(xn, zn,1)
2 ≤ an,man,m−1 · · · an,1(1− an,1)d(xn, zn,1)

2

≤ d(xn, p)
2 − d(xn+1, p)

2.

This implies that
∞∑

n=1

am(1− b)d(xn, zn,1)
2 ≤ d(x1, p)

2 < ∞,

thus limn→∞ d(xn, zn,1) = 0. Similarly for k = 2, . . . ,m, we obtain

lim
n→∞

d(xn, zn,k) = 0.

Hence dist(xn, Tkyn,k−1) ≤ d(xn, zn,k) → 0 as n → ∞ for k = 1, . . . ,m. We
have

lim
n→∞

d(xn, yn,k−1) = lim
n→∞

an,k−1d(xn, zn,k−1) = 0.
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By the condition (E), we get for some µ ≥ 1,

dist(xn, Tkxn) ≤ d(xn, yn,k−1) + dist(yn,k−1, Tkxn)

≤ d(xn, yn,k−1) + µdist(Tkyn,k−1, yn,k−1) + d(xn, yn,k−1)

≤ d(xn, yn,k−1) + µdist(xn, Tkyn,k−1) + µd(xn, yn,k−1) + d(xn, yn,k−1)

= (µ+ 2)d(xn, yn,k−1) + µdist(xn, Tkyn,k−1).

Hence for k = 1, . . . ,m, we have

lim
n→∞

dist(xn, Tkxn) = 0.

□

Now we are ready to state and prove our main results.

Theorem 3.2. Let D be a nonempty closed convex subset of an Hadamard
space X and fi : D → (−∞,∞] (i = 1, 2, . . . , r) be r proper convex and lower
semi-continuous functions. Let Tj : D → K(D) (j = 1, . . . ,m) be a finite
family of quasi-nonexpansive multivalued mappings satisfying the condition (E)
such that

Ω = ∩m
j=1F (Tj)

∩
∩r
i=1argminy∈Dfi(y)

is nonempty and Tj(p) = {p} for each p ∈ Ω. Let {xn} be the iterative process
defined by (3.1), an,j ∈ [a, b] ⊂ (0, 1) (j = 0, 1, . . . ,m) and {λi

n} is a sequence
such that λi

n ≥ λ0 > 0 for all n ∈ N (i = 1, . . . , r) and for some λ0. Then {xn}
is △-convergent to an element of Ω.

Proof. Since λi
n ≥ λ0 > 0, by Lemmas 2.9 and 3.1, we have

d
(
Proxfi

λ0
(Si−1

n xn

)
, Si

nxn) = d
(
Proxfi

λ0
(Si−1

n xn), P roxfi
λi
n
(Si−1

n xn)
)

= d
(
Proxfi

λ0
(Si−1

n xn), P roxfi
λ0
(
λi
n − λ0

λi
n

Proxfi
λi
n
(Si−1

n xn)⊕
λ0

λi
n

Si−1
n xn)

)
≤ d

(
Si−1
n xn, (1−

λ0

λi
n

)Proxfi
λi
n
(Si−1

n xn)⊕
λ0

λi
n

Si−1
n xn

)
≤ (1− λ0

λi
n

)d
(
Si−1
n xn, P roxfi

λi
n
(Si−1

n xn)
)

= (1− λ0

λi
n

)d(Si−1
n xn, S

i
nxn) → 0,

as n → ∞. So, by Lemma 3.1, we obtain

d(xn, P roxfi
λ0
xn) ≤ d

(
Proxfi

λ0
xn, P roxfi

λ0
(Si−1

n xn)
)

+ d
(
Proxfi

λ0
(Si−1

n xn), S
ixn

)
+ d(Si

nxn, xn)

≤ d(xn, S
i−1
n xn)

+ d
(
Proxfi

λ0
(Si−1

n xn), S
i
nxn

)
+ d(Si

nxn, xn) → 0,
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as n → ∞. Lemma 3.1(i) shows that limn→∞ d(xn, p) exists for all p ∈ Ω
and Lemma 3.1(iii) also implies that limn→∞ dist(xn, Tjxn) = 0 for all j =
1, . . . ,m. Now we let W△(xn) := ∪A({un}) where the union is taken over all
subsequences {un} of {xn}. We claim that W△(xn) ⊂ Ω. Let u ∈ W△(xn).
Then there exists a subsequence {un} of {xn} such that A({un}) = {u}. By
Lemmas 2.1 and 2.2 there exists a subsequence {vn} of {un} such that △ −
limn→∞ vn = v ∈ D. Since limn→∞ dist(vn, Tjvn) = 0, by Lemma 2.12, we
have v ∈ ∩m

j=1F (Tj) for j = 1, . . . ,m. Also by Lemma 2.5, nonexpansivity of

Proxfi
λ0

and

lim
n→∞

d(xn, P roxfi
λ0
xn) = 0,

we get Proxfi
λ0
(v) = v for all i = 1, 2, . . . , r. By using Lemma 2.8, we get

v ∈ ∩r
i=1argminfi.

So, u = v by Lemma 2.3. This shows that W△(xn) ⊂ Ω.
Finally, we show that the sequence {xn} △-converges to a point in Ω. To this
end, it suffices to show that W△(xn) consists of exactly one point. Let {un}
be a subsequence of {xn} with A({un}) = {u} and let A({xn}) = {x}. Since
{d(xn, u)} converges, by Lemma 2.3, we have x = u. Hence W△(xn) = {x}.
This completes the proof. □

Theorem 3.3. Let D be a nonempty compact convex subset of an Hadamard
space X and fi : D → (−∞,∞] (i = 1, 2, . . . , r) be r proper convex and lower
semi-continuous functions. Let Tj : D → CB(D) (j = 1, . . . ,m) be a finite
family of quasi-nonexpansive multivalued mappings satisfying the condition (E)
such that

Ω = ∩m
j=1F (Tj)

∩
∩r
i=1argminy∈Dfi(y)

is nonempty and Tj(p) = {p} for each p ∈ Ω. Let {xn} be the iterative process
defined by (3.1), an,j ∈ [a, b] ⊂ (0, 1) (j = 0, 1, . . . ,m) and {λi

n} is a sequence
such that λi

n ≥ λ0 > 0 for all n ∈ N (i = 1, . . . , r) and for some λ0. Then {xn}
converges strongly to an element of Ω.

Proof. By Lemma 3.1 (iii), we have limn→∞ dist(Tjxn, xn) = 0 for j =
1, . . . ,m. Since D is compact, there exists a subsequence {xnk

} of {xn} such
that limk→∞ xnk

= w for some w ∈ D. As in the proof of Theorem 3.2,

lim
n→∞

d(xnk
, P roxfi

λ0
xnk

) = 0,

for all i = 1, . . . , r. From nonexpansivity of Proxfi
λ0

and Lemma 2.12, we have

w ∈ ∩r
i=1argminfi. On the other hand by the condition (E), we have for some

µ ≥ 1

dist(w, Tjw) ≤ d(w, xnk
) + dist(xnk

, Tjw)

≤ µ dist(xnk
, Tjxnk

) + 2d(w, xnk
) → 0,
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as k → ∞. Therefore, we get w ∈ Ω. Since {xnk
} converges strongly to w

and limn→∞ d(xn, w) exists (by Lemma 3.1), it follows that {xn} converges
strongly to w. □

Let {Cj}rj=1 be a family of nonempty closed convex subsets of an Hadamard
space (X, d) such that ∩r

j=1Cj ̸= ∅. The convex feasibility problem (CFP) is

to find x in
∩r

j=1 Cj .

For a nonempty closed convex subset C of an Hadamard space (X, d) the
indicator function

iC(x) =

{
0, x ∈ C,
∞, x ∈ X\C,

is a proper convex and lower semi-continuous and ProxiC
λ = PC . Therefore by

letting fj = iCj (j = 1, 2, . . . , r) in Theorems 3.2 and 3.3, we get the following
corollary.

Corollary 3.4. Let D be a nonempty closed convex subset of an Hadamard
space X and {Ci}ri=1 be a family of nonempty closed convex subsets of
X. Let Tj : D → K(D) (j = 1, . . . ,m) be a finite family of quasi-
nonexpansive multivalued mappings satisfying the condition (E) such that
Ω = ∩m

j=1F (Tj)
∩
∩r
i=1Ci is nonempty and Tj(p) = {p} for each p ∈ Ω. Let for

x0 ∈ D, {xn} be the iterative process defined by:

wn = PCr ◦ · · · ◦ PC1xn

yn,0 = (1− an,0)xn ⊕ an,0wn,

yn,1 = (1− an,1)xn ⊕ an,1zn,1,

yn,2 = (1− an,2)xn ⊕ an,2zn,2,
.
.
.
yn,m−1 = (1− an,m−1)xn ⊕ an,m−1zn,m−1,

xn+1 = (1− an,m)xn ⊕ an,mzn,m,

where zn,j ∈ Tj(yn,j−1) for j = 1, . . . ,m and an,j ∈ [a, b] ⊂ (0, 1)(j =
0, 1, . . . ,m) then {xn} is △-convergent to an element of Ω. Moreover, if D
is a nonempty compact convex subset of X, then {xn} converges strongly to an
element of Ω.

Since every Hilbert space is an Hadamard space, we obtain the following
corollary.

Corollary 3.5. Let D be a nonempty closed convex subset of a Hilbert space
X and fi : D → (−∞,∞] (i = 1, 2, . . . , r) be r proper convex and lower semi-
continuous functions. Let Tj : D → K(D) (j = 1, . . . ,m) be a finite family
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of quasi-nonexpansive multivalued mappings satisfying the condition (E) such
that

Ω = ∩m
j=1F (Tj)

∩
∩r
i=1argminy∈Dfi(y)

is nonempty and Tj(p) = {p} for each p ∈ Ω. Let for x0 ∈ D, {xn} be the
iterative process defined by:

wn = Proxfr
λr
n
◦ · · · ◦ Proxf1

λ1
n
xn,

yn,0 = (1− an,0)xn + an,0wn,

yn,1 = (1− an,1)xn + an,1zn,1,

yn,2 = (1− an,2)xn + an,2zn,2,
.
.
.
yn,m−1 = (1− an,m−1)xn + an,m−1zn,m−1,

xn+1 = (1− an,m)xn + an,mzn,m,

where zn,j ∈ Tj(yn,j−1) for j = 1, . . . ,m and an,j ∈ [a, b] ⊂ (0, 1) (j =
0, 1, . . . ,m) also λi

n ≥ λ0 > 0 for all n ∈ N (i = 1, . . . , r) and for some λ0.
Then {xn} is △-convergent to an element of Ω. Moreover, if D is a nonempty
compact convex subset of X, then {xn} converges strongly to an element of Ω.

Now, by using some idea from [22], we remove the restriction Tj(p) = {p}
(j = 1, . . . ,m) for each p ∈ Ω and define the following iteration process.
Let D be a nonempty convex subset of an Hadamard space X and fi : D →
(−∞,∞] (i = 1, 2, . . . , r) be r proper convex and lower semi-continuous func-
tions. Let Tj : D → P (D) (j = 1, . . . ,m) be m given mappings and

PTj (x) = {y ∈ Tj(x) : d(x, y) = dist(x, Tj(x))}.
Then for x0 ∈ D, an,j ∈ [0, 1] (j = 0, 1, . . . ,m) and λi

n > 0 (i = 1, . . . , r), we
consider the following iterative process:

wn = Proxfr
λr
n
◦ · · · ◦ Proxf1

λ1
n
xn,

yn,0 = (1− an,0)xn ⊕ an,0wn,

yn,1 = (1− an,1)xn ⊕ an,1zn,1,

yn,2 = (1− an,2)xn ⊕ an,2zn,2,
.
.
.
yn,m−1 = (1− an,m−1)xn ⊕ an,m−1zn,m−1,

xn+1 = (1− an,m)xn ⊕ an,mzn,m,

(3.5)

where zn,j ∈ PTj (yn,j−1) for j = 1, . . . ,m.



1953 Zamani Eskandani, Azarmi and Eslamian

Theorem 3.6. Let D be a nonempty closed convex subset of an Hadamard
space X and fi : D → (−∞,∞] (i = 1, . . . , r) be r proper convex and lower
semi-continuous functions. Let Tj : D → P (D) (j = 1, . . . ,m) be a finite family
of quasi-nonexpansive multivalued mappings satisfying the condition (E) such
that

Ω = ∩m
j=1F (Tj)

∩
∩r
i=1argminy∈Dfi(y)

is nonempty and PTj is nonexpansive. Let {xn} be the iterative process defined

by (3.4), an,j ∈ [a, b] ⊂ (0, 1) (j = 0, 1, . . . ,m) and {λi
n} is a sequence such

that λi
n ≥ λ0 > 0 for all n ∈ N (i = 1, . . . , r) and for some λ0. Assume that

there exists an increasing function g : [0,∞) → [0,∞) with g(r) > 0 for all
r > 0 such that for some j = 1, . . . ,m

dist(xn, Tj(xn)) ≥ g(dist(xn,Ω)).

Then {xn} converges strongly to an element of Ω.

Proof. Let p ∈ Ω. Then p ∈ PTj (p) = {p} for j = 1, . . . ,m. As in the proof
of Lemma 3.1, limn→∞ dist(Tjxn, xn) = 0 and d(xn+1, p) ≤ d(xn, p). Hence by
assumption limn→∞ dist(xn,Ω) = 0. Therefore, we can choose a subsequence
{xnk

} of {xn} and a sequence {pk} in Ω such that for all k ∈ N

d(xnk
, pk) <

1

2k
,

then, we have

d(xnk+1
, pk) ≤ d(xnk

, pk) <
1

2k
.

Hence

d(pk+1, pk) ≤ d(xnk+1
, pk+1) + d(xnk+1

, pk) <
1

2k+1
+

1

2k
<

1

2k−1
.

Consequently, {pk} is a Cauchy sequence in D and hence converges to some
q ∈ D. Since for j = 1, . . . ,m,

dist(pk, Tj(q)) ≤ dist(pk, PTj (q)) ≤ H(PTj (pk), PTj (q)) ≤ d(pk, q),

and pk → q as k → ∞, we get dist(q, Tj(q)) = 0 for j = 1, . . . ,m, so q ∈
∩m
j=1F (Tj). Also since

d(pk, P roxfi
λ0
q) = d(Proxfi

λ0
pk, P roxfi

λ0
q)

≤ d(pk, q),

and pk → q as k → ∞, we get Proxfi
λ0
q = q for i = 1, . . . , r, so

q ∈ ∩r
i=1argminfi.

Therefor q ∈ Ω and {xnk
} converges strongly to q. Since limn→∞ d(xn, q)

exists, we conclude that {xn} converges strongly to q. □
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