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1. Introduction

Let k > 1 be a fixed integer. For any integer a and any Dirichlet character
χ mod k, the classical Gauss sums G(χ, a) is defined by

G(χ, a) =

k∑
n=1

χ(n)e
(an

k

)
,

where e(y) = e2πiy. Especially, τ(χ) = G(χ, 1).
The various properties of G(χ, a) were investigated by many authors(see

[1, 3, 5, 6]). For example, T.M. Apostol [1] proved that if χ is any primitive

character modulo k, then G(χ, a) = χ(a)τ(χ) and |τ(χ)| =
√
k; and if χ is a

non-primitive character modulo k and (a, k) = 1, then one still has G(χ, a) =
χ(a)τ(χ). L. K. Hua [3] proved that if k is a square-full number (i.e., for any
prime p, p|k if and only if p2|k), then for any non-primitive character χ mod k,
we have τ(χ) = 0. C. D. Pan and C. B. Pan [6] have obtained a general
conclusion: Let χ be a character mod q induced by χ∗ mod q∗, then we have

τ(χ) = χ∗
(

q

q∗

)
µ

(
q

q∗

)
τ(χ∗),
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A new Gauss sums and Dedekind sums 1958

where µ(n) is the Möbius function.
In this paper, we introduce a new sum analogous to Gauss sums as follows:

G(χ, b, c,m; q) =

q∑
a=1

(a,q)=1

χ
(
a2 + ba+ c

)
· e
(
ma

q

)
,

where χ is a character mod q, and b, c, m are any integers with (m, q) = 1.
The main purpose of this paper is to study the hybrid mean value problem

involving G(χ, b, c,m; q) and Dedekind sums, and give a useful identity for the
new sum. For convenience, firstly, we give the definition of Dedekind sums.
Let q be a natural number and h an integer prime to q. Dedekind sums S(h, q)
is defined as:

S(h, q) =

q∑
a=1

((
a

q

))((
ah

q

))
,

where

((x)) =

{
x− [x]− 1

2 , if x is not an integer;
0, if x is an integer.

This sums describes the behaviour of the logarithm of the eta-function
(see [7, 8]) under modular transformations. Several authors have studied
various arithmetical properties of S(h, q), eg, see [2, 4, 9–11].

Now for any odd prime p and non-principal character χ mod p, we consider
the hybrid mean value involving G(χ, b, c,m; p) and S(h, p):

p−1∑
r=0

p−1∑
s=0

|G(χ, b, r,m; p)|2 · |G(χ, b, s,m; p)|2

· S
(
(4r − b2) · 4s− b2, p

)
,(1.1)

where n · n ≡ 1 mod p, if (n, p) = 1. If (n, p) = p, we put n = 0.

The main purpose of this paper is to give a computational formula for (1.1)
by using properties of the classical Gauss sums and some analytic methods.
That is, we prove the following:
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Theorem 1.1. Let p be an odd prime, and let χ be any non-principal character
mod p. Then for any integers b and m with (m, p) = 1, we have the identity

p−1∑
r=0

p−1∑
s=0

|G(χ, b, r,m; p)|2 · |G(χ, b, s,m; p)|2 · S
(
(4r − b2)4s− b2, p

)

=


p(p−1)(p−2)

12 , if χ(−1) = χ2(−1);

p(p−1)(p−2)
12 − 2

π2 · p2 · |L (1, χχ2)|2 , if χ(−1) ̸= χ2(−1),

where χ2 =
(

∗
p

)
denotes the Legendre symbol.

The theorem immediately implies the following:

Corollary 1.2. Let p be an odd prime, and let χ be any non-principal character
mod p. Then for any integer m with (m, p) = 1, we have the identity

p−1∑
r=1

p−1∑
s=1

∣∣∣∣∣
p−1∑
a=1

χ
(
a2 + r

)
e

(
ma

p

)∣∣∣∣∣
2

·

∣∣∣∣∣
p−1∑
a=1

χ
(
a2 + s

)
e

(
ma

p

)∣∣∣∣∣
2

· S (r · s, p)

=


p(p−1)(p−2)

12 , if χ(−1) = χ2(−1);

p(p−1)(p−2)
12 − 2

π2 · p2 · |L (1, χχ2)|2 , if χ(−1) ̸= χ2(−1).

2. Some lemmas

In this section, we give some lemmas, which are necessary in the proof of
the main theorem. Hereinafter, we use properties of character sums and Gauss
sums which can be found in [1, 5, 6].

First we have the following:

Lemma 2.1. Let p be an odd prime and let χ be any non-principal Dirichlet
character mod p. Then for any integers b and c we have the identity∣∣∣∣∣

p−1∑
a=1

χ
(
a2 + ba+ c

)
· e
(
a

p

)∣∣∣∣∣ =
∣∣∣∣∣
p−1∑
r=1

χχ2(r) · e
(
(4c− b2)r − 16 · r

p

)∣∣∣∣∣ ,
where r denotes the solution of the congruence equation r · x ≡ 1 mod p.
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Proof. By properties of Gauss sums and quadratic residue mod p we know
that if (n, p) = 1, then

p−1∑
a=0

e

(
na2

p

)
= 1 +

p−1∑
a=1

e

(
na2

p

)

= 1 +

p−1∑
a=1

(
1 +

(
a

p

))
· e
(
na

p

)

=

p−1∑
a=0

e

(
na

p

)
+

p−1∑
a=1

(
a

p

)
· e
(
na

p

)

=

(
n

p

) p−1∑
a=1

(
a

p

)
· e
(
a

p

)
=

(
n

p

)
· τ (χ2) .(2.1)

Since χ is a non-principal Dirichlet character mod p, by properties of Gauss
sums, (2.1) implies that

p−1∑
a=1

χ
(
a2 + ba+ c

)
· e
(
a

p

)

=
1

τ (χ)
·
p−1∑
a=1

p−1∑
r=1

χ(r)e

(
r(a2 + ba+ c)

p

)
· e
(
a

p

)

=
1

τ (χ)
·
p−1∑
r=1

χ(r)

p−1∑
a=1

e

(
ra2 + (br + 1)a+ cr)

p

)

=
1

τ (χ)
·
p−1∑
r=1

χ(r)

p−1∑
a=0

e

(
4r(2a+ r(br + 1))2 + cr − 4r(br + 1)2

p

)

=
1

τ (χ)
·
p−1∑
r=1

χ(r)

p−1∑
u=0

e

(
4ru2 + 4 · (4c− b2)r − 2 · b− 4 · r

p

)

=
1

τ (χ)
·
p−1∑
r=1

χ(r)

(
4 · r
p

)
· τ (χ2) · e

(
4 · (4c− b2)r − 2 · b− 4 · r

p

)

=
τ (χ2)

τ (χ)
· χ(4) · e

(
−2 · b
p

)
·
p−1∑
r=1

χ(r)

(
r

p

)
· e
(
(4c− b2)r − 16 · r

p

)
.

(2.2)
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For any non-principal character χ mod p, we have |τ(χ)| = |τ(χ2)| =
√
p. Note

that |χ(4)| =
∣∣∣e(−2·b

p

)∣∣∣ = 1. Thus, by (2.2) we have

∣∣∣∣∣
p−1∑
a=1

χ
(
a2 + ba+ c

)
· e
(
a

p

)∣∣∣∣∣ =
∣∣∣∣∣
p−1∑
r=1

χχ2(r) · e
(
(4c− b2)r − 16 · r

p

)∣∣∣∣∣ .
This proves Lemma 2.1. □

Lemma 2.2. Let p be an odd prime and let χ be any non-real character mod p.
Then for any integer n with (n, p) = 1 and χ1 mod p, we have the identity

p−1∑
m=1

χ(m)

∣∣∣∣∣
p−1∑
a=1

χ1(a) · e
(
ma+ na

p

)∣∣∣∣∣
2

=
χ(n)χ1(−1)τ2(χ)τ(χχ1)τ(χχ1)

τ(χ2)
.

Proof. Let p be an odd prime. Then by properties of the Gauss sums, for any
non-real character χ mod p we have

p−1∑
m=1

χ(m)

∣∣∣∣∣
p−1∑
a=1

χ1(a) · e
(
ma+ na

p

)∣∣∣∣∣
2

=

p−1∑
m=1

χ(m)

p−1∑
a=1

p−1∑
b=1

χ1(ab)e

(
ma−mb+ n(a− b)

p

)

=

p−1∑
a=1

p−1∑
b=1

χ1(a)

p−1∑
m=1

χ(m)e

(
mb(a− 1) + nb(a− 1)

p

)

= τ(χ)

p−1∑
a=1

χ1(a)χ(a− 1)

p−1∑
b=1

χ(b)e

(
b̄n(ā− 1)

p

)

= τ(χ)

p−1∑
a=1

χ1(a)χ(a− 1)

p−1∑
b=1

χ(b)e

(
bn(ā− 1)

p

)

= χ(n)τ2(χ)

p−1∑
a=1

χ1(a)χ((a− 1)(a− 1)).(2.3)

On the other hand, since χ is a non-real character mod p, so χ2 ̸= χ0
p, where χ

0
p

is the principal character mod p. Therefore, again by properties of the Gauss
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sums we have

τ(χχ1)τ(χχ1) =

p−1∑
a=1

p−1∑
b=1

χ(a)χ1(a)χ(b)χ1(b) e

(
a+ b

p

)

=

p−1∑
a=1

p−1∑
b=1

χ(a)χ1(a)χ(−b)χ1(−b) e

(
a− b

p

)

= χ(−1)χ1(−1)

p−1∑
a=1

p−1∑
b=1

χ(a)χ1(a)χ
2(b) e

(
b(a− 1)

p

)

= χ(−1)χ1(−1)

p−1∑
a=1

χ(a)χ1(a)

p−1∑
b=1

χ2(b) e

(
b(a− 1)

p

)

= χ(−1)χ1(−1)τ(χ2)

p−1∑
a=1

χ(a)χ1(a)χ
2(a− 1)

= χ1(−1)τ(χ2)

p−1∑
a=1

χ1(a)χ ((a− 1)(a− 1)) .(2.4)

Combining (2.3) and (2.4) we may immediately deduce the identity

p−1∑
m=1

χ(m)

∣∣∣∣∣
p−1∑
a=1

χ1(a) · e
(
ma+ na

p

)∣∣∣∣∣
2

=
χ(n)χ1(−1)τ2(χ)τ(χχ1)τ(χχ1)

τ(χ2)
.

This proves Lemma 2.2. □

Lemma 2.3. Let p be an odd prime. Then for any integer n with (n, p) = 1
and χ1 mod p, we have the identities

p−1∑
m=1

χ2(m)

∣∣∣∣∣
p−1∑
a=1

χ1(a) · e
(
ma+ na

p

)∣∣∣∣∣
2

=

{
χ2(−1)χ2(n)τ

2(χ2)(p− 2), if χ1 is the Legendre symbol;
−χ2(−1)χ2(n)τ

2(χ2), otherwise.

p−1∑
m=1

∣∣∣∣∣
p−1∑
a=1

χ1(a) · e
(
ma+ na

p

)∣∣∣∣∣
2

=

{
p2 − p− 1, if χ1 is the principal character mod p;
p(p− 2), if χ1 is not the principal character mod p,

where χ2 =
(

∗
p

)
denotes the Legendre symbol.
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Proof. If χ = χ2 is the Legendre symbol, then by the method used in the proof
of Lemma 2.2 we have

p−1∑
m=1

χ2(m)

∣∣∣∣∣
p−1∑
a=1

χ1(a) · e
(
ma+ na

p

)∣∣∣∣∣
2

=

p−1∑
m=1

χ2(m)

p−1∑
a=1

p−1∑
b=1

χ1(ab)e

(
ma−mb+ n(a− b)

p

)

= τ(χ2)

p−1∑
a=1

χ1(a)χ2(a− 1)

p−1∑
b=1

χ2(b) e

(
b̄n(ā− 1)

p

)

= τ(χ2)

p−1∑
a=1

χ1(a)χ2(a− 1)

p−1∑
b=1

χ2(b) e

(
bn(ā− 1)

p

)

= χ2(−1)χ2(n)τ
2(χ2)

p−1∑
a=1

χ1(a)χ2((a− 1)2a)

= χ2(−1)χ2(n)τ
2(χ2)

(
p−1∑
a=1

χ1(a)χ2(a)− 1

)
.(2.5)

If χ1 is the Legendre symbol, then

p−1∑
a=1

χ1(a)χ2(a) = p− 1.(2.6)

If χ1 is not the Legendre symbol, then

p−1∑
a=1

χ1(a)χ2(a) = 0.(2.7)

Combining (2.5), (2.6) and (2.7) we immediately deduce the first formula of
Lemma 2.3.

To prove the second formula of Lemma 2.3, by the trigonometric identity

q∑
a=1

e

(
ma

q

)
=

{
q, if q | m;
0, if q ∤ m,
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we have

p−1∑
m=1

∣∣∣∣∣
p−1∑
a=1

χ1(a) · e
(
ma+ na

p

)∣∣∣∣∣
2

=

p−1∑
m=1

p−1∑
a=1

p−1∑
b=1

χ1(ab) e

(
m(a− b) + n(a− b)

p

)

=

p−1∑
m=1

p−1∑
a=1

p−1∑
b=1

χ1(a) e

(
mb(a− 1) + bn(a− 1)

p

)

=

p−1∑
a=1

χ1(a)

p−1∑
m=1

p−1∑
b=1

e

(
m(a− 1) + b(a− 1)

p

)

= (p− 1)2 +

p−1∑
a=2

χ1(a)

(
p−1∑
m=1

e

(
m(a− 1)

p

))(p−1∑
b=1

e

(
b(a− 1)

p

))

= (p− 1)2 +

p−1∑
a=2

χ1(a)

= (p− 1)2 +

p−1∑
a=1

χ1(a)− 1.(2.8)

Now the second formula of Lemma 2.3 follows from (2.8). □

Lemma 2.4. Let q > 2 be an integer. Then for any integer a with (a, q) = 1,
we have the identity

S(a, q) =
1

π2q

∑
d|q

d2

ϕ(d)

∑
χ mod d

χ(−1)=−1

χ(a)|L(1, χ)|2,

where L(1, χ) denotes the Dirichlet L-function corresponding to character
χ mod d.

Proof. See [11, Lemma 2]. □
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3. Proof of theorem 1.1

In this section, we complete the proof of theorem 1.1. First, if (m, p) = 1,
then by properties of a reduced residue system mod p we have

∣∣∣∣∣
p−1∑
a=1

χ
(
a2 + ba+ c

)
· e
(
ma

p

)∣∣∣∣∣
=

∣∣∣∣∣
p−1∑
a=1

χ
(
m2a2 +mba+ c

)
· e
(
a

p

)∣∣∣∣∣
=

∣∣∣∣∣χ2 (m)

p−1∑
a=1

χ
(
a2 +mba+ cm2

)
· e
(
a

p

)∣∣∣∣∣
=

∣∣∣∣∣
p−1∑
a=1

χ
(
a2 +mba+ cm2

)
· e
(
a

p

)∣∣∣∣∣ .(3.1)

From Lemma 2.4 and the definition of S(a, p) we have

S(a, p) =
1

π2
· p

p− 1
·

∑
χ mod p

χ(−1)=−1

χ(a)|L(1, χ)|2(3.2)

and

∑
χ mod p

χ(−1)=−1

|L(1, χ)|2 =
π2(p− 1)

p
· S(1, p)

=
π2(p− 1)

p
·
p−1∑
a=1

(
a

p
− 1

2

)2

=
π2

12
· (p− 1)2(p− 2)

p2
.(3.3)

If r passes through a complete residue system modp, then 4m2r − m2b2 also
passes through a complete residue system mod p. So if p ≡ 1 mod 4, then for
any non-principal even character χ1 mod p with χ1(−1) = χ2(−1), χ1χ2 is also
an even character mod p. For any odd character χ mod p, χχ1χ2 and χχ1χ2

are both non-principal characters mod p and χ2(−1) = 1. From (3.1), (3.2),
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Lemma 2.1 and Lemma 2.2 we have

p−1∑
r=0

p−1∑
s=0

|G(χ1, b, r,m; p)|2 · |G(χ1, b, s,m; p)|2

· S
(
(4r − b2) · 4s− b2, p

)
=

1

π2
· p

p− 1

∑
χ mod p

χ(−1)=−1

∣∣∣∣∣
p−1∑
r=0

χ
(
4r − b2

)
|G(χ1, b, r,m; p)|2

∣∣∣∣∣
2

· |L(1, χ)|2(3.4)

and

∣∣∣∣∣
p−1∑
r=0

χ
(
4r − b2

)
|G(χ1, b, r,m; p)|2

∣∣∣∣∣
2

=

∣∣∣∣∣∣
p−1∑
r=0

χ
(
4r − b2

) ∣∣∣∣∣
p−1∑
a=1

χ1χ2(a) · e
(
(4m2r −m2b2)a− 16 · a

p

)∣∣∣∣∣
2
∣∣∣∣∣∣
2

=

∣∣∣∣∣∣
p−1∑
r=0

χ (r)

∣∣∣∣∣
p−1∑
a=1

χ1χ2(a) · e
(
ra− 16 · a

p

)∣∣∣∣∣
2
∣∣∣∣∣∣
2

=

∣∣∣∣χ(−16)χ1(−1)χ1χ2(−1)τ2(χ)τ(χχ1χ2)τ(χχ1χ2)

τ(χ2)

∣∣∣∣2 = p2.(3.5)

Now combining (3.3), (3.4) and (3.5) we have

p−1∑
r=0

p−1∑
s=0

|G(χ1, b, r,m; p)|2 · |G(χ1, b, s,m; p)|2

· S
(
(4r − b2) · 4s− b2, p

)
=

1

π2
· p

p− 1
·

∑
χ mod p

χ(−1)=−1

p2 · |L(1, χ)|2 =
p(p− 1)(p− 2)

12
.(3.6)

If p ≡ 1 mod 4 and χ1 is an odd character mod p, then χ1(−1) ̸= χ2(−1),
χ1χ2 and χ1χ2 are both odd characters mod p. By the method in the proof of
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(3.6) we have

p−1∑
r=0

p−1∑
s=0

|G(χ1, b, r,m; p)|2 · |G(χ1, b, s,m; p)|2

· S
(
(4r − b2) · 4s− b2, p

)
=

1

π2
· p

p− 1
·

∑
χ mod p

χ(−1)=−1

χ ̸=χ1χ2, χ1χ2

p2 · |L(1, χ)|2 + 1

π2
· p

p− 1
· p

· |L (1, χ1χ2)|2 +
1

π2
· p

p− 1
· p · |L (1, χ1χ2)|2

=
p(p− 1)(p− 2)

12
− 2

π2
· p2 · |L (1, χ1χ2)|2 .(3.7)

Now combining (3.6) and (3.7) we may immediately deduce the identity

p−1∑
r=0

p−1∑
s=0

|G(χ, b, r,m; p)|2 |G(χ, b, s,m; p)|2 S
(
(4r − b2)4s− b2, p

)

=


p(p−1)(p−2)

12 , if χ(−1) = χ2(−1);

p(p−1)(p−2)
12 − 2

π2 · p2 · |L (1, χχ2)|2 , if χ(−1) ̸= χ2(−1).

(3.8)

If p ≡ 3 mod 4, then χ2 is an odd character mod p. Then for any odd
character χ1 mod p, χ1(−1) = χ2(−1), χ1χ2 and χ1χ2 are both even characters
mod p. By the method employed in the proof of (3.6) and the first formula in
Lemma 2.3 we have

p−1∑
r=0

p−1∑
s=0

|G(χ1, b, r,m; p)|2 · |G(χ1, b, s,m; p)|2

· S
(
(4r − b2) · 4s− b2, p

)
=

1

π2
· p

p− 1
·

∑
χ mod p

χ(−1)=−1

p2 · |L(1, χ)|2 =
p(p− 1)(p− 2)

12
.(3.9)

For any non-principal even character χ1 mod p, χ1(−1) ̸= χ2(−1), χ1χ2 and
χ1χ2 are both odd characters mod p, and they are different from the Legendre
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symbol χ2. Thus by the method used in the proof of (3.7) we deduce that

p−1∑
r=0

p−1∑
s=0

|G(χ1, b, r,m; p)|2 · |G(χ1, b, s,m; p)|2

· S
(
(4r − b2) · 4s− b2, p

)
=

p(p− 1)(p− 2)

12
− 2

π2
· p2 · |L (1, χ1χ2)|2 .(3.10)

Now theorem 1.1 follows from (3.8), (3.9) and (3.10). This completes the proof
of the theorem.
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