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1. Introduction

In 1990, R. Høegh-Krohn and B. Torresani [5] introduced irreducible quasi
simple Lie algebras as a generalization of both affine Lie algebras and finite di-
mensional simple Lie algebras over the complex numbers. In 1997, the authors
in [1] systematically studied irreducible quasi simple Lie algebras under the
name extended affine Lie algebras. A nonzero Lie algebra is called an extended
affine Lie algebra if it is equipped with an invariant nondegenerate symmetric
bilinear form and that it has a weight space decomposition with respect to a
finite dimensional Cartan subalgebra (i.e., a finite dimensional self-centralizing
toral subalgebra) whose root vectors satisfy some natural conditions. Work-
ing with toral subalgebras in place of finite dimensional self-centralizing toral
subalgebras, E. Neher [11] defines the notion of invariant affine reflection alge-
bras. In [14], the author introduces and studies the super version of invariant
affine reflection algebras called extended affine Lie superalgebras. Finite di-
mensional basic classical simple Lie superalgebras and affine Lie superalgebras
are examples of extended affine Lie superalgebras having a Cartan subalgebra.

One knows that affine Lie algebras are realized using loop algebras. In [2],
the authors deal with the realization of extended affine Lie algebras as a gen-
eralization of affine Lie algebras. Extended affine Lie algebras has a very close
connection with certain kind of root graded Lie algebras [3] to which we refer
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as finite-Lie tori so that the realization of extended affine Lie algebras comes
back to the realization of finite-Lie tori. In [2], the authors using multiloop
algebras instead of loop algebras, obtain almost all finite-Lie tori. The ingre-
dients to construct a multiloop algebra in order to obtain a finite-Lie torus, is
a finite dimensional simple Lie algebra g and a finite sequence of finite ordered
commuting automorphisms of g.

On the other hand, affine Lie superalgebras are obtained using a loop su-
peralgebra starting form a finite dimensional basic classical simple Lie super-
algebra [12]. Also, it is proved that a simple extended affine Lie superalgebra
having a Cartan subalgebra is a direct limit of finite dimensional basic clas-
sical simple Lie superalgebras. We call these Lie superalgebras locally finite
basic classical simple Lie superalgebras. In a paper under preparation, we urge
to realize extended affine Lie superalgebras; to this end, we must work with
multiloop superalgebras staring from a locally finite basic classical simple Lie
superalgebra. For this, we first need to know the structure and the classification
of locally finite basic classical simple Lie superalgebras.

In this work, we classify all locally finite basic classical simple Lie superal-
gebras and then study the conjugacy classes of cartan subalgebras under the
group of automorphisms. Locally finite basic classical simple Lie superalgebras
with zero odd part are exactly locally finite split simple Lie algebras which are
introduced, studied and classified by K-H. Neeb and N. Stumme in [10].

We organize this paper as follows: In Section 2, we gather some preliminaries
which we need throughout the paper. In Section 3, we introduce some locally
finite basic classical simple Lie superalgebras and show that they are mutually
non-isomorphic. In Section 4, we classify locally finite basic classical simple
Lie superalgebras and study the conjugacy classes of Cartan subalgebras; to
do this, we need to know the concept of Chevalley bases for finite dimensional
basic classical simple Lie superalgebras. A subsection of Section 4 is exclusively
devoted to Chevalley bases and related topics.

This paper is the second part of a project on extended affine Lie superal-
gebras containing Cartan subalgebras. In this paper, we focus on “simple”
extended affine Lie superalgebras containing Cartan subalgebras while in the
first part, we study, in general, extended affine Lie superalgebras containing
Cartan subalgebras and figure out the properties of the root spaces. Although,
the first part is being separately prepared as a paper, we have put both parts
in a single file at http://arxiv.org/pdf/1502.04586v1.pdf.

2. Preliminaries

Throughout this paper, F is a field of characteristic zero and Z2 := {0, 1}
is the unique abelian group of order 2. Unless otherwise mentioned, all vector
spaces are considered over F. We denote the dual space of a vector space V
by V ∗. We denote the degree of a homogenous element v of a superspace by
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|v| and make a convention that if in an expression, we use |u| for an element
u of a superspace, by default we have assumed u is homogeneous. We denote
the group of automorphisms of an abelian group A or a Lie superalgebra A by
Aut(A) and use ≃ to show the isomorphism between two algebraic structures.
For a subset S of an abelian group, by ⟨S⟩, we mean the subgroup generated
by S and for a set S, by |S|, we mean the cardinal number of S. For a map
f : A −→ B and C ⊆ A, by f |C , we mean the restriction of f to C. For two
symbols i, j, by δi,j , we mean the Kronecker delta. We also use

⊎
to indicate

the disjoint union. We finally recall that the direct union is, by definition, the
direct limit of a direct system whose morphisms are inclusion maps.

In the sequel, by a symmetric form on an additive abelian group A, we mean
a map (·, ·) : A×A −→ F satisfying

• (a, b) = (b, a) for all a, b ∈ A,
• (a+ b, c) = (a, c)+(b, c) and (a, b+ c) = (a, b)+ (a, c) for all a, b, c ∈ A.

In this case, we set A0 := {a ∈ A | (a,A) = {0}} and call it the radical of
the form (·, ·). The form is called nondegenerate if A0 = {0}. We note that if
the form is nondegenerate, A is torsion free and we can identify A as a subset
of Q ⊗Z A. Throughout the paper, if an abelian group A is equipped with a
nondegenerate symmetric form, we consider A as a subset of Q ⊗Z A without
further explanation. Also if A is a vector space over F, bilinear forms are used
in the usual sense.

Definition 2.1 ([13, Definition 1.1]). Suppose that A is a nontrivial additive
abelian group, R is a subset of A and (·, ·) : A×A −→ F is a symmetric form.
Set

R0 := R ∩A0,
R× := R \R0,
R×

re := {α ∈ R | (α, α) ̸= 0}, Rre := R×
re ∪ {0},

R×
ns := {α ∈ R \R0 | (α, α) = 0}, Rns := R×

ns ∪ {0}.
We say (A, (·, ·), R) is an extended affine root supersystem if the following hold:

(S1) 0 ∈ R and ⟨R⟩ = A,
(S2) R = −R,
(S3) for α ∈ R×

re and β ∈ R, 2(α, β)/(α, α) ∈ Z,
(S4) (root string property) for α ∈ R×

re and β ∈ R, there are nonnegative
integers p, q with 2(β, α)/(α, α) = p− q such that

{β + kα | k ∈ Z} ∩R = {β − pα, . . . , β + qα};
we call {β − pα, . . . , β + qα} the α-string through β,

(S5) for α ∈ Rns and β ∈ R with (α, β) ̸= 0, {β − α, β + α} ∩R ̸= ∅.
If there is no confusion, for the sake of simplicity, we say R is an extended affine
root supersystem in A. Elements of R0 are called isotropic roots, elements of
Rre are called real roots and elements of Rns are called nonsingular roots. A
subset X of R× is called connected if each two elements α, β ∈ X are connected
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in X in the sense that there is a chain α1, . . . , αn ∈ X with α1 = α, αn = β
and (αi, αi+1) ̸= 0, i = 1, . . . , n− 1. An extended affine root supersystem R is
called irreducible if Rre ̸= {0} and R× is connected (equivalently, R× cannot be
written as a disjoint union of two nonempty orthogonal subsets). An extended
affine root supersystem (A, (·, ·), R) is called a locally finite root supersystem
if the form (·, ·) is nondegenerate and it is called an affine reflection system if
Rns = {0}; see [11].

Definition 2.2. Suppose that (A, (·, ·), R) is a locally finite root supersystem.

• The subgroup W of Aut(A) generated by rα (α ∈ R×
re) mapping a ∈ A

to a− 2(a,α)
(α,α) α, is called the Weyl group of R.

• A subset S of R is called a sub-supersystem if the restriction of the form
to ⟨S⟩ is nondegenerate, 0 ∈ S, for α ∈ S ∩R×

re, β ∈ S and γ ∈ S ∩Rns

with (β, γ) ̸= 0, rα(β) ∈ S and {γ − β, γ + β} ∩ S ̸= ∅; see [13, Lemma
1.4 & Remark 1.6(ii)].

• A sub-supersystem S of R is called closed if for α, β ∈ S with α+β ∈ R,
we have α+ β ∈ S.

• If (A, (·, ·), R) is irreducible, R is said to be of real type if spanQRre =
Q⊗Z A; otherwise, we say it is of imaginary type.

• The locally finite root supersystem (A, (·, ·), R) is called a locally finite
root system if Rns = {0}; see [8].

• (A, (·, ·), R) is said to be isomorphic to another locally finite root super-
system (B, (·, ·)′, S) if there is a group isomorphism φ : A −→ B and a
nonzero scalar r ∈ F such that φ(R) = S and (a1, a2) = r(φ(a1), φ(a2))

′

for all a1, a2 ∈ A. In this case, we write R ≃ S.

Lemma 2.3. Suppose that (A, (·, ·), R) is a locally finite root supersystem with
Weyl group W. Then the following statements hold.

(i) For Are := ⟨Rre⟩ and (·, ·)re := (·, ·) |
Are×Are

, (Are, (·, ·)re, Rre) is a
locally finite root system.

(ii) If R is irreducible and Rns ̸= {0}, then R×
ns = Wδ ∪ −Wδ for each

δ ∈ R×
ns.

Proof. See [15, Section 3]. □

Using Lemma 2.3, to know the classification of irreducible locally finite root
supersystems, we first need to know the classification of locally finite root
systems. Suppose that T is a nonempty index set with |T | ≥ 2 and U :=
⊕i∈TZϵi is the free Z-module over the set T. Define the form

(·, ·) : U × U −→ F
(ϵi, ϵj) 7→ δi,j , for i, j ∈ T
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and set

(2.1)

ȦT := {ϵi − ϵj | i, j ∈ T},
DT := ȦT ∪ {±(ϵi + ϵj) | i, j ∈ T, i ̸= j},
BT := DT ∪ {±ϵi | i ∈ T},
CT := DT ∪ {±2ϵi | i ∈ T},
BCT := BT ∪ CT .

These are irreducible locally finite root systems in their Z-span’s. Moreover,
each irreducible locally finite root system is either an irreducible finite root
system or a locally finite root system isomorphic to one of these locally finite
root systems. We refer to locally finite root systems listed in (2.1) as type
A,D,B,C and BC respectively. We note that if R is an irreducible locally
finite root system as above, then (α, α) ∈ Z≥0 for all α ∈ R. This allows us to
define

Rsh := {α ∈ R× | (α, α) ≤ (β, β); for all β ∈ R},
Rex := R ∩ 2Rsh and Rlg := R× \ (Rsh ∪Rex).

The elements of Rsh (respectively, Rlg, Rex) are called short roots (respectively,
long roots, extra-long roots) of R. We point out that following the usual nota-

tion in the literature, the locally finite root system of type A is denoted by Ȧ
instead of A, as all locally finite root systems listed above are spanning sets for
F⊗Z U other than the one of type A which spans a subspace of codimension 1;
see [8] and [13, Remark 1.6(i)].

Next suppose that I, J are two index sets with I ∪ J ̸= ∅ and F is a free
abelian group with a basis {ϵi, δj | i ∈ I, j ∈ J}. Define a form (·, ·) : F ×F −→
F with

(ϵi, ϵr) := δi,r, (δj , δs) := −δj,s and (ϵi, δj) = 0; i, r ∈ I, j, s ∈ J.

Set
(2.2)

Ȧ(I, I) := ±{ϵi − ϵr, δi − δr, ϵi − δr − 1
ℓ

∑
k∈I(ϵk − δk) | i, r ∈ I};

(ℓ := |I| ∈ Z≥2),

Ȧ(I, J) := ±{ϵi − ϵr, δj − δs, ϵi − δj | i, r ∈ I, j, s ∈ J};
(|I| ̸= |J | if I, J are finite sets),

B(I, J) := ±{ϵi, δj , ϵi ± ϵr, δj ± δs, ϵi ± δj | i, r ∈ I, j, s ∈ J, i ̸= r},
C(I, J) := ±{ϵi ± ϵr, δj ± δs, ϵi ± δj | i, r ∈ I, j, s ∈ J},
D(I, J) := ±{ϵi ± ϵr, δj ± δs, ϵi ± δj | i, r ∈ I, j, s ∈ J, i ̸= r},

BC(I, J) := ±{ϵi, δj , ϵi ± ϵr, δj ± δs, ϵi ± δj | i, r ∈ I, j, s ∈ J},
F (4) := ±{0, ϵ1, δi ± δj , δi,

1
2
(ϵ1 ± δ1 ± δ2 ± δ3) | 1 ≤ i ̸= j ≤ 3};

(I = {1}, J = {1, 2, 3}),
G(3) := ±{0, ϵ1, 2ϵ1, δi − δj , 2δi − δj − δk, ϵ1 ± (δi − δj) | {i, j, k} = {1, 2, 3}};

(I = {1}, J = {1, 2, 3})

in which if I or J is empty, the corresponding indices disappear. We mention
that the Z-span of all these locally finite root supersystems are F except for
Ȧ(I, J), so to denote this type, we use Ȧ instead of A.
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When I = {1} and J is a nonempty index set, we denote D(I, J) by C(J),
so we have

C(J) = {0,±δj ± δs,±ϵ1 ± δj | j, s ∈ J}.
In the sequel if either I or J is a finite set, we may replace it by its cardinality

in each type, e.g., we may denote B(I, J) by B(|I|, |J |) if I and J are finite

sets. Using this convention, C(1) can be identified with Ȧ(1, 2) and D(2, 1) is
nothing but the root system of the finite dimensional basic classical simple Lie
superalgebra D(2, 1, α) for α = 1.We drew the attention of readers to the point
that our notations have a minor difference with the notations in the literature,
more precisely, C(n) for n ∈ Z≥1 and Ȧ(m,n) for m,n ∈ Z≥1 in our sense are
denoted by C(n + 1) and A(m − 1, n − 1), respectively in the literature. Our
notations allow us to switch smoothly from the finite case to the infinite case.

Theorem 2.4 ([15, Section 4]). Each irreducible locally finite root supersystem
is either isomorphic to the root system of a finite dimensional basic classical
simple Lie superalgebra or isomorphic to one of the root supersystems intro-
duced in (2.2). Among all irreducible locally finite root supersystems, C(I) and

Ȧ(I, J) with |I| ̸= |J | if both I and J are finite, are of imaginary type and the
other ones are of real type.

Lemma 2.5. Suppose that V is a vector space equipped with a symmetric
bilinear form (·, ·) and R is a subset of V such that (⟨R⟩, (·, ·)⟨R⟩×⟨R⟩, R)
is a locally finite root supersystem. Suppose that {α1, . . . , αn} ⊆ Rre is
Q-linearly independent. Then {α1, . . . , αn} is F-linearly independent; also
if Rns \ spanQ{α1, . . . , αn} ̸= ∅ and δ ∈ Rns \ spanQ{α1, . . . , αn}, then
{δ, α1, . . . , αn} is also F-linearly independent.

Proof. We assume Rns \ spanQ{α1, . . . , αn} ̸= ∅ and δ ∈ Rns \
spanQ{α1, . . . , αn}, and show {δ, α1, . . . , αn} is F-linearly independent; the
other statement is similarly proved. Take {1, xi | i ∈ I} to be a basis for
Q-vector space F. Suppose that r, r1, . . . , rn ∈ F and rδ+

∑n
j=1 rjαj = 0. Sup-

pose that for 1 ≤ j ≤ n, rj = sj +
∑

i∈I s
i
jxi with {sj , sij | i ∈ I} ⊆ Q. We

first show r = 0. To the contrary, assume r ̸= 0. Without loss of generality, we
assume r = 1. So 0 = δ +

∑n
j=1 rjαj = δ +

∑n
j=1(sj +

∑
i∈I s

i
jxi)αj . Now for

α ∈ Rre, we have

2(δ, α)

(α, α)
+

n∑
j=1

sj
2(αj , α)

(α, α)
+

n∑
j=1

∑
i∈I

sijxi
2(αj , α)

(α, α)
= 0.

This implies that for α ∈ Rre and i ∈ I,
∑n

j=1 s
i
j
2(αj ,α)
(α,α) = 0 and so

(
∑n

j=1 s
i
jαj , α) = 0. But it follows from Lemma 2.3(b)(i) that the form

on spanQRre is nondegenerate, so
∑n

j=1 s
i
jαj = 0 for all i ∈ I. Now as

{αj | 1 ≤ j ≤ n} is Q-linearly independent, we have

sij = 0 (i ∈ I, j ∈ {1, . . . , n}).
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Therefore, we get 0 = δ +
∑n

j=1 rjαj = δ +
∑n

j=1(sj +
∑

i∈I s
i
jxi)αj = δ +∑n

j=1 sjαj . Thus we have δ = −
∑n

j=1 sjαj which is absurd. This shows that

r = 0. Now repeating the above argument, one gets that sij = 0 for all i ∈ I, j ∈
{1, . . . , n} and that 0 =

∑n
j=1 sjαj . Thus we have sj = 0 for all 1 ≤ j ≤ n.

This implies that rj = sj +
∑

i∈I s
i
jxi = 0 for all 1 ≤ j ≤ n and so we are

done. □

Lemma 2.6 ([13, Lemma 2.3]). Suppose that R is an irreducible locally finite
root supersystem of type X in an abelian group A. Then we have the following:

(i) A is a free abelian group and R contains a Z-basis for A.
(ii) If X ̸= A(ℓ, ℓ), R contains a Z-basis Π for A satisfying the partial sum

property in the sense that for each α ∈ R×, there are α1, . . . , αn ∈ Π
(not necessarily distinct) and r1, . . . , rn ∈ {±1} with α = r1α1 + · · ·+
rnαn and r1α1 + · · ·+ rtαt ∈ R×, for all 1 ≤ t ≤ n.

Definition 2.7. A subset Π of a locally finite root supersystem R is called an
integral base for R if Π is a Z-basis for A. An integral base Π of R is called a
base for R if it satisfies the partial sum property.

Lemma 2.8 ([13, Lemma 2.4(iii)]). If R is an infinite irreducible locally finite
root supersystem, then there is a base Π for R and a class {Rγ | γ ∈ Γ} of
finite irreducible closed sub-supersystems of R of the same type as R such that
R is the direct union of Rγ ’s and for each γ ∈ Γ, Π ∩Rγ is a base for Rγ .

3. Locally finite basic classical simple Lie superalgebras

We recall that a Lie superalgebra G is called locally finite if each finite subset
of G generates a finite dimensional subsuperalgebra. Suppose that L = L0⊕L1

is a nonzero Lie superalgebra equipped with a nondegenerate invariant even
supersymmetric bilinear form (·, ·) and H is a nontrivial subalgebra of L0 such
that with respect to H, L has a weight space decomposition L = ⊕α∈H∗Lα

via the adjoint representation and the restriction of the form (·, ·) to H is
nondegenerate. We call R := {α ∈ h∗ | Lα ̸= {0}}, the root system of L (with
respect to h). Each element of R is called a root. We mention that h is abelian
and as L0 as well as L1 are h-submodules of L, we have using [9, Proposition
2.1.1] that L0 =

⊕
α∈h∗ Lα

0 and L1 =
⊕

α∈h∗ Lα
1 with Lα

i := Li ∩ Lα, i =

0, 1. We refer to the elements of R0 := {α ∈ h∗ | Lα
0 ̸= {0}} (respectively

R1 := {α ∈ h∗ | Lα
1 ̸= {0}}) as even roots (respectively odd roots) and note

that R = R0 ∪ R1. Since the form is invariant and even, for α, β ∈ R and
i, j ∈ {0, 1}, we have

(Lα
i ,L

β
j ) = {0} if i ̸= j or α+ β ̸= 0.

This in particular implies that for i ∈ {0, 1} and α ∈ Ri, the form restricted
to Lα

i +L−α
i is nondegenerate. Take p : H −→ H∗ to be the function mapping
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h ∈ H to (h, ·). Since the form is nondegenerate on H, the map p is one to one
(and so onto if H is finite dimensional). So for each element α of the image Hp

of H under the map p, there is a unique tα ∈ H representing α through the
form (·, ·). Now we can transfer the form on H to a form on Hp, denoted again
by (·, ·) and defined by

(α, β) := (tα, tβ) (α, β ∈ Hp).

Using [14, Lemma 3.1], if α ∈ R∩Hp, x ∈ Lα and y ∈ L−α with [x, y] ∈ H, we
have

[x, y] = (x, y)tα.

We also draw the attention of readers to the point that if either H is finite
dimensional or L0 = H, it is not hard to see that R ⊆ Hp.

Definition 3.1. A Lie superalgebra L = L0⊕L1, is called a locally finite basic
classical simple Lie superalgebra if

• L is locally finite and simple,
• L is equipped with an invariant nondegenerate even supersymmetric
bilinear form.

• L0 has a nontrivial subalgebra H (refereed to as a Cartan subal-
gebra) with respect to which L has a weight space decomposition
L =

∑
α∈H∗ Lα via the adjoint representation with corresponding root

system R such that L0 = H and R× = {α ∈ R | (α,R) ̸= {0}} ̸= ∅.
We may also write (L,H, (·, ·)) is a locally finite basic classical simple Lie
superalgebra.

Theorem 3.2 ([16, Theorem 2.30]). Suppose that (L,H, (·, ·)) is a locally finite
basic classical simple Lie superalgebra, then

(i) the root system R of L is an irreducible locally finite root supersystem,
(ii) L is a direct union of finite dimensional basic classical simple Lie su-

peralgebras,
(iii) [L0,L0] is a semisimple Lie algebra,
(iv) if L1 ̸= {0}, it is a completely reducible L0-module with at most two

irreducible constituents.

In the rest of this section, we shall introduce some non-isomorphic examples
of locally finite basic classical simple Lie superalgebras. Let us start with
some notations. For a unital associative superalgebra A and nonempty index
supersets I, J, by an I × J-matrix with entries in A, we mean a map A :
I × J −→ A. For i ∈ I, j ∈ J, we set aij := A(i, j) and call it the (i, j)-th entry
of A. By a convention, we denote the matrix A by (aij). We also denote the
set of all I × J-matrices with entries in A by AI×J . If I = J, we denote AI×J
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by AI . For A = (aij) ∈ AI×J , the matrix B = (bij) ∈ AJ×I with

bij :=

 aji |i| = |j|
aji |i| = 1, |j| = 0
−aji |i| = 0, |j| = 1

is called the supertransposition of A and denoted by Ast. If A = (aij) ∈ AI×J

and B = (bij) ∈ AJ×K are such that for all i ∈ I and k ∈ K, at most for finitely
many j ∈ J, aijbjk’s are nonzero, we define the product AB of A and B to be
the I ×K-matrix C = (cik) with cik :=

∑
j∈J aijbjk for all i ∈ I, k ∈ K. We

note that if A,B,C are three matrices such that AB, (AB)C, BC and A(BC)
are defined, then A(BC) = (AB)C.We make a convention that if I is a disjoint
union of subsets I1, . . . , It of I, then for an I × I-matrix A, we write

A =


A1,1 · · · A1,t

A2,1 · · · A2,t

...
...

...
At,1 · · · At,t


in which for 1 ≤ r, s ≤ t, Ar,s is an Ir×Is-matrix whose (i, j)-th entry coincides
with (i, j)-th entry of A for all i ∈ Ir, j ∈ Is. In this case, we say that A ∈
AI1⊎···⊎It and note that the defined matrix product obeys the product of block
matrices. If {ai | i ∈ I} ⊆ A, by diag(ai), we mean an I × I-matrix whose
(i, i)-th entry is ai for all i ∈ I and other entries are zero. If A is unital, we
set 1I := diag(1A). A matrix A ∈ AI is called invertible if there is a matrix
B ∈ AI such that AB as well as BA are defined and AB = BA = 1I ; such a B
is unique and denoted by A−1. For i ∈ I, j ∈ J and a ∈ A, we define Eij(a) to
be a matrix in AI×J whose (i, j)-th entry is a and other entries are zero and if
A is unital, we set

ei,j := Ei,j(1).

Take MI×J (A) to be the subspace of AI×J spanned by {Eij(a) | i ∈ I, j ∈
J, a ∈ A}. MI×J(A) is a superspace with MI×J(A)i := spanF{Er,s(a) | |r| +
|s|+|a| = ī}, for i = 0, 1. Also with respect to the multiplication of matrices, the
vector superspace MI×I(A) is an associative F-superalgebra and so it is a Lie
superalgebra under the Lie bracket [A,B] := AB− (−1)|A||B|BA for all A,B ∈
MI×I(A). We denote this Lie superalgebra by plI(A). For X,Y ∈ plI(A), we
have (XY )st = (−1)|X||Y |Y stXst. Finally, for an element X ∈ plI(A), we set
str(X) :=

∑
i∈I(−1)|i|xi,i and call it the supertrace of X.

Lemma 3.3. (i) Suppose that Q is a homogeneous element of FI , then
GQ := {X ∈ plI(F) | XstQ = −(−1)|X||Q|QX} is a Lie subsuperalgebra
of plI(F).

(ii) If Q1, Q2 are homogeneous elements of FI and T is an invertible ho-
mogeneous element of FI of degree zero such that Q2 = T stQ1T, then
GQ1 is isomorphic to GQ2 via the isomorphism mapping X to T−1XT.
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(iii) Suppose that I and J are two supersets and η : I −→ J is a bijection
preserving the degree. For a matrix A = (Aij) of FI , define Aη ∈ FJ to
be (Aη

ij) with A
η
ij = Aη−1(i)η−1(j). If Q is a homogeneous element of FI

and Q′ := Qη, then the Lie superalgebra GQ := {X ∈ plI(F) | XstQ =

−(−1)|X||Q|QX} is isomorphic to the Lie superalgebra GQ′ := {X ∈
plJ (F) | XstQ′ = −(−1)|X||Q′|Q′X}.

Proof. Statements (i) and (ii) are easy to verify.
(iii) Suppose that matrices A,B ∈ FI are such that AB is defined, then for

i, j ∈ I, we have

(AηBη)η(i)η(j) =
∑
t∈I

Aη
η(i)η(t)B

η
η(t)η(j) =

∑
t∈I

AitBtj = (AB)ij = (AB)ηη(i)η(j).

This in particular implies that if A,B,C,D ∈ FI are such that AB and CD
are defined and AB = CD, then AηBη = CηDη. Moreover, as η preserves
the degree, we have (Ast)η = (Aη)st. Now it is easy to see that the function
θ : GQ −→ GQ′ mapping X to Xη is an isomorphism. □

Example 3.4. For two disjoint index sets I, J with J ̸= ∅, suppose that
{0, i, ī, | i ∈ I∪J} is a superset with |0| = |i| = |̄i| = 0 for i ∈ I and |j| = |j̄| = 1

for j ∈ J. We set İ := I ∪ Ī , İ0 := {0} ∪ I ∪ Ī and J̇ := J ∪ J̄ where

Ī := {̄i | i ∈ I} and J̄ := {j̄ | j ∈ J}.

For I = İ ∪ J̇ or I = İ0 ∪ J̇ , we set

QI :=

(
M1 0
0 M2

)
in which

M2 :=
∑
j∈J

(ej,j̄−ej̄,j) &M1 :=

{
−2e0,0 +

∑
i∈I(ei,̄i + eī,i) if I = İ0 ∪ J̇∑

i∈I(ei,̄i + eī,i) if I ̸= ∅, I = İ ∪ J̇ .

Now by Lemma 3.3,

GI := GQI = {X ∈ plI(F) | XstQI = −QIX}
is a Lie subsuperalgebra of plI(F) which we refer to as osp(2I, 2J) or osp(2I +

1, 2J) if I = İ ∪ J̇ or I = İ0 ∪ J̇ respectively. Set

h := spanF{ht, dk | t ∈ I, k ∈ J}
in which for t ∈ I and k ∈ J,

ht := et,t − et̄,t̄ and dk := ek,k − ek̄,k̄

and for i ∈ I and j ∈ J, define

ϵi : h −→ F
ht 7→ δi,t, dk 7→ 0,

δj : h −→ F
ht 7→ 0, dk 7→ δj,k,



2037 Yousofzadeh

(t ∈ I, k ∈ J). One sees that GI has a weight space decomposition with respect
to h. Taking R(I) to be the corresponding set of weights, we have

R(İ0 ∪ J̇) = {±ϵr,±(ϵr ± ϵs),±δp,±(δp ± δq),±(ϵr ± δp) | r, s ∈ I, p, q ∈ J, r ̸= s},

R(İ ∪ J̇) = {±(ϵr ± ϵs),±(δp ± δq),±(ϵr ± δp) | r, s ∈ I, p, q ∈ J, r ̸= s}

in which ±(ϵr ± ϵs)’s are disappeared if |I| = 1 and ±ϵr’s, ±(ϵr ± ϵs)’s as well
as ±(ϵr ± δp)’s are disappeared if |I| = 0. Moreover, for r, s ∈ I, p, q ∈ J with
r ̸= s and p ̸= q, we have

(GI)
ϵr+ϵs = spanF(er,s̄ − es,r̄), (GI)

−ϵr−ϵs = spanF(er̄,s − es̄,r),

(GI)
ϵr−ϵs = spanF(er,s − es̄,r̄), (GI)

δp+δq = spanF(ep,q̄ + eq,p̄),

(GI)
−δp−δq = spanF(ep̄,q + eq̄,p), (GI)

δp−δq = spanF(ep,q − eq̄,p̄),

(GI)
ϵr+δp = spanF(er,p̄ + ep,r̄), (GI)

−ϵr−δp = spanF(er̄,p − ep̄,r),

(GI)
ϵr−δp = spanF(er,p − ep̄,r̄), (GI)

−ϵr+δp = spanF(er̄,p̄ + ep,r),

(GI)
2δp = spanFep,p̄, (GI)

−2δp = spanFep̄,p,

osp(2I + 1, 2J)ϵr = spanF(e0,r̄ + 2er,0), osp(2I + 1, 2J)−ϵr = spanF(e0,r + 2er̄,0),

osp(2I + 1, 2J)δp = spanF(e0,p̄ − 2ep,0), osp(2I + 1, 2J)−δp = spanF(e0,p + 2ep̄,0).

Define

(·, ·) : GI × GI −→ F; (x, y) 7→ str(xy) (x, y ∈ GI).

Then (GI , h, (·, ·)) is a locally finite basic classical simple Lie superalgebra whose
root system is an irreducible locally finite root supersystem of type X as in the
following table:

X (|I|, |J |) I X (|I|, |J |) I
B(0, J) (0,≥ 1) İ0 ∪ J̇ C(J) (1,≥ 2) İ ∪ J̇
B(1, J) (1,≥ 1) İ0 ∪ J̇ D(2, 1, α) (2, 1) İ ∪ J̇
B(I, 1) (≥ 2, 1) İ0 ∪ J̇ D(2, J) (2,≥ 2) İ ∪ J̇
B(I, J) (≥ 2,≥ 2) İ0 ∪ J̇ D(1, I) (≥ 3, 1) İ ∪ J̇
Ȧ(0, 2) (1, 1) İ ∪ J̇ D(I, J) (≥ 3,≥ 2) İ ∪ J̇

We refer to h as the standard Cartan subalgebra of GI . We note that (GI)0
is centerless unless I = İ ∪ J̇ with |I| = 1; see [16, Lemma 2.33]. In this case,
suppose I = {1}, then for a fixed index j ∈ J, tϵ1+δj − (1/2)t2δj is a nonzero
central element of the even part of GI . ♢

As in [10, Section 1], we have the following lemma:
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Lemma 3.5. Suppose that I, J are two nonempty index sets with |I| = ∞,
then osp(2I, 2J) ≃ osp(2I + 1, 2J).

Proof. Consider the following matrices of F{0}⊎I⊎Ī⊎J⊎J̄ :

S :=


1 0 0 0 0
0 I I 0 0
0 I −I 0 0
0 0 0 I 0
0 0 0 0 I

 ,Qe :=


−2 0 0 0 0
0 2I 0 0 0
0 0 −2I 0 0
0 0 0 0 I
0 0 0 −I 0

 ,Q :=


−2 0 0 0 0
0 0 I 0 0
0 I 0 0 0
0 0 0 0 I
0 0 0 −I 0

 ,

then we have SstQS = Qe. Also for matrices

S
′
:=

 I I 0 0
I −I 0 0
0 0 I 0
0 0 0 I

 , Qo :=

 2I 0 0 0
0 −2I 0 0
0 0 0 I
0 0 −I 0

 , Q
′
:=

 0 I 0 0
I 0 0 0
0 0 0 I
0 0 −I 0



of FI⊎Ī⊎J⊎J̄ , we have S′stQ′S′ = Qo. Now by Lemma 3.3, GQ ≃ GQe , GQ′ ≃
GQo

, and GQe
≃ GQo

. This completes the proof. □

Example 3.6. Suppose that J is a superset with J0, J1 ̸= ∅. Set G :=
sl(J0, J1) = {X ∈ plJ(F) | str(X) = 0} and H := spanF{ei,i − er,r, ej,j −
es,s, ei,i + ej,j | i, r ∈ J0, j, s ∈ J1}. For t ∈ J0, k ∈ J1, define

ϵt : H −→ F,
ei,i − er,r 7→ δi,t − δr,t, ej,j − es,s 7→ 0, ei,i + ej,j 7→ δi,t,

δk : H −→ F,
ei,i − er,r 7→ 0, ej,j − es,s 7→ δj,k − δk,s, ei,i + ej,j 7→ δk,j ,

(i, r ∈ J0, j, s ∈ J1). Also define

(·, ·) : G × G −→ F; (X,Y ) 7→ str(XY ).

If |J | < ∞ and |J0| = |J1|, take K := F
∑

j∈J ejj and note that it is a subset

of the radical of the form (·, ·). So it induces a bilinear form on G/K denoted
again by (·, ·). Set

sls(J0, J1) :=

{
G/K if |J | <∞ and |J0| = |J1|,
G otherwise.

Then (L := sls(J0, J1), (·, ·),H/K) is a locally finite basic classical simple Lie
superalgebra with root system

{ϵi − ϵj , δp − δq,±(ϵi − δp) | i, j ∈ J0, p, q ∈ J1}

which is an irreducible locally finite root supersystem of type X as in the
following table:
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X (|J0|, |J1|)
Ȧ(0, J1) (1,≥ 2)

Ȧ(0, J0) (≥ 2, 1)

Ȧ(J0, J1) (≥ 2,≥ 2)
|J0| ̸= |J1| if J0, J1 are both finite

A(ℓ, ℓ) (ℓ, ℓ) (ℓ ∈ Z≥1)

Also if (|J0|, |J1|) ̸= (1, 1), for i, j ∈ J0 and p, q ∈ J1 with i ̸= j and p ̸= q, we
have

Lϵi−ϵj = Fei,j , Lδp−δq = Feq,p,
Lϵi−δp = Fei,p, L−ϵi+δp = Fep,i.

We refer to H/K as the standard Cartan subalgebra of L = sls(J0, J1). We now
need to discuss the center of L0 for our future purpose. We recall from finite
dimensional theory of Lie superalgebras that if |J0|, |J1| <∞, L0 has nontrivial
center if and only if |J0| ̸= |J1| and that in this case, it has a one dimensional
center. Now suppose |J0∪J1| = ∞, say |J0| = ∞. Fix i0 ∈ J0 and j0 ∈ J1. Then
{ei,i − ei0,i0 , ej,j − ej0,j0 , ei0,i0 + ej0,j0 | i ∈ J0 \ {i0}, j ∈ J1 \ {j0}} is a basis for
H. Suppose i1, . . . , iℓ are distinct elements of J0\{i0} and j1, . . . , jn are distinct

elements of J1 \ {j0}. If z =
∑ℓ

t=1 rt(eit,it − ei0,i0) +
∑n

t=1 st(ejt,jt − ej0,j0) +
k(ei0,i0 + ej0,j0) (where

∑n
t=1 st(ejt,jt − ej0,j0) is disappeared if |J1| = 1) is an

element of the center of L0, then for each i ∈ J0 \ {i0}, [z, (L0)
ϵi−ϵi0 ] = {0}.

Now if i = is for some s ∈ {1, . . . , ℓ}, we get rs + (
∑ℓ

t=1 rt) − k = 0 and if

i ̸∈ {i1, . . . , iℓ}, we get
∑ℓ

t=1 rt − k = 0. Therefore we have rs = 0 for all
s ∈ {1, . . . , ℓ} and so k = 0. This shows that L is centerless if |J1| = 1. If
|J1| > 1, [z,Lϵi0−δj0 ] = {0}. This implies that

∑n
t=1 st = 0. We also have

[z,Lδj−δj0 ] = {0} for all j ∈ J1 \ {j0}. Now it follows that st = 0 for all
t ∈ {1, . . . , n}. This means that z = 0 and so L is centerless.

Lemma 3.7. For index sets I, J with |J | ̸= 0 and a superset T with |T0|, |T1| ̸=
0, set

aI,J := osp(2I, 2J)(if I ̸= ∅), bI,J := osp(2I + 1, 2J), cT := sls(T0, T1).

Suppose that G and L are two Lie superalgebras of the class

{aI,J , bI,J , cT | I, J, T}.

Then G and L are isomorphic if and only if (up to changing the role of G and
L) one of the following holds:

• there are index sets I, J, I ′, J ′ with |I| = |I ′| ̸= 0, |J | = |J ′| ̸= 0,
G = aI,J and L = aI′,J ′ ,

• there are index sets I, J, I ′, J ′ with |I| = |I ′|, |J | = |J ′| ̸= 0, G = bI,J
and L = bI′,J′ ,

• there are supersets I, J with |I0| = |J0| ̸= 0, |I1| = |J1| ̸= 0, or |I0| =
|J1| ̸= 0, |I1| = |J0| ̸= 0 such that G = cI and L = cJ ,
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• there are index sets I, J with |I| = |J | = 1 and a superset T with
|T0| = 1, |T1| = 2 or |T0| = 2, |T1| = 1 such that G = aI,J and L = cT ,

• there are index sets I, J with J ̸= ∅, |I| = ∞, G = aI,J and L = bI,J .

Moreover, in each of the first three cases, the mentioned isomorphism can be
chosen such that the standard Cartan subalgebra of G is mapped to the standard
Cartan subalgebra of L.

Proof. We first note that for two Lie algebras k1 and k2 such that [k1, k1] and
[k2, k2] are semisimple with the complete sets of simple ideals {k11, . . . , kn1} and
{k12, . . . , km2 } respectively, if k1 and k2 are isomorphic, we have

(3.1)
• [k1, k1] and [k2, k2] are isomorphic,

• k1 is centerless if and only if k2 is centerless,

• m = n and (under a permutation of indices) ki1 ≃ ki2 for i ∈ {1, . . . , n}.

Now take A to be one of the Lie superalgebras aI,J , bI,J , cT . We have already
seen that if A is infinite dimensional, then the even part of A is centerless
if and only if A ≠ aI,J for some infinite index set J and an index set I with
|I| = 1. Next suppose that G and L are as in the statement and assume they are
isomorphic, then we have G0 ≃ L0.We also know that [G0,G0] as well as [L0,L0]
are semisimple Lie algebras by Theorem 3.2. Using these together with (3.1),
Lemmas 3.3 and 3.5, classification of basic classical simple Lie superalgebras
and [10, Propositions VI4,VI6], we are done. □

4. Classification theorem

In this section, we classify locally finite basic classical simple Lie superal-
gebras (l.f.b.c.s Lie superalgebras for short) and study the conjugacy classes
of their Cartan subalgebras under the group of automorphisms. The first step
towards the classification of l.f.b.c.s Lie superalgebras is finding out an isomor-
phism theorem. One knows that l.f.b.c.s Lie superalgebras with zero odd part
are exactly locally finite split simple Lie algebras in the sense of [10] and that
finite dimensional basic classical simple Lie superalgebras and consequently
finite dimensional simple Lie algebras are examples of l.f.b.c.s. Lie superalge-
bras. We know form the finite dimensional theory of Lie algebras that due to
the interaction of a finite dimensional simple Lie algebra with its root system,
the theorem stating that finite dimensional simple Lie algebras with isomor-
phic root systems, are isomorphic [6, Theorem 14.2], plays a crucial role to get
the classification of finite dimensional simple Lie algebras. Using this theorem
together with the fact that locally finite split simple Lie algebras are a direct
union of finite dimensional simple subalgebras, the authors in [10] prove that
two locally finite split simple Lie algebras with isomorphic root systems are
isomorphic. Moreover, they introduce two isomorphic locally finite split sim-
ple Lie algebras with non-isomorphic Cartan subalgebras and isomorphic root
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systems. They use this to find the conjugacy classes of Cartan subalgebras of
locally finite split simple Lie algebras.

To get the classification of l.f.b.c.s Lie superalgebras, we also prove that
two l.f.b.c.s. Lie superalgebras with isomorphic root systems are isomorphic.
To this end, we first need to prove the theorem for finite dimensional case.
Because of the existence of self-orthogonal roots for a finite dimensional basic
classical simple Lie superalgebra, the proof of the mentioned theorem in the
super case is different from the one in non-super case; more precisely, we first
need to define Chevalley bases for finite dimensional basic classical simple Lie
superalgebras. Chevalley bases for finite dimensional basic classical simple Lie
superalgebras were introduced in 2011 by K. Iohara and Y. Koga [7] using
the fact that a finite dimensional basic classical simple Lie superalgebra is a
contragredient Lie superalgebra and its Cartan matrix is symmetrizable. Our
definition of Chevalley bases are somehow different from the one defined in [7].

The zero part of a locally finite basic classical simple Lie superalgebra which
is infinite dimensional and not a Lie algebra is either a locally finite split simple
Lie algebra or a direct sum of two locally finite split simple Lie algebras. In the
last theorem of this section, we use the result of [10] to find the conjugacy classes
of Cartan subalgebras of locally finite basic classical simple Lie superalgebras.

Lemma 4.1. Suppose that (G1, (·, ·)1,H1), (G2, (·, ·)2,H2) are two locally fi-
nite basic classical simple Lie superalgebras with corresponding root systems
R1, R2 respectively. For i = 1, 2, denote the induced form on spanFRi ⊆ H∗

i

again by (·, ·)i. If R1 and R2 are isomorphic, say via f : ⟨R1⟩ −→ ⟨R2⟩ with
(f(α), f(α′))2 = k(α, α′)1 for all α, α′ ∈ R and some k ∈ F \ {0}, then there

is a linear isomorphism f̃ : spanFR1 −→ spanFR2 whose restriction to ⟨R1⟩
coincides with f and for α, α′ ∈ spanFR1, (f̃(α), f̃(α

′))2 = k(α, α′)1.

Proof. We know that R1 is of real type if and only if for each nonsingular
root δ, there exists a nonzero integer n with nδ ∈ ⟨(R1)re⟩ or equivalently
spanQ(R1)re = spanQR1. Now fix a basis {αi | i ∈ I} ⊆ (R1)re for spanQ(R1)re
as well as a nonzero nonsingular root δ of R1 if R1 is of imaginary type. Set

B :=

{
{αi | i ∈ I} if R1 is of real type,
{δ, αi | i ∈ I} if R1 is of imaginary type.

Then by Lemma 2.5, B is F-linearly independent and so by Lemma 2.3(b)(ii), it
is a basis for both spanFR1 and spanQR1. Similarly, f(B) is a basis for spanFR2.

We define the linear transformation f̃ mapping α ∈ B to f(α). It is immediate

that (f̃(α), f̃(α′)) = k(α, α′) for α, α′ ∈ spanFR1. Now if α ∈ R1 ⊆ spanQB,

α =
∑n

j=1
rj
sj
βj where r1, s1, . . . , rn, sn ∈ Z and β1, . . . , βn ∈ B, so for s =

s1 · · · sn and r′j = rjs/sj (1 ≤ j ≤ n), we have sα =
∑n

j=1 r
′
jβj . Therefore, we

have sf(α) =
∑n

j=1 r
′
jf(βj). Thus, we have f(α) = f̃(α). □
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4.1. Chevalley bases for basic classical simple Lie superalgebras. Sup-
pose that G is a finite dimensional basic classical simple Lie superalgebra of
type X ̸= A(1, 1) with a Cartan subalgebra H and corresponding root sys-
tem R = R0 ∪ R1 such that G1 ̸= {0}. In what follows for α ∈ R× with
Gα
i ̸= {0} (i ∈ {0, 1}), we set |α| := i. Now we want to define a total ordering on

V := spanQR.We fix a basis {v1, . . . , vm} for V. For u = r1v1+ · · ·+rmvm ∈ V,
we say 0 ≺ u if u ̸= 0 and that the first nonzero ri, 1 ≤ i ≤ m, is positive; next
for u, v ∈ V, we say u ≺ v if 0 ≺ v − u. We set R+ := R ∩ {v ∈ V | 0 ≺ v}
as well as R− := −R+. Elements of R+ are called positive and elements of R−

are called negative. As usual, for u, v ∈ V, we say u ⪯ v if either u = v or
u ≺ v. Fix an invariant nondegenerate even supersymmetric bilinear form (·, ·)
on G. We denote the induced nondegenerate symmetric bilinear form on H∗

again by (·, ·). We recall that for α ∈ H∗, tα indicates the unique element of H
representing α through the form (·, ·). For α ∈ H∗, set

σα :=

{
−1 α ∈ R1 ∩R−,
1 otherwise.

Next fix r ∈ F \ {0} and for each α ∈ R×, set

hα := rtα.

One can see that

σ−α = (−1)|α|σα and hα = −h−α (α ∈ R×).

Fixing Yα ∈ Gα and Y−α ∈ G−α with [Yα, Y−α] = hα for α ∈ R+, we have
[Yα, Y−α] = σαhα (α ∈ R×).

Definition 4.2. A set {Xα, hi | α ∈ R×, i = 1, . . . , ℓ} is called a Chevalley
basis for G if

• there are a nonzero scalar r and a subset {β1, . . . , βℓ} of R× such that
{h1 := hβ1 , . . . , hℓ := hβℓ

} is a basis for H where for α ∈ R×, by hα,
we mean rtα,

• for each α ∈ R×, Xα ∈ Gα,
• for each α ∈ R×, [Xα, X−α] = σαhα.

Suppose that {Xα, hi | α ∈ R×, i = 1, . . . , ℓ} is a Chevalley basis for G. We
know from [16, Lemma 2.4] that if α, β ∈ R× such that α + β ∈ R×, then
[Gα,Gβ ] ̸= {0}. This together with the fact that dim(Gα+β) = 1 implies that
there is a nonzero scalar Nα,β with [Xα, Xβ ] = Nα,βXα+β ; we also interpret
Nα,β as zero for α, β ∈ R× with α+β ̸∈ R.We refer to {Nα,β | α, β ∈ R×} as a
set of structure constants for G with respect to {Xα, hi | α ∈ R×, i = 1, . . . , ℓ}.

Proposition 4.3. Keep the same notation as above; we have the following:

(i) If α, β ∈ R×, then Nα,β = −(−1)|α||β|Nβ,α.
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(ii) If α, β ∈ R× with α+ β ∈ R×, then for sα,β := σασα+β , we have

Nα,β = sα,βNβ,−α−β = σασα+βNβ,−α−β .

(iii) Suppose that α, β ∈ R× with α+ β ∈ R×, then

Nα,βN−α,−β = rα,β := σβσβ+ασα(−1)|β||α|
p∑

i=0

(−1)i|α|(β − iα)(hα);

where p = 0 if α, β ∈ Rns and otherwise, p is the largest nonnegative
integer such that β − pα ∈ R.

(iv) If α, β, γ, δ ∈ R× with α+ β + γ + δ = 0 such that each pair is not the
opposite of the one another, then

(−1)|α||γ|σα+βNα,βNγ,δ + (−1)|α||β|σβ+γNβ,γNα,δ + (−1)|β||γ|σα+γNγ,αNβ,δ = 0.

Proof. Using a modified argument as in [4, Proposition 7.1] gives the result. □

We know that there are roots α, γ such that α ̸= ±γ and (α, γ) ̸= 0. So
either α+γ ∈ R× or α−γ ∈ R×. Replacing γ with −γ if necessary, we assume
η := −(α + γ) ∈ R×. Since α + γ + η = 0, either two of α, γ, η are positive
or two of −α,−γ,−η are positive. Selecting this pair of positive roots in an
appropriate order, we get a pair (η1, η2) among the 12 pairs

(α, γ), (α, η), (γ, η), (γ, α), (η, α), (η, γ),
(−α,−γ), (−α,−η), (−γ,−η), (−γ,−α), (−η,−α), (−η,−γ)

such that 0 ≺ η1 ⪯ η2; following [4], we call such a pair a special pair. More
precisely, a pair (α, β) of elements of R× is called a special pair if 0 ≺ α ⪯ β
and α + β ∈ R. A special pair (α, β) is called an extraspecial pair if for each
special pair (δ, γ) with α+ β = δ + γ, we get α ⪯ δ.

Lemma 4.4. Suppose that A is the set of all extraspecial pairs (α, β) of R×

and {Nα,β | (α, β) ∈ A} is an arbitrary set of nonzero scalars. Then there is
{eα ∈ Gα \ {0} | α ∈ R+} such that [eα, eβ ] = Nα,βeα+β for all (α, β) ∈ A.

Proof. Suppose that R+ = {α1, . . . , αn} with α1 ≺ . . . ≺ αn and take t to
be the smallest index such that αt is the summation of the components of an
extraspecial pair. We choose arbitrary elements eαi ∈ Gαi , for 1 ≤ i ≤ t − 1.
We know that there is a unique extraspecial pair (α, β) with αt = α + β,
so there is a unique pair (i, j) with i ≤ j < t such that αt = αi + αj and
define eαt

= N−1
αi,αj

[eαi
, eαj

]. Now using an induction process, we can complete

the proof; indeed, suppose that t < r ≤ n and that {eαs | 1 ≤ s ≤ r − 1}
with the desired property has been chosen. If αr is not the summation of the
components of an extraspecial pair, we choose eαr arbitrary, but otherwise we
pick the unique pair (i′, j′) with i′ ≤ j′ < r − 1 such that αr = αi′ + αj′ . Now
we define eαr = N−1

αi′ ,αj′
[eαi′ , eαj′ ]. This completes the proof. □
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Theorem 4.5. Suppose that G and L are two finite dimensional basic classical
simple Lie superalgebras with Cartan subalgebras H and T and corresponding
root systems R = R0 ∪ R1 and S = S0 ∪ S1 respectively which are not of type
A(1, 1). Suppose that (·, ·) (respectively (·, ·)′) is an invariant nondegenerate
even supersymmetric bilinear form on G (respectively L) and denote the in-
duced forms on H∗ and T ∗ again by (·, ·) and (·, ·)′ respectively. Suppose that
(⟨R⟩, (·, ·), R) and (⟨S⟩, (·, ·)′, S) are isomorphic finite root supersystems, say
via f : ⟨R⟩ −→ ⟨S⟩. Then we have the following:

(i) There are Chevalley bases {hi, eα | α ∈ R×, 1 ≤ i ≤ ℓ} and {ti, xβ |
β ∈ S×, 1 ≤ i ≤ ℓ} for G and L with corresponding sets of structure
constants {Nα,β | α, β ∈ R×} and {Mγ,η | γ, η ∈ S×} respectively such
that Nα,β =Mf(α),f(β) for all α, β ∈ R×.

(ii) {Nα,β | α, β ∈ R×} is completely determined in terms of Nα,β’s for
extraspecial pairs (α, β).

(iii) There is an isomorphism from G to L mapping H to T and eα to xf(α)
for all α ∈ R \ {0}.

Proof. (i),(ii) Suppose that k ∈ F \ {0} is such that (f(α), f(β))′ = k(α, β)
for α, β ∈ R. Fix r, s ∈ F \ {0} such that r = sk. This implies that r(α, β) =
sk(α, β) = s(f(α), f(β))′ for all α, β ∈ R. Use Lemma 4.1 to extend the map
f to a linear isomorphism, denoted again by f, from H∗ = spanFR to T ∗ =
spanFS with

(4.1) r(α, β) = sk(α, β) = s(f(α), f(β))′ (α, β ∈ H∗).

For α ∈ H∗, take tα to be the unique element of H representing α through (·, ·)
and for β ∈ T ∗, take t′β to be the unique element of T representing β through

(·, ·)′. Next set

hα := rtα and h′β := st′β (α ∈ R, β ∈ S).

Fix a total ordering “ ⪯ ” on spanQR as at the beginning of this subsection and
transfer it through f to a total ordering, denoted again by “ ⪯ ”, on spanQS.
For α ∈ H∗ and β ∈ T ∗, set

σα :=

{
−1 if α ∈ R− ∩R1

1 otherwise
and σ′

β :=

{
−1 if β ∈ S− ∩ S1

1 otherwise.

Suppose that A is the set of all extraspecial pairs of R, then

{(f(α), f(β)) | (α, β) ∈ A} = {(η, γ) | (η, γ) is an extraspecial pair of S}.

Fix a subset {Nα,β | (α, β) ∈ A} of nonzero scalars and setMf(α),f(β) := Nα,β ,

for all (α, β) ∈ A. Using Lemma 4.4, one can find {eα ∈ Gα \ {0} | α ∈ R+}
and {xβ ∈ Lβ \ {0} | β ∈ S+} such that

[eα, eβ ] = Nα,βeα+β and [xf(α), xf(β)] =Mf(α),f(β)xf(α)+f(β); (α, β) ∈ A.
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Now for each α ∈ R+ and γ ∈ S+, choose e−α ∈ G−α and x−γ ∈ L−γ such
that

[eα, e−α] = hα and [xγ , x−γ ] = h′γ (α ∈ R+, γ ∈ S+)

and note that we have

[eα, e−α] = σαhα and [xγ , x−γ ] = σ′
γh

′
γ (α ∈ R×, γ ∈ S×).

Now for each pair (α, β) of R× with α+ β ∈ R× and (α, β) ̸∈ A, take Nα,β

to be the unique nonzero element of F with [eα, eβ ] = Nα,βeα+β ; also for each
pair (γ, η) of S× with γ + η ∈ S× such that (γ, η) is not an extraspecial pair,
take Mγ,η to be the unique nonzero element of F with [xγ , xη] = Mγ,ηeγ+η.
Fix {β1, . . . , βℓ} such that {hi := hβi | 1 ≤ i ≤ ℓ} is a basis for H and set
ti := h′f(βi)

. Then {hi, eα | α ∈ R×, 1 ≤ i ≤ ℓ} and {ti, xβ | β ∈ S×, 1 ≤ i ≤ ℓ}
are Chevalley bases for G and L respectively. Now contemplating Proposition
4.3 and using the same argument as in [4, Proposition 7.4], we get the result.

(iii) Use the same notation as above. Define θ : G −→ L mapping hi = hβi

to ti = h′f(βi)
and eα to xf(α) for all α ∈ R× and 1 ≤ i ≤ ℓ. We claim that

θ is a Lie superalgebra isomorphism. We first note that by [16, Proposition
2.5] and [14, Proposition 3.10], f(R0) = S0 and f(R1) = S1. Therefore, we
have θ(Gi) ⊆ Li for i = 0, 1. Now we need to show θ[x, y] = [θ(x), θ(y)] for all
x, y ∈ G. If x = hβi and y = eα, for some 1 ≤ i ≤ ℓ and α ∈ R×, by (4.1), we
have

θ[hβi , eα] = θ(α(hβi)eα) = α(hβi)θ(eα) = f(α)(h′f(βi)
)xf(α)

= [h′f(βi)
, xf(α)]

= [θ(hβi), θ(eα)].

Next suppose α, β ∈ R×. If α+β ̸∈ R, then f(α)+f(β) ̸∈ S and so [eα, eβ ] = 0
and [θ(eα), θ(eβ)] = [xf(α), xf(β)] = 0, also if α+ β ∈ R×, then by part (i),

θ[eα, eβ ] = θ(Nα,βeα+β) = Nα,βθ(eα+β) = Mf(α),f(β)xf(α+β)

= [xf(α), xf(β)]

= [θ(eα), θ(eβ)].

Finally, for α ∈ R×, if hα =
∑ℓ

i=1 rihβi for some ri ∈ F (1 ≤ i ≤ ℓ), we get

α =
∑ℓ

i=1 riβi and so f(α) =
∑ℓ

i=1 rif(βi) which in turn implies that

(4.2) h′f(α) =
ℓ∑

i=1

rih
′
f(βi)

=
ℓ∑

i=1

riθ(hβi) = θ(hα).

Therefore, we have

θ[eα, e−α] = θ(σαhα) = σαh
′
f(α) = σf(α)h

′
f(α) = [xf(α), x−f(α)]

= [θ(eα), θ(e−α)].

This completes the proof. □
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Suppose that G is a finite dimensional basic classical simple Lie superalgebra
with a Cartan subalgebra H and corresponding root system R. For a group
homomorphism ϕ : ⟨R⟩ −→ F \ {0}, the linear transformation ϕ̃ : G −→ G
mapping x ∈ Gα (α ∈ R) to ϕ(α)x is a superalgebra automorphism.

Lemma 4.6. Keep the same notations and assumptions as in Theorem 4.5 and
its proof. Suppose that Π is an integral base for R and fix nonzero elements
fα ∈ Gα and yα ∈ Lf(α) for all α ∈ Π. Then there is an isomorphism from G
to L mapping fα to yα and hα to h′f(α) for all α ∈ Π. Moreover, if Π is a base,

then such an isomorphism is unique.

Proof. Consider the Chevalley bases {eα, hi | α ∈ R×, 1 ≤ i ≤ ℓ} and {xβ , ti |
β ∈ S×, 1 ≤ i ≤ ℓ} as well as the isomorphism θ : G −→ L as in Theorem 4.5.
Since fα ∈ Gα = Feα, there is kα ∈ F \ {0} such that fα = kαeα. Similarly,
there is a nonzero scalar k′α such that yα = k′αxf(α). Define ϕ : ⟨R⟩ −→ F \ {0}
mapping α ∈ Π to k−1

α and ϕ′ : ⟨S⟩ −→ F \ {0} mapping f(α) ∈ f(Π) to

k′α. Now using (4.2), one can see that isomorphism ψ := ϕ̃′ ◦ θ ◦ ϕ̃ has the
desired properties. Next suppose Π is a base for R and ψ and ψ′ are two
isomorphisms from G to L mapping fα to yα and hα to h′f(α) for all α ∈ Π.

Then φ := ψ−1 ◦ ψ′ is an automorphism of G mapping fα to fα and hα to
hα, for α ∈ Π. Since for α ∈ Π, φ(fα) = fα, we have φ(eα) = eα. On the
other hand, as φ is identity on H, φ preserves the root spaces. This together
with the fact that [eα, φ(e−α)] = [φ(eα), φ(e−α)] = φ(hα) = hα for all α ∈ Π,
implies that φ(e−α) = e−α. Now suppose that α ∈ R×, since Π is a base, there
are r1, . . . , rn ∈ {±1} and αi1 , . . . , αin ∈ Π such that α = r1αi1 + · · · + rnαin

and that r1αi1 + · · · + rtαit ∈ R× for all 1 ≤ t ≤ n. This together with [16,
Lemma 2.4] and the fact that root spaces corresponding to nonzero roots are
one dimensional, implies that Gα = F[ernαn , . . . , [er3α3 , [er2α2 , er1α1 ]] · · · ]. But
φ(eα) = eα and φ(e−α) = e−α for all α ∈ Π, so the restriction of φ to Gα is
identity. This completes the proof. □
4.2. Classification.

Proposition 4.7. Suppose that (G, (·, ·),H) and (L, (·, ·)′, T ) are two infinite
dimensional locally finite basic classical simple Lie superalgebras with corre-
sponding root systems R and S respectively. Denote the induced forms on
V := spanFR and U := spanFS again by (·, ·) and (·, ·)′ respectively. Suppose
that (⟨R⟩, (·, ·), R) and (⟨S⟩, (·, ·)′, S) are isomorphic locally finite root super-
systems, then there is an isomorphism from G to L mapping H onto T.

Proof. Locally finite basic classical simple Lie superalgebras with zero odd
part are exactly locally finite split simple Lie algebras in the sense of [10].
So contemplating [10, Theorem IV.4], we may assume L1 ̸= {0}. Suppose that
f : ⟨R⟩ −→ ⟨S⟩ is the isomorphism from R to S with (f(α), f(β))′ = k(α, β) for
α, β ∈ R and some nonzero scalar k. Using Lemma 4.1, we extend f to a linear
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isomorphism, denoted again by f, from spanFR to spanFS with (f(α), f(β))′ =
k(α, β) for α, β ∈ spanFR. Fix r, s ∈ F \ {0} such that r = sk. Therefore, we
have

r(α, β) = sk(α, β) = s(f(α), f(β))′ (α, β ∈ spanFR).

For α ∈ spanFR, take tα to be the unique element of H representing α through
(·, ·) and for β ∈ spanFS, take t

′
β to be the unique element of T representing β

through (·, ·)′. Set

hα := rtα and h′β := st′β (α ∈ R, β ∈ S).

By Lemma 2.8, there is a base Π for R and a class {Rγ | γ ∈ Γ} of finite
irreducible closed sub-supersystems of R of the same type as R such that R
is the direct union of Rγ ’s and for each γ ∈ Γ, Π ∩ Rγ is a base for Rγ . Now
Π′ := f(Π) is a base for S and S = ∪γ∈ΓSγ in which Sγ := f(Rγ) is a finite
irreducible closed sub-supersystem of S and Π′

γ := Π′∩Sγ is a base for Sγ . For
each γ ∈ Γ, set

G(γ) :=
∑

α∈R×
γ

Gα ⊕
∑

α∈R×
γ

[Gα,G−α] and H(γ) :=
∑

α∈R×
γ

[Gα,G−α],

and

L(γ) :=
∑

α∈S×
γ

Lα ⊕
∑

α∈S×
γ

[Lα,L−α] and T (γ) :=
∑

α∈S×
γ

[Lα,L−α].

Then as in the proof of [16, Lemma 2.28], G(γ) is a finite dimensional basic
classical simple Lie superalgebra with Cartan subalgebra H(γ) and correspond-
ing root system Rγ and L(γ) is a finite dimensional basic classical simple Lie
superalgebra with Cartan subalgebra T (γ) and corresponding root system Sγ .

Now fix {fα ∈ Gα | α ∈ Π} and {yα ∈ Lf(α) | α ∈ Π}, By Lemma 4.6, for each
γ ∈ Γ, there is a unique isomorphism θγ from G(γ) to L(γ) mapping fα to yα
and hα to h′f(α) for α ∈ Πγ . Now for γ1, γ2 ∈ Γ with Rγ1 ⊆ Rγ2 , θγ1 , θγ2 |G(γ1)

are isomorphisms from G(γ1) to L(γ1) mapping fα to yα and hα to h′f(α) for

all α ∈ Πγ , therefore, we have θγ1 = θγ2 |G(γ1) by Lemma 4.6. This allows
us to define the isomorphism θ : G −→ L by θ(x) = θγ(x) if x ∈ G(γ). The
isomorphism θ maps H onto T. This completes the proof. □

Corollary 4.8. Suppose that L is a locally finite basic classical simple Lie su-
peralgebra. Assume H and T are two Cartan subalgebras of L with correspond-
ing root systems R and S respectively. Then H and T are conjugate under
Aut(L) if and only if R and S are isomorphic locally finite root supersystems.

Proof. Assume ϕ : L −→ L is a Lie superalgebra automorphism such that
T = ϕ(H). Define the bilinear form (·, ·)′ : L × L −→ F with (x, y)′ :=
(ϕ−1(x), ϕ−1(y)) for all x, y ∈ L. The linear isomorphism ϕ |H: H −→ T in-

duces a linear isomorphism ϕ̇ : H∗ −→ T ∗ mapping α ∈ H∗ to α ◦ (ϕ|T )−1. For



Locally finite simple Lie superalgebras 2048

each h ∈ H, α ∈ R and x ∈ Lα, we have [ϕ(h), ϕ(x)] = ϕ[h, x] = α(h)ϕ(x) =

ϕ̇(α)(ϕ(h))ϕ(x). Now it follows that (L, (·, ·)′, T ) is an extended affine Lie su-

peralgebra, ϕ(Lα) = Lϕ̇(α) and that S = ϕ̇(R). For β ∈ spanFS, take t
′
β to be

the unique element of T representing β through (·, ·)′ and for α ∈ spanFR, take
tα to be the unique element of H representing α through (·, ·). One can easily
check that ϕ(tα) = t′

ϕ̇(α)
and (tα, tβ) = (t′

ϕ̇(α)
, t′

ϕ̇(β)
)′ for all α, β ∈ R. These all

together imply that ϕ̇ |⟨R⟩ defines an isomorphism from R to S. The reverse
part follows from Proposition 4.7, [10, Corollary IV.5] and finite dimensional
theory of Lie superalgebras. □

Using [10, Theorem IV.6], one has the classification of locally finite split
simple Lie algebras, i.e., locally finite basic classical simple Lie superalgebras
with zero odd part. In what follows using Theorem 3.2, Examples 3.4, 3.6,
Proposition 4.7 and Lemma 3.7, we give the classification of locally finite basic
classical simple Lie superalgebras with nonzero odd part:

Theorem 4.9. Each locally finite basic classical simple Lie superalgebra with
nonzero odd part is either a finite dimensional basic classical simple Lie super-
algebra or isomorphic to one and only one of the Lie superalgebras osp(2I, 2J)
(I, J index sets with |I ∪J | = ∞, |J | ̸= 0), osp(2I+1, 2J) (I, J index sets with
|I| <∞, |J | = ∞) or sl(I0, I1) (I an infinite superset with I0, I1 ̸= ∅).

Proposition 4.10. Suppose that L is an infinite dimensional locally finite basic
classical simple Lie superalgebra with nonzero odd part, then if for an infinite
index set I and a nonempty index set J, L ≃ osp(2I+1, 2J) ≃ osp(2I, 2J), there
are two conjugacy classes for Cartan subalgebras of L under Aut(L); otherwise
all Cartan subalgebras of L are conjugate under Aut(L), i.e., there is just one
conjugacy class for Cartan subalgebras of L under Aut(L).

Proof. We first assume I is an infinite index set, J a nonempty index set and
L ≃ osp(2I + 1, 2J) ≃ osp(2I, 2J). We know form Example 3.4 that there
are Cartan subalgebras H1 and H2 for L with corresponding root systems R1

of type B(I, J) and R2 of type D(I, J) respectively; in particular thanks to
Corollary 4.8, there are at least two conjugacy classes for Cartan subalgebras
of L under Aut(L). We next note that there is a decomposition L0 = G1 ⊕ G2

for L0 into simple ideals in which G1 is isomorphic to o(2I+1,F) ≃ o(2I,F) and
G2 is isomorphic to sp(J,F); see [10] for the notations. By [10, Corollary VI.8]
and finite dimensional theory of Lie algebras, there are two conjugacy classes
for Cartan subalgebras of G1 under Aut(G1) and there is just one conjugacy
class for Cartan subalgebras of G2 under Aut(G2). Therefore, up to Aut(G1)-
conjugacy, H1 ∩ G1,H2 ∩ G1 are the only non-conjugate Cartan subalgebras
of G1; also H1 ∩ G2,H2 ∩ G2 are Aut(G2)-conjugate Cartan subalgebras of G2

and in fact up to Aut(G2)-conjugacy, H1 ∩ G2 is the only Cartan subalgebra
of G2. Now suppose that T is a Cartan subalgebra of L with corresponding
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root system S = S0 ∪ S1. We want to show that T is either conjugate to H1

or to H2. Since T ∩ G1 is a Cartan subalgebra of G1 and T ∩ G2 is a Cartan
subalgebra of G2, there are i ∈ {1, 2} and ϕ1 ∈ Aut(G1), ϕ2 ∈ Aut(G2) such that
ϕ1(T ∩G1) = Hi∩G1 and ϕ2(T ∩G2) = Hi∩G2. So ϕ1⊕ϕ2 is an automorphism
of L0 mapping T = (T ∩ G1) ⊕ (T ∩ G2) to Hi = (Hi ∩ G1) ⊕ (Hi ∩ G2). This
implies that (Ri)0 is isomorphic to S0. So using the classification of locally
finite root supersystems (Theorem 2.4) together with [16, Proposition 2.5 and
Lemma 2.17] and the fact that |Ri|, |S| = ∞, Ri is isomorphic to S. Therefore
there is an automorphism of L mapping T to Hi by Proposition 4.7. This
implies that there are exactly two conjugacy classes for Cartan subalgebras of
L under Aut(L).

Next suppose that L is one of the Lie superalgebras osp(2I, 2J), osp(2I +
1, 2J) where I, J are index sets with 0 ̸= |I| <∞, |J | ̸= 0 or sl(I0, I1) where I
is an infinite superset with |I| = ∞ and I0, I1 ̸= ∅. Take h to be the standard
Cartan subalgebra of L introduced in Examples 3.4 and 3.6 and consider its
corresponding root system R. Next suppose that T is another Cartan subalge-
bra of L and take S to be the corresponding root system of L with respect to
T. Then S is an irreducible locally finite root supersystem with |S| = ∞. From
Theorem 2.4 and Lemmas 2.16 and 2.17, S is isomorphic to the root system
of one of the Lie superalgebras aI′,J′ , bI′,J′ , cT ′ introduced in Lemma 3.7. Call
this Lie superalgebra G and take H to be its standard Cartan subalgebra, so
by Proposition 4.7, there is an isomorphism ϕ : L −→ G mapping T to H.
Now since L ≃ G, using Lemma 3.7, there is an isomorphism ψ form L to G
mapping h to H. Therefore, ψ−1 ◦ ϕ is an automorphism of L mapping T to h.
This completes the proof. □
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