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Abstract. Let Ai, Bi, Xi, i = 1, . . . ,m, be n-by-n matrices such that∑m
i=1 |Ai|2 and

∑m
i=1 |Bi|2 are nonzero matrices and each Xi is positive

semidefinite. It is shown that if f is a nonnegative increasing convex
function on [0,∞) satisfying f (0) = 0, then

2sj

f


∣∣∑m

i=1 A
∗
iXiBi

∣∣√∥∥∥∑m
i=1 |Ai|2

∥∥∥ ∥∥∥∑m
i=1 |Bi|2

∥∥∥

 ≤ sj (⊕m

i=1f (2Xi))

for j = 1, . . . , n. Applications of our results are given.
Keywords: Singular value, arithmetic-geometric mean, direct sum, pos-
itive semidefinite matrix, convex function.

MSC(2010): Primary: 15A18; Secondary: 15A42, 15A60.

1. Introduction

The set of n × n complex matrices is denoted by Mn(C). The singular
values s1 (A) , . . . , sn (A) of A ∈ Mn(C) are the eigenvalues of the matrix |A| =
(A∗A)

1/2
arranged in decreasing order and repeated according to multiplicities.

A matrix A ∈ Mn(C) is said to be Hermitian if A∗ = A, where A∗ denotes
the conjugate transpose of A. A Hermitian matrix A is said to be positive
semidefinite or nonnegative definite written as A ≥ 0, if x∗Ax ≥ 0 for all
x ∈ Cn. If s1 (A) ≤ 1 for a matrix A ∈ Mn(C), then A is called a contraction.
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The direct sum of matrices A1, . . . , Am in Mn(C), denoted by ⊕m
i=1Ai, is the

block diagonal matrix defined by ⊕m
i=1Ai =


A1 0 · · · 0

0 A2
. . .

...
...

. . .
. . . 0

0 · · · 0 Am

. When

m = 2, we write A1 ⊕A2 instead of ⊕2
i=1Ai.

The symbol ∥·∥ shows the spectral norm on Mn(C), that is the norm defined
by ∥A∥ = sup{∥Ax∥ : x ∈ Cn, ∥x∥ = 1}.

The well-known arithmetic-geometric mean inequality for singular values
was proved in [4]. It was shown that if A,B ∈ Mn(C) are positive semidefinite,
then

(1.1) sj (AB) ≤ 1

2
sj
(
A2 +B2

)
, j = 1, 2, . . . , n.

Inequality (1.1) can be stated in another form: If A,B ∈ Mn(C), then

(1.2) sj (A
∗B) ≤ 1

2
sj (AA

∗ +BB∗) , j = 1, 2, . . . , n.

On the other hand, Zhan in [11] proved that

(1.3) sj (A−B) ≤ sj (A⊕B) , j = 1, 2, . . . , n

for any positive semidefinite matrices A,B ∈ Mn(C). It is pointed out in [12]
that the two inequalities (1.1) and (1.3) are equivalent.

Tao in [10] gave a new equivalent form of the two inequalities:

(1.4) 2sj (K) ≤ sj

[
M K
K∗ N

]
for any positive semidefinite block matrix

[
M K
K∗ N

]
, where M ∈ Mm(C),

N ∈ Mn(C),.
Also, Albadawi in [1] proved that if A,B,X are bounded linear operators

on a complex separable Hilbert space H such that X is positive, then

(1.5) sj (AXB∗) ≤ 1

2
∥X∥ sj (A∗A+B∗B) .

for j = 1, . . ..
Zou in [13] obtained a new equivalent form of the arithmetic-geometric mean

inequality for singular values. It says that if A,B,X ∈ Mn(C) such that X is
positive semidefinite, then

(1.6) sj (A
∗XB) ≤ sj

(
(AA∗ +BB∗)

1/2
X (AA∗ +BB∗)

1/2
)

for j = 1, . . . , n.
In this article, we introduce inequalities for the singular values of convex

functions of matrices and we give applications of our results for partitioned
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2×2 positive semidefinite block matrices. Moreover, special cases of our results
are proposed.

2. Main results

In this section, based on the arithmetic-geometric mean inequality (1.2) we
establish inequalities for singular values of convex functions of matrices and for
2 × 2 block matrices. To start our analysis we start with the following basic
lemmas that we need.

Lemma 2.1 ([3]). Let A ∈ Mn(C). Then

sj (AA
∗) = sj (A

∗A)

for j = 1, 2, . . . , n.

Lemma 2.2 ([3]). Let A,B ∈ Mn(C). Then

sj (AB) ≤ ∥A∥ sj (B)

for j = 1, 2, . . . , n.

Lemma 2.3. Let A ∈ Mn (C) and let f be a nonnegative increasing function
on I. Then

f (sj (A)) = sj (f (|A|))
for j = 1, 2, . . . , n.

Lemma 2.4. Let A,B ∈ Mn (C). Then

sj

([
A B
B A

])
= sj ((A+B ⊕ (A−B)))

for j = 1, 2, . . . , n.

Lemma 2.5. Let A,X ∈ Mn (C) such that A is positive semidefinite with
spectrum contained in an interval I and X is contraction. If f is an increasing
convex function on I such that 0 ∈ I and f (0) ≤ 0, then

sj (f (X∗AX)) ≤ sj (X
∗f (A)X)

for j = 1, 2, . . . , n.

The following is our first main result.

Theorem 2.6. Let A,B,X ∈ Mn(C) such that A,B are nonzero matrices and
X is positive semidefinite. If f is a nonnegative increasing convex function on
[0,∞) satisfying f (0) = 0, then

(2.1) 2sj

(
f

(
|A∗XB|
∥A∥ ∥B∥

))
≤ sj (f (2X))

for j = 1, . . . , n.
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Proof. Let A = A
∥A∥ and B = B

∥B∥ . Then

(2.2) ∥A∥ = ∥B∥ = 1

and the partitioned matrix 1√
2

[
|A∗| 0
0 |B∗|

]
is a contraction. For j =

1, . . . , n, we have

(2.3) sj (f (|A∗XB|)) = sj

(
f

(
|A∗XB|
∥A∥ ∥B∥

))
,

(2.4) sj (2X) = sj (2X ⊕ 0) ,

and

(2.5) sj (f (|A∗XB|)) = sj (f (|A∗XB| ⊕ 0)) .

Now,

sj (f (|A∗XB|)) = sj (f (|A∗XB| ⊕ 0)) (by Lemma 2.3 and since f (0) = 0)

≤ f

(
sj

(
X1/2 |A∗|2 X1/2 +X1/2 |B∗|2 X1/2

2
⊕ 0

))
(by inequality (1.2))

= f

(
sj

(
1

2

[
X1/2 X1/2

0 0

] [
|A∗|2 0

0 |B∗|2
] [

X1/2 0
X1/2 0

]))
= f

(
sj

(
1√
2

[
|A∗| 0
0 |B∗|

] [
X X
X X

]
1√
2

[
|A∗| 0
0 |B∗|

]))
(by Lemma 2.1)

≤ 1

2

∥∥∥∥[ |A∗| 0
0 |B∗|

]∥∥∥∥2 sj (f [ X X
X X

])
(by Lemma 2.2)

=
1

2
max

(
∥A∥2 , ∥B∥2

)
sj

(
f

[
2X 0
0 0

])
(by Lemma 2.4)

=
1

2
sj (f (2X ⊕ 0)) (by identity (2.2))

=
1

2
f (sj (2X ⊕ 0)) (by Lemma 2.3)

=
1

2
f (sj (2X)) (by identity (2.4))

=
1

2
sj (f (2X)) (by Lemma 2.3).(2.6)
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Thus, the result follows from identites (2.3), (2.4), and inequality (2.6). □

An extension of Theorem 2.6 for sums and products of several matrices can
be stated as follows. Its proof follows by applying Theorem 2.6 to the matrices

A =

 A1 0
...

...
Am 0

, B =

 B1 0
...

...
Bm 0

, and X = ⊕m
i=1Xi.

Corollary 2.7. Let Ai, Bi, Xi ∈ Mn(C), i = 1, . . . ,m, such that
∑m

i=1 |Ai|2

and
∑m

i=1 |Bi|2 are nonzero matrices and each Xi is positive semidefinite. If f
is a nonnegative increasing convex function on [0,∞) satisfying f (0) = 0, then

(2.7) 2sj

f

 |
∑m

i=1 A
∗
iXiBi|√∥∥∥∑m

i=1 |Ai|2
∥∥∥ ∥∥∥∑m

i=1 |Bi|2
∥∥∥

 ≤ sj (⊕m

i=1f (2Xi))

for j = 1, . . . , n.

Another application of Theorem 2.6 can be seen in the following result.

Corollary 2.8. Let Ai, Bi,K,M,N ∈ Mn(C), i = 1, 2, such that |A1|2+ |A2|2

and |B1|2 + |B2|2 are nonzero matrices and L =

[
M K
K∗ N

]
is positive semi-

definite. If f is a nonnegative increasing convex function on [0,∞) satisfying
f (0) = 0, then

2sj

f

 |A∗
1MB1 +A∗

2K
∗B1 +A∗

1KB2 +A∗
2NB2|√∥∥∥|A1|2 + |A2|2

∥∥∥ ∥∥∥|B1|2 + |B2|2
∥∥∥


 ≤ sj (f (2L))

for j = 1, . . . , n.

Proof. Let A =

[
A1 0
A2 0

]
and B =

[
B1 0
B2 0

]
. Then

2sj

f

 |A∗
1MB1 +A∗

2K
∗B1 +A∗

1KB2 +A∗
2NB2|√∥∥∥|A1|2 + |A2|2

∥∥∥∥∥∥|B1|2 + |B2|2
∥∥∥



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= 2sj

(
f

(
|A∗LB|
∥A∥ ∥B∥

⊕ 0

))
= 2sj

(
f

(
|A∗LB|
∥A∥ ∥B∥

)
⊕ f (0)

)
= 2sj

(
f

(
|A∗LB|
∥A∥ ∥B∥

)
⊕ 0

)
(since f (0) = 0)

≤ sj (f (2L)⊕ 0) (by Theorem 2.6)

= sj (f (2L))

for j = 1, . . . , n. □

Now, we give three applications of Corollary 2.8 by using some special pos-
itive semidefinite 2× 2 block matrices.

Corollary 2.9. Let Ai, Bi, X, Y ∈ Mn(C), i = 1, 2, such that |A1|2 + |A2|2

and |B1|2+ |B2|2 are nonzero matrices. If f is a nonnegative increasing convex
function on [0,∞) satisfying f (0) = 0, then

2sj

f


∣∣∣∣ A∗

1X
∗XB1 +A∗

2Y
∗XB1

+A∗
1X

∗Y B2 +A∗
2Y

∗Y B2

∣∣∣∣√∥∥∥|A1|2 + |A2|2
∥∥∥∥∥∥|B1|2 + |B2|2

∥∥∥

 ≤ sj (f (2 (XX∗ + Y Y ∗)))

for j = 1, . . . , n.

Proof. Let L =

[
X∗X X∗Y
Y ∗X Y ∗Y

]
in Corollary 2.8. Then L = P ∗P is positive

semidefinite, where P =

[
X Y
0 0

]
. It follows from Corollary 2.8 that

(2.8) 2sj

f


∣∣∣∣ A∗

1X
∗XB1 +A∗

2Y
∗XB1

+A∗
1X

∗Y B2 +A∗
2Y

∗Y B2

∣∣∣∣√∥∥∥|A1|2 + |A2|2
∥∥∥ ∥∥∥|B1|2 + |B2|2

∥∥∥

 ≤ sj (f (2L))

for j = 1, . . . , n. Also,

sj (f (2L)) = f(2sj (P
∗P ))

= f(2sj (PP ∗))

= f(2sj (((XX∗ + Y Y ∗)⊕ 0)))

= sj (f (2 (XX∗ + Y Y ∗))))(2.9)

for j = 1, . . . , n. Now, the result follows from inequality (2.8) and identity
(2.9). □
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Corollary 2.10. Let Ai, Bi, X, Y ∈ Mn(C), i = 1, 2, such that |A1|2 + |A2|2

and |B1|2 + |B2|2 are nonzero matrices and X,Y are positive semidefinite. If
f is a nonnegative increasing convex function on [0,∞) satisfying f (0) = 0,
then

2sj

f


∣∣∣∣ A∗

1 (X + Y )B1 +A∗
2 (X − Y )B1

+A∗
1 (X − Y )B2 +A∗

2 (X + Y )B2

∣∣∣∣√∥∥∥|A1|2 + |A2|2
∥∥∥∥∥∥|B1|2 + |B2|2

∥∥∥

 ≤ sj (f (2X)⊕ f(2Y ))

for j = 1, . . . , n.

Proof. Let L =

[
X+Y

2
X−Y

2
X−Y

2
X+Y

2

]
and U = 1√

2

[
In In

−In In

]
. Then L =

U∗ (X ⊕ Y )U and so L is positive semidefinite. It follows from Corollary 2.8
that

(2.10) 2sj

f


∣∣∣∣ A∗

1 (X + Y )B1 +A∗
2 (X − Y )B1

+A∗
1 (X − Y )B2 +A∗

2 (X + Y )B2

∣∣∣∣
2

√∥∥∥|A1|2 + |A2|2
∥∥∥ ∥∥∥|B1|2 + |B2|2

∥∥∥

 ≤ sj (f (2L))

for j = 1, . . . , n. Since U is unitary and L = U∗ (X ⊕ Y )U , we have

sj (f (2L)) = f (2sj (U
∗ (X ⊕ Y )U))

= sj (f (2X)⊕ f(2Y ))(2.11)

for j = 1, . . . , n. Now, the result follows from inequality (2.10) and identity
(2.11). □

Corollary 2.11. Let Ai, Bi, X, Y ∈ Mn(C), i = 1, 2 such that |A1|2 + |A2|2,
|B1|2 + |B2|2 are nonzero matrices and X,Y are positive semidefinite. If m is
a positive integer, then

2sj

f


∣∣∣∣ A∗

1X
1/2Zm−1X1/2B1 +A∗

2Y
1/2Zm−1X1/2B1

+A∗
1X

1/2Zm−1Y 1/2B2 +A∗
2Y

1/2Zm−1Y 1/2B2

∣∣∣∣√∥∥∥|A1|2 + |A2|2
∥∥∥∥∥∥|B1|2 + |B2|2

∥∥∥

 ≤ sj (f (2Zm))

for j = 1, . . . , n, where Z = X + Y .

Proof. Let L = (PP ∗)
m
, where P =

[
X1/2 0
Y 1/2 0

]
. Then L is positive semi-

definite,

(P ∗P )
r

= (X + Y )
r ⊕ 0

= Zr ⊕ 0 (for r = m− 1 and m)
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and

L = P (P ∗P )
m−1

P ∗

=

[
X1/2Zm−1X1/2 X1/2Zm−1Y 1/2

Y 1/2Zm−1X1/2 Y 1/2Zm−1Y 1/2

]
.

It follows from Corollary 2.8 that

2sj

f


∣∣∣∣ A∗

1X
1/2Zm−1X1/2B1 +A∗

2Y
1/2Zm−1X1/2B1

+A∗
1X

1/2Zm−1Y 1/2B2 +A∗
2Y

1/2Zm−1Y 1/2B2

∣∣∣∣√∥∥∥|A1|2 + |A2|2
∥∥∥∥∥∥|B1|2 + |B2|2

∥∥∥



(2.12) ≤ sj (f (2L))

for j = 1, . . . , n. Also,

sj (f (2L)) = f (2sj ((PP ∗)
m
))

= f (2sj ((P
∗P )

m
))

= f (2sj (Zm ⊕ 0))

= sj (f (2Zm))(2.13)

for j = 1, . . . , n. Now, the result follows from inequality (2.12) and identity
(2.13). □

In order to give our second main result, we need the following lemma.

Lemma 2.12. Let f be a convex function on [0,∞) such that f(0) ≤ 0. Then

f (x)

y
≤ f

(
x

y

)
for all x ≥ 0 and 0 < y ≤ 1.

Proof.

f (x)

y
=

1

y

(
f

(
y

(
x

y

)
+ (1− y) 0

))
≤ 1

y

(
yf

(
x

y

)
+ (1− y) f (0)

)
(since f is convex)

≤ f

(
x

y

)
(since f(0) ≤ 0),

as required. □

Based on Corollary 2.7 and Lemma 2.12 we have the following result.
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Theorem 2.13. Let Ai, Bi, Xi ∈ Mn(C), i = 1, . . . ,m, such that
∑m

i=1 |Ai|2,∑m
i=1 |Bi|2 are contractions and each Xi is positive semidefinite. If f is a

nonnegative increasing convex function on [0,∞) satisfying f (0) = 0, then

2sj

(
f

(∣∣∣∣∣
m∑
i=1

A∗
iXiBi

∣∣∣∣∣
))

≤

√√√√∥∥∥∥∥
m∑
i=1

|Ai|2
∥∥∥∥∥
∥∥∥∥∥

m∑
i=1

|Bi|2
∥∥∥∥∥sj (⊕m

i=1f (2Xi))

for j = 1, . . . , n.

Proof. Without loss of generality, assume that the matrices
∑m

i=1 |Ai|2,∑m
i=1 |Bi|2 are both nonzero. Since the matrix |

∑m
i=1 A

∗
iXiBi| is positive

semidefinite, there exist U,D ∈ Mn(C) such that U is unitary and D =
diag (λ1, . . . , λn) is diagonal such that |

∑m
i=1 A

∗
iXiBi| = U∗DU .

Let A =
(∑m

i=1 |Ai|2
)1/2

and B =
(∑m

i=1 |Bi|2
)1l2

. Then A and B are con-

tractions and so

f

 |
∑m

i=1 A
∗
iXiBi|√∥∥∥∑m

i=1 |Ai|2
∥∥∥∥∥∥∑m

i=1 |Bi|2
∥∥∥
 = U∗f

(
D

∥A∥ ∥B∥

)
U

= U∗diag

(
f

(
λ1

∥A∥ ∥B∥

)
, . . . , f

(
λn

∥A∥ ∥B∥

))
U

≥ U∗diag

(
f (λ1)

∥A∥ ∥B∥ , . . . ,
f (λn)

∥A∥ ∥B∥

)
U

(by Lemma 2.12)

=
U∗f(D)U

∥A∥ ∥B∥

=
f
(∣∣∑m

i=1 A
∗
iXiBi

∣∣)
∥A∥ ∥B∥ .(2.14)

Now, the result follows from Corollary 2.7 and inequality (2.14). □
Applying Corollary 2.7 to the convex functions f (t) = tr, r ≥ 1 and f (t) =

et
r −1, r ≥ 1, we have the following two results. Similar results can be obtained

by applying our other results to these functions.

Corollary 2.14. Let Ai, Bi, Xi ∈ Mn(C), i = 1, . . . ,m, such that each Xi is
positive semidefinite and let r ≥ 1. Then

(2.15) sj

(
m∑
i=1

A∗
iXiBi

)
≤ 2

r−1
r

√√√√∥∥∥∥∥
m∑
i=1

|Ai|2
∥∥∥∥∥
∥∥∥∥∥

m∑
i=1

|Bi|2
∥∥∥∥∥sj (⊕m

i=1Xi)

for j = 1, . . . , n.
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Corollary 2.15. Let Ai, Bi, Xi ∈ Mn(C), i = 1, . . . ,m, such that
∑m

i=1 |Ai|2,∑m
i=1 |Bi|2 nonzero matrices and each Xi is positive semidefinite. Then

2sj

e

|∑m
i=1 A∗

i XiBi|r

(∥∑m
i=1|Ai|2∥∥∑m

i=1|Bi|2∥)r/2 − In

 ≤ sj

(
⊕m

i=1

(
e2

rXr
i − In

))
for j = 1, . . . , n. In particular, if

∑m
i=1 |Ai|2 and

∑m
i=1 |Bi|2 are contractions,

then

sj
(
e|

∑m
i=1 A∗

i XiBi|r − In
)
≤

√∥∥∑m
i=1 |Ai|2

∥∥∥∥∑m
i=1 |Bi|2

∥∥
2

sj
(
⊕m

i=1

(
e2

rXr
i − In

))
for j = 1, . . . , n.
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