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Abstract. In this paper, a new hybrid conjugate gradient algorithm

is proposed for solving unconstrained optimization problems. The new
method possesses the sufficient descent property for any line search.
Moreover, the global convergence of the proposed method is proved under

the Wolfe line search. Numerical experiments are also presented to show
the efficiency of the proposed algorithm, especially for solving highly di-
mensional problems.
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1. Introduction

In this paper, we consider the following unconstrained optimization problem:

(1.1) min
x∈Rn

f(x),

where f : Rn → R is a continuously differentiable function, Rn denotes an
n-dimensional Euclidean space, and the gradient g(x) := ▽f(x) is available.
Conjugate gradient (CG) methods are efficient for solving unconstrained opti-
mization problem (1.1). Generally, the CG method for (1.1) is of the form:

(1.2) xk+1 = xk + αkdk,

where xk ∈ Rn is the current iterate and αk > 0 is a step length determined
by some suitable line search. dk ∈ Rn is the search direction generated by the
following:

(1.3) dk =

{
−gk, if k = 1,
−gk + βkdk−1, if k ≥ 2,
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where gk denotes the gradient g(xk) and βk ∈ R is a scalar parameter. Some
well-known CG methods are the Hestenes-Stiefel (HS) method [14], the Dai-
Yuan (DY ) method [6], the Polak-Ribière-Polyak (PRP ) method [20, 21], the
Fletcher-Reeves (FR) method [10]. The parameters βk in these methods are
given respectively by

(1.4)
βHS
k =

gTk yk−1

dT
k−1yk−1

, βDY
k = ∥gk∥

2

dT
k−1yk−1

,

βPRP
k =

gTk yk−1

∥gk−1∥2 , βFR
k = ∥gk∥

2

∥gk−1∥2 .

In (1.4), yk−1 := gk − gk−1 and ∥ · ∥ stands for the Euclidean norm.
In practice, the positive step length αk of the CG method usually is com-

puted by the standard Wolfe line search conditions:

(1.5a) f(xk + αkdk)− f(xk) ≤ δαkg
T
k dk,

(1.5b) g(xk + αkdk)
T dk ≥ σgTk dk,

or the strong Wolfe line search conditions, i.e., (1.5a) and |g(xk +αkdk)
T dk| ≤

σ|gTk dk|, where 0 < δ < σ < 1.
As is well-known, the FR and DY algorithms possess good convergence

properties, but their practical performances are not so good in general. Under
the strong Wolfe line search, Al-Baali [1] proved the global convergence of the
FR algorithm with the parameter 0 < σ < 1

2 . Dai and Yuan [7] showed that
the DY algorithm is global convergent under the standard Wolfe line search
conditions (1.5a) and (1.5b). In contrary, the PRP and HS algorithms are
generally regarded to be two of the most efficient CG algorithms in compu-
tational point of view, but their convergence properties are not outstanding.
Hager and Zhang [13] conducted a detailed analysis to show that the PRP
and HS algorithms can automatically adjust βk to avoid jamming and their
practical performance is outbalance the algorithms with ∥gk∥2 in the numera-
tor of βk. In [23], Powell’s example shows that if the function is not strongly
convex, the PRP algorithm may not converge, even with an exact line search.
By Powell’s example, the HS algorithm may not converge for a general non-
linear function, with an exact line search. There has been much research on
convergence properties and computational performance of these CG algorithms
(see [2, 5, 13, 19,23] etc).

In recent years, based on the original CG algorithms and their variants,
several hybrid algorithms have been studied. Wei et al. [26] gave a variation of
the FR method (shortly, V FR method), that is

βV FR
k =

µ1∥gk∥2

µ2|gTk dk−1|+ µ3∥gk−1∥2
,

where µ1 > 0, µ3 > 0, µ2 > µ1 + ϵ1 and ϵ1 > 0 is an any given constant.
The V FR algorithm always satisfies the sufficient condition gTk dk ≤ −(µ2 −
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µ1)/µ2∥gk∥2, independently of choices of the parameter βk and the line search.
Simultaneously, Wei et al. [27] gave a variant of the PRP method (shortly,
V PRP method), that is

βV PRP
k =

∥gk∥2 −
∥gk∥

∥gk−1∥
gTk gk−1

∥gk−1∥2
.

The V PRP method inherits the excellent properties of the PRP method, such
as good numerical performance and the [11, Property (∗)]. Furthermore, under
the strong Wolfe line search with the parameter 0 < σ < 1

4 , Huang et al. [16]
showed that the V PRP method possesses the sufficient descent property and
the global convergence. Shortly afterwards, Yao et al. [25] extended this result
to the HS method and introduced a new method which we call the YWH
method with

βYWH
k =

∥gk∥2 −
∥gk∥

∥gk−1∥
gTk gk−1

dTk−1yk−1
.

Yao et al. [25] established that the YWH method can also generate sufficient
descent directions under the strong Wolfe line search with greater parameter
σ ∈ (0, 1

3 ). Zhang [28] made a little modification to the V PRP method and
suggested a new method, that is

βNPRP
k =

∥gk∥2 −
∥gk∥

∥gk−1∥
|gTk gk−1|

∥gk−1∥2
,

which we call the NPRP method. Zhang [28] showed that the NPRP method
possesses the sufficient descent property if 0 < σ < 1

2 in the strong Wolfe
line search and converges globally for nonconvex optimization with the strong
Wolfe line search. According to the idea of [26], Dai and Wen [8] proposed a
new method, denoted it by DPRP method, that is

(1.6) βDPRP
k =

∥gk∥2 −
∥gk∥

∥gk−1∥
|gTk gk−1|

µ|gTk dk−1|+ ∥gk−1∥2
,

where µ > 1. Dai and Wen [8] proved the sufficient descent property for
any line search and the global convergence of the DPRP method with the
standard Wolfe line search conditions (1.5a) and (1.5b). Recently, according
to works [6,25], Jiang et al. [18] introduced a hybrid method which we call the
JHJ method with

(1.7) βJHJ
k =

∥gk∥2 −max{0, ∥gk∥
∥dk−1∥g

T
k dk−1,

∥gk∥
∥gk−1∥

gTk gk−1}

dTk−1yk−1
.

Jiang et al. [18] proved the global convergence of the JHJ method with the
standard Wolfe line search conditions (1.5a) and (1.5b). More recently, Jian
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et al. [17] took a little modification to the JHJ method, and proposed the N
method as follows,

(1.8) βN
k =

∥gk∥2 −
∥gk∥

∥gk−1∥
max{0, gTk gk−1}

max{∥gk−1∥2, dTk−1yk−1}
.

Jian et al. [17] proved the descent property for any line search and the global
convergence of the N method with the standard Wolfe line search condi-
tions (1.5a) and (1.5b).

Motivated by the works of Wei et al. [27], Dai and Wen [8] and Jian et
al. [17], we introduce a new hybrid method (referred to as NHC method):

(1.9) βNHC
k =

∥gk∥2 −
∥gk∥

∥gk−1∥
max{0, gTk gk−1}

max{max{0, ugTk dk−1}+ ∥gk−1∥2, dTk−1yk−1}
,

where u > 1. It is easy to see that βNHC
k is one of hybrids of βN

k , βFR
k , βDY

k ,
βV FR
k , βYWH

k , βV PRP
k and βDPRP

k .
The remainder of this paper is organized as follows. In the next section, a

new hybrid CG algorithm is introduced, and then we show the sufficient descent
property of the new algorithm for any line search. In Section 3, some properties
of the proposed algorithm are presented, and the global convergence of the new
algorithm is also proved under the standard Wolfe line search. In Section 4,
some numerical results are reported to show the efficiency and feasibility of the
introduced algorithm. Finally, we give the conclusion.

2. A new hybrid conjugate gradient algorithm

In this section, based on (1.9), a new hybrid CG algorithm is proposed and
the sufficient descent property of the introduced algorithm is also proved.

The framework of the proposed algorithm is given as follows:

Algorithm NHC

Step 1: Select a starting point x1 ∈ Rn, and accuracy tolerance ϵ > 0. Compute
d1 = −g1 and the initial guess α1 = 1/∥g1∥. Let k = 1.

Step 2: If ∥gk∥ ≤ ϵ, then stop. Otherwise, skip to Step 3.
Step 3: Line search. Compute step length αk > 0 by the standard Wolfe line

search conditions (1.5a) and (1.5b).
Step 4: Let xk+1 = xk + αkdk and gk+1 = g(xk+1). Compute βNHC

k+1 .

Step 5: Generate dnew = −gk+1 + βNHC
k+1 dk. If the Powell [22] restart criterion

|gTk+1gk| ≥ 0.2∥gk+1∥2

holds, then let dk+1 = −gk+1, otherwise define dk+1 = dnew. Compute
the initial guess αk = αk−1∥dk−1∥/∥dk∥.

Step 6: Let k := k + 1 and return to Step 3.
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It is well-known that the initial selection of the step length αk weightily af-
fects the practical behavior of the standard Wolfe line search. If f is bounded
below along the search direction dk, then there exists a step length αk satis-
fying the standard Wolfe line search conditions (1.5a) and (1.5b). At the first
iteration, the initial guess of the step length is given as α1 = 1/∥g1∥. At the
following iteration, the starting guess for the step length αk in the standard
Wolfe line search is computed as αk−1∥dk−1∥/∥dk∥. This selection is firstly
introduced by Shanno and Phua in CONMIN [24].

The following theorem shows that the search direction dk in AlgorithmNHC
satisfies the sufficient descent property without any line search. The char-
acterization of dk plays an extremely significant role in analyzing the global
convergence property.

Theorem 2.1. Let the sequences {gk} and {dk} be generated by Algorithm
NHC. Then, for all k ≥ 1,

gTk dk ≤ −c∥gk∥2,
where c = 1− 1

u and u > 1.

Proof. For k = 1, it is easy to know that gT1 d1 = −∥g1∥2.
If βNHC

k = 0 for k > 1, then from (1.3), gTk dk = −∥gk∥2. Since 0 < c < 1,
the conclusion holds.

We next assume that βNHC
k ̸= 0. To prove gTk dk ≤ −c∥gk∥2 for k > 1, we

divide the proof into eight cases:
(i) gTk dk−1 ≤ 0, dTk−1yk−1 ≤ ∥gk−1∥2 and gTk gk−1 > 0. In this case, the

denominator of (1.9) is equal to ∥gk−1∥2, and the numerator of (1.8) is equal

to ∥gk∥2 −
∥gk∥

∥gk−1∥
gTk gk−1. Then, from (1.8), we have

βNHC
k =

∥gk∥2 −
∥gk∥

∥gk−1∥
gTk gk−1

∥gk−1∥2
= βV PRP

k .

It follows from (1.3) that

gTk dk = −∥gk∥2 +
∥gk∥2 −

∥gk∥
∥gk−1∥

gTk gk−1

∥gk−1∥2
gTk dk−1

= −∥gk∥2 +
∥gk∥2(1− cos⟨gk, gk−1⟩)

∥gk−1∥2
gTk dk−1

≤ −∥gk∥2

< −(1− 1

u
)∥gk∥2.(2.1)

(ii) gTk dk−1 ≤ 0, dTk−1yk−1 ≥ ∥gk−1∥2 and gTk gk−1 ≤ 0. In this case, the

denominator of (1.9) is equal to dTk−1yk−1, and the numerator of (1.9) is equal
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to ∥gk∥2. Then, from (1.9), we have

βNHC
k =

∥gk∥2

dTk−1yk−1
= βDY

k .

It follows from (1.3) that

(2.2) gTk dk = −∥gk∥2 +
∥gk∥2

dTk−1yk−1
gTk dk−1 ≤ −∥gk∥2 < −(1− 1

u
)∥gk∥2.

(iii) gTk dk−1 ≤ 0, dTk−1yk−1 ≥ ∥gk−1∥2 and gTk gk−1 > 0. In this case, the

denominator of (1.9) is equal to dTk−1yk−1, and the numerator of (1.9) is equal

to ∥gk∥2 −
∥gk∥

∥gk−1∥
gTk gk−1. From (1.9), we have

βNHC
k =

∥gk∥2 −
∥gk∥

∥gk−1∥
gTk gk−1

dTk−1yk−1
= βYWH

k .

Again, from (1.3), we deduce that

gTk dk = −∥gk∥2 +
∥gk∥2 −

∥gk∥
∥gk−1∥

gTk gk−1

dTk−1yk−1
gTk dk−1

= −∥gk∥2 +
∥gk∥2(1− cos⟨gk, gk−1⟩)

dTk−1yk−1
gTk dk−1

≤ −∥gk∥2

< −(1− 1

u
)∥gk∥2.(2.3)

(iv) gTk dk−1 ≤ 0, dTk−1yk−1 ≤ ∥gk−1∥2 and gTk gk−1 ≤ 0. In this case, the

denominator of (1.9) is equal to ∥gk−1∥2, and the numerator of (1.9) is equal
to ∥gk∥2. Then,

βNHC
k =

∥gk∥2

∥gk−1∥2
= βFR

k .

Hence, by (1.3), we obtain

(2.4) gTk dk = −∥gk∥2 +
∥gk∥2

∥gk−1∥2
gTk dk−1 ≤ −∥gk∥2 < −(1− 1

u
)∥gk∥2.

(v) gTk dk−1 > 0, dTk−1yk−1 ≤ ugTk dk−1 + ∥gk−1∥2 and gTk gk−1 ≤ 0. In this

case, the denominator of (1.9) is equal to ugTk dk−1+∥gk−1∥2, and the numerator
of (1.9) is equal to ∥gk∥2. Note that µ1 = 1, µ2 = u > 1 and µ3 = 1. Moreover,
we have

βNHC
k =

∥gk∥2

ugTk dk−1 + ∥gk−1∥2
= βV FR

k .
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So, from (1.3), one has

gTk dk = −∥gk∥2 +
∥gk∥2

ugTk dk−1 + ∥gk−1∥2
gTk dk−1

< −∥gk∥2 +
∥gk∥2

ugTk dk−1
gTk dk−1

= −(1− 1

u
)∥gk∥2.(2.5)

(vi) gTk dk−1 > 0, dTk−1yk−1 ≤ ugTk dk−1 + ∥gk−1∥2 and gTk gk−1 > 0. In

this case, the denominator of (1.9) is equal to ugTk dk−1 + ∥gk−1∥2, and the

numerator of (1.9) is equal to ∥gk∥2 −
∥gk∥

∥gk−1∥
gTk gk−1. Then, one has

βNHC
k =

∥gk∥2 −
∥gk∥

∥gk−1∥
gTk gk−1

ugTk dk−1 + ∥gk−1∥2
= βDPRP

k .

Consequently, from (1.3), we obtain

gTk dk = −∥gk∥2 +
∥gk∥2 −

∥gk∥
∥gk−1∥

gTk gk−1

ugTk dk−1 + ∥gk−1∥2
gTk dk−1

< −∥gk∥2 +
∥gk∥2

ugTk dk−1
gTk dk−1

= −(1− 1

u
)∥gk∥2.(2.6)

(vii) gTk dk−1 > 0, dTk−1yk−1 ≥ ugTk dk−1 + ∥gk−1∥2 and gTk gk−1 > 0. In this

case, the denominator of (1.9) is equal to dTk−1yk−1, and the numerator of (1.9)

is equal to ∥gk∥2 −
∥gk∥

∥gk−1∥
gTk gk−1. Again, from (1.9), we get

βNHC
k =

∥gk∥2 −
∥gk∥

∥gk−1∥
gTk gk−1

dTk−1yk−1
= βYWH

k .

It follows from (1.3) that

gTk dk = −∥gk∥2 +
∥gk∥2 −

∥gk∥
∥gk−1∥

gTk gk−1

dTk−1yk−1
gTk dk−1

< −∥gk∥2 +
∥gk∥2

ugTk dk−1
gTk dk−1 = −(1− 1

u
)∥gk∥2.(2.7)

(viii) gTk dk−1 > 0, dTk−1yk−1 ≥ ugTk dk−1 + ∥gk−1∥2 and gTk gk−1 ≤ 0. In this

case, the denominator of (1.9) is equal to dTk−1yk−1, and the numerator of (1.9)
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is equal to ∥gk∥2. Then,

βNHC
k =

∥gk∥2

dTk−1yk−1
= βDY

k .

It follows from (1.3) that

gTk dk = −∥gk∥2 +
∥gk∥2

dTk−1yk−1
gTk dk−1

≤ −∥gk∥2 +
∥gk∥2

ugTk dk−1
gTk dk−1 = −(1− 1

u
)∥gk∥2.(2.8)

Hence, from (2.1)-(2.8), we obtain the desired result. □

Remark 2.2. It is easy to find that 0 ≤ βNHC
k ≤ βN

k by expressions of βN
k and

βNHC
k . Furthermore, it is easy to gain descent of our algorithm by means of

idea of the [17, Lemma 1]. But this idea is invalid to show the sufficient descent
property of the proposed algorithm. From the proof process of Theorem 2.1,
it clearly shows that the range of choice of scalar βk is widen further and the
sufficient descent property of our algorithm is also proved.

3. Convergence analysis

In this section, we analyze the global convergence property of Algorithm
NHC. To do this, the following basic assumptions for the objective function
are given.

Assumption 3.1

(a): The level set L = {x ∈ Rn : f(x) ≤ f(x1)} is bounded.
(b): In some neighborhood N of L, the gradient g(x) = ∇f(x) is Lip-

schitz, i.e., there exists a constant L > 0 such that ∥g(x) − g(y)∥ ≤
L∥x− y∥, for all x, y ∈ N .

The following well-known lemma is usually called the Zoutendijk condi-
tion [29].

Lemma 3.1. Assume that Assumption 3 is satisfied. Consider any CG method
of the form (1.2) and (1.3), where dk is a descent direction and αk satisfies the
standard Wolfe line search conditions (1.5a) and (1.5b). Then,

(3.1)
+∞∑
k=1

(gTk dk)
2

∥dk∥2
< +∞.

From Theorem 2.1, it is easy to derive the following interesting property
about the parameter βk in (1.9).
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Theorem 3.2. Let βNHC
k be defined by (1.9). Then

(3.2) 0 ≤ βNHC
k ≤ gTk dk

gTk−1dk−1
, ∀ k > 1.

Proof. We first show that the left inequality of (3.2) holds. By the definition
of βNHC

k in (1.9), we obtain

βNHC
k =

∥gk∥2 −
∥gk∥

∥gk−1∥
max{0, gTk gk−1}

max{max{0, ugTk dk−1}+ ∥gk−1∥2, dTk−1yk−1}

≥
∥gk∥2 −

∥gk∥
∥gk−1∥

∥gk∥∥gk−1∥

max{u|gTk dk−1|+ ∥gk−1∥2, dTk−1yk−1}
= 0.

Let us now show that the right inequality of (3.2) holds. If βNHC
k = 0 and

gk ̸= 0, from Theorem 2.1, we have

βNHC
k = 0 <

gTk dk
gTk−1dk−1

, ∀ k > 1.

Assume that βNHC
k > 0. To prove βNHC

k ≤ gTk dk

gTk−1dk−1
for all k > 1, we consider

eight cases: (i) gTk dk−1 ≤ 0, dTk−1yk−1 ≤ ∥gk−1∥2 and gTk gk−1 > 0. In this case,

βNHC
k = βV PRP

k . Then, we have

gTk dk = −∥gk∥2 +
∥gk∥2 −

∥gk∥
∥gk−1∥

gTk gk−1

∥gk−1∥2
gTk dk−1

≤ −∥gk∥2 +
∥gk∥2 −

∥gk∥
∥gk−1∥

gTk gk−1

∥gk−1∥2
(∥gk−1∥2 + gTk−1dk−1)

= − ∥gk∥
∥gk−1∥

gTk−1gk−1 + βNHC
k gTk−1dk−1

< βNHC
k gTk−1dk−1.

By Theorem 2.1, we obtain βNHC
k <

gTk dk

gTk−1dk−1
.

(ii) gTk dk−1 ≤ 0, dTk−1yk−1 ≥ ∥gk−1∥2 and gTk gk−1 ≤ 0. In this case, βNHC
k =

βDY
k . Then, we have

gTk dk = −∥gk∥2 +
∥gk∥2

dTk−1yk−1
gTk dk−1

= −∥gk∥2 +
∥gk∥2

dTk−1yk−1
(dTk−1yk−1 + gTk−1dk−1)

= βNHC
k gTk−1dk−1.
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Therefore, we obtain βNHC
k =

gTk dk

gTk−1dk−1
.

(iii) gTk dk−1 ≤ 0, dTk−1yk−1 ≥ ∥gk−1∥2 and gTk gk−1 > 0. In this case,

βNHC
k = βYWH

k . Then, we have

gTk dk = −∥gk∥2 +
∥gk∥2 −

∥gk∥
∥gk−1∥

gTk gk−1

dTk−1yk−1
gTk dk−1

= −∥gk∥2 +
∥gk∥2 −

∥gk∥
∥gk−1∥

gTk gk−1

dTk−1yk−1
(dTk−1yk−1 + gTk−1dk−1)

= − ∥gk∥
∥gk−1∥

gTk gk−1 + βNHC
k gTk−1dk−1

< βNHC
k gTk−1dk−1.

It follows from Theorem 2.1 that βNHC
k <

gTk dk

gTk−1dk−1
.

(iv) gTk dk−1 ≤ 0, dTk−1yk−1 ≤ ∥gk−1∥2 and gTk gk−1 ≤ 0. In this case, βNHC
k =

βFR
k . Then, we have

gTk dk = −∥gk∥2 +
∥gk∥2

∥gk−1∥2
gTk dk−1

≤ −∥gk∥2 +
∥gk∥2

∥gk−1∥2
(∥gk−1∥2 + gTk−1dk−1)

= βNHC
k gTk−1dk−1.

Again, from Theorem 2.1, we have βNHC
k ≤ gTk dk

gTk−1dk−1
.

(v) gTk dk−1 > 0, dTk−1yk−1 ≤ ugTk dk−1 + ∥gk−1∥2 and gTk gk−1 ≤ 0. In this

case, βNHC
k = βV FR

k . Then, we have

gTk dk = −∥gk∥2 +
∥gk∥2

ugTk dk−1 + ∥gk−1∥2
gTk dk−1

≤ −∥gk∥2 +
∥gk∥2

ugTk dk−1 + ∥gk−1∥2
(ugTk dk−1 + ∥gk−1∥2 + gTk−1dk−1)

= βNHC
k gTk−1dk−1.

By Theorem 2.1, we obtain βNHC
k ≤ gTk dk

gTk−1dk−1
.
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(vi) gTk dk−1 > 0, dTk−1yk−1 ≤ ugTk dk−1 + ∥gk−1∥2 and gTk gk−1 > 0. In this

case, βNHC
k = βDPRP

k . Then, we have

gTk dk = −∥gk∥2 +
∥gk∥2 −

∥gk∥
∥gk−1∥

gTk gk−1

ugTk dk−1 + ∥gk−1∥2
gTk dk−1

≤ −∥gk∥2 +
∥gk∥2 −

∥gk∥
∥gk−1∥

gTk gk−1

ugTk dk−1 + ∥gk−1∥2
(ugTk dk−1 + ∥gk−1∥2 + gTk−1dk−1)

= − ∥gk∥
∥gk−1∥

gTk gk−1 + βNHC
k gTk−1dk−1

< βNHC
k gTk−1dk−1.

From Theorem 2.1, we obtain βNHC
k <

gTk dk

gTk−1dk−1
.

(vii)gTk dk−1 > 0, dTk−1yk−1 ≥ ugTk dk−1 + ∥gk−1∥2 and gTk gk−1 > 0. In this

case, βNHC
k = βYWH

k . Then, we have

gTk dk = −∥gk∥2 +
∥gk∥2 −

∥gk∥
∥gk−1∥

gTk gk−1

dTk−1yk−1
gTk dk−1

= −∥gk∥2 +
∥gk∥2 −

∥gk∥
∥gk−1∥

gTk gk−1

dTk−1yk−1
(dTk−1yk−1 + gTk−1dk−1)

= − ∥gk∥
∥gk−1∥

gTk gk−1 + βNHC
k gTk−1dk−1

< βNHC
k gTk−1dk−1.

Consequently, one has βNHC
k <

gTk dk

gTk−1dk−1
.

(viii) gTk dk−1 > 0, dTk−1yk−1 ≥ ugTk dk−1 + ∥gk−1∥2 and gTk gk−1 ≤ 0. In this

case, βNHC
k = βDY

k . Then, we have

gTk dk = −∥gk∥2 +
∥gk∥2

dTk−1yk−1
gTk dk−1

= −∥gk∥2 +
∥gk∥2

dTk−1yk−1
(dTk−1yk−1 + gTk−1dk−1)

= βNHC
k gTk−1dk−1.

Therefore, we get βNHC
k =

gTk dk

gTk−1dk−1
.

Hence, based on the discussion above, the desired result holds. □

The following result shows the global convergence of Algorithm NHC.
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Theorem 3.3. Assume that Assumption 3 holds. Let the sequences {gk} and
{dk} be generated by Algorithm NHC. Then,

(3.3) lim inf
k→+∞

∥gk∥ = 0.

Proof. Suppose that (3.3) fails. Then, there exists a constant r > 0 such that

(3.4) ∥gk∥ ≥ r,

for all k. It follows from (1.3) that dk + gk = βNHC
k dk−1. This combining

with (3.2) implies that

∥dk∥2 = (βNHC
k )2∥dk−1∥2 − ∥gk∥2 − 2gTk dk

≤ (
gTk dk

gTk−1dk−1
)2∥dk−1∥2 − ∥gk∥2 − 2gTk dk.(3.5)

Dividing both sides of (3.5) by (gTk dk)
2, we have

(
∥dk∥
gTk dk

)2 ≤ (
∥dk−1∥

gTk−1dk−1
)2 − (

∥gk∥
gTk dk

)2 − 2

gTk dk

= (
∥dk−1∥

gTk−1dk−1
)2 − [(

∥gk∥
gTk dk

)2 + (
1

∥gk∥
)2 + 2

∥gk∥
gTk dk

1

∥gk∥
] +

1

∥gk∥2

= (
∥dk−1∥

gTk−1dk−1
)2 +

1

∥gk∥2
− (

∥gk∥
gTk dk

+
1

∥gk∥
)2

≤ (
∥dk−1∥

gTk−1dk−1
)2 +

1

∥gk∥2
.(3.6)

Since ∥gk∥ ≥ r and ( ∥d1∥
gT1 d1

)2 = 1
∥g1∥2 , by a recurrence of (3.6), we obtain

(
∥dk∥
gTk dk

)2 ≤ (
∥dk−1∥

gTk−1dk−1
)2 +

1

∥gk∥2

≤ (
∥dk−2∥

gTk−2dk−2
)2 +

1

∥gk∥2
+

1

∥gk−1∥2

≤ · · · ≤
k∑

j=1

1

∥gj∥2
≤ k

r2
.

Hence, (
gTk dk

∥dk∥ )
2 ≥ r2

k , this evidently implies that
∑+∞

k=1(
gTk dk

∥dk∥ )
2 = +∞, which

contradicts (3.1). Therefore, (3.4) does not hold and the conclusion (3.3) is
proved. □
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4. Numerical experiments

In this section, we present some numerical results to show the efficiency and
feasibility of the proposed method. All codes were written in Matlab 7.10 and
run on a DELL with 1.60 GHz CPU processor, 4.00 GB RAM memory, and
Windows 10 operation system.

In order to examine the numerical performance of our algorithm in practice,
the following five CG algorithms are tested and compared:

NHC: with βk = βNHC
k defined by this paper, i.e., formula (1.9),

N: with βk = βN
k defined by Jian et al. [17], i.e., formula (1.8),

JHJ: with βk = βJHJ
k defined by Jiang et al. [18], i.e., formula (1.7),

DPRP: with βk = βDPRP
k defined by Dai and Wen [8], i.e., formula (1.6),

HuS : with βk = max{0,min{βFR
k , βPRP

k }} defined by Hu and Storey [15].

The above methods are tested by taking advantage of 71 unconstrained
optimization test problems from [3]. In all CG algorithms, the standard Wolfe
line search conditions (1.5a) and (1.5b) are implemented with σ = 0.9, δ =
10−4. In DPRP and NHC we set µ = u = 1.1. The initial guess of the step
length at the first iteration is α1 = 1/∥g1∥. At the following iteration, the
starting guess for the step length αk is generated as αk−1∥dk−1∥/∥dk∥. This
selection is firstly introduced by Shanno and Phua in CONMIN [24] and is
proved to be one of the best selections of the initial guess of the step length.
Stop the program if criterion ∥gk∥∞ ≤ ϵ = 10−7 is satisfied, where ∥ · ∥∞ is
the maximum absolute component of a vector. In addition, we declare failure
if the criterion does not hold after 1200 seconds.

In order to make comprehensive comparisons according to Time, Iter, Fn and
Gnx 1, respectively, we use the performance profile introduced by Dolan and
Moré [9] to evaluate and compare the performance. Performance profile gives,
for every t ≥ 1, the proportion ps(t) of the best problems that each considered
algorithmic variant has a performance within a factor of t of the best. The
left axis of the figure gives the percentage of the test problems for which an
algorithm is the fastest; the right axis of the figure gives the percentage of the
test problems that are successfully solved by each of the algorithms, which is
a measure of an algorithm’s robustness. The top curve is the algorithm that
solved the most problems in a time that is within a factor t of the best time.

From Figures 1 to 4, we can see that our algorithm possesses evident advan-
tages based on Time and Iter. The main reason is that the standard Wolfe line

1For convenience of our discussion, some illustrations are given as follows:

Time : the computing time of CPU for computing a problem (Units: second);
Iter : the number of iterations;
Fn : the number of function evaluations;

Gn : the number of gradient evaluations.
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Figure 1. Performance profiles on Time (NHC versus N and JHJ)

Figure 2. Performance profiles on Time (NHC versus DPRP
and HuS)

search at each iteration can be more easily satisfied with the sufficient descent
property. In addition, Figures 5 and 6 show that the introduced algorithm
is also competitive according to Fn + 3Gn by Hager and Zhang [12]. The
reason may be that the parameters βk in these algorithms possess the differ-
ent structure. From the above analysis, the NHC algorithm is preferable and
promising.

5. Conclusion

In this paper, a new hybrid CG algorithm has been proposed for solving
unconstrained optimization problems. The proposed algorithm always gener-
ates a sufficient descent direction at each iteration unrelated to the line search



2081 Han, Zhang and Chen

Figure 3. Performance profiles on Iter (NHC versus N and JHJ)

Figure 4. Performance profiles on Iter (NHC versus DPRP and HuS)

strategy. Furthermore, the global convergence of our algorithm is proved under
the standard Wolfe line search. Finally, a mass of numerical experiments are
done, which show that the proposed algorithm is effective and feasible.
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