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Abstract. In this paper, first we study the weak and strong convergence
of solutions to the following first order nonhomogeneous gradient system{

−x′(t) = ∇ϕ(x(t)) + f(t), a.e. on (0,∞)

x(0) = x0 ∈ H

to a critical point of ϕ, where ϕ is a C1 quasi-convex function on a real
Hilbert space H with Argminϕ ̸= ∅ and f ∈ L1(0,+∞;H). These results
extend the results in the literature to non-homogeneous case. Then the
discrete version of the above system by backward Euler discretization has

been studied. Beside of the proof of the existence of the sequence given
by the discrete system, some results on the weak and strong convergence
to the critical point of ϕ are also proved. These results when ϕ is pseudo-
convex (therefore the critical points are the same minimum points) may

be applied in optimization for approximation of a minimum point of ϕ.
Keywords: Gradient system, quasi-convex, backward Euler discretiza-
tion, weak convergence, strong convergence.

MSC(2010): Primary: 34D20; Secondary: 37C75, 93D09.

1. Introduction

Let H be a real Hilbert space with inner product ⟨., .⟩ and norm |.|. We
denote the weak convergence in H by ⇀ and the strong convergence by →. A
function ψ : H → R is called convex if and only if

ψ(λx+ (1− λ)y) ≤ λψ(x) + (1− λ)ψ(y), ∀x, y ∈ H, ∀λ ∈ [0, 1].

A function ϕ : H → R is said to be quasi-convex iff

ϕ(λx+ (1− λ)y) ≤ max{ϕ(x), ϕ(y)}, ∀x, y ∈ H, ∀λ ∈ [0, 1],

or equivalently every sub-level set of ϕ is convex. A function ϕ : H → R is
called pseudo-convex iff
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f(y) > f(x) implies that there exist β(x, y) > 0 and 0 < δ(x, y) ≤ 1 such that
f(y)− f(tx+ (1− t)y) ≥ tβ(x, y), ∀t ∈ (0, δ(x, y)).
A differentiable function ϕ on H is quasi-convex iff

ϕ(x) ≥ ϕ(y) ⇒ ⟨∇ϕ(x), y − x⟩ ≤ 0.

A differentiable function ϕ is pseudo-convex iff

ϕ(x) > ϕ(y) ⇒ ⟨∇ϕ(x), y − x⟩ < 0.

Obviously for a differentiable function, convexity implies pseudo-convexity and
pseudo-convexity implies quasi-convexity. We refer the reader to the interesting
book by Chambini and Martein [3] for the definitions of convexity and its
extensions, their examples and properties. Throughout the paper, we assume
that ϕ : H → R is a continuously differentiable and quasi-convex function with
Argminϕ ̸= ∅ and ∇ϕ is Lipschitz continuous on bounded subsets of H.
Consider the following nonhomogeneous evolution system

(1.1)

{
−x′(t) = ∇ϕ(x(t)) + f(t), a.e. on (0,+∞)

x(0) = x0 ∈ H.

When f(t) ≡ 0, Goudou and Munier [5] proved the weak convergence of so-
lutions to (1.1) to a critical point of ϕ. They also proved the strong convergence
of solutions to (1.1) under additional conditions on ϕ. In Section 2, we consider
(1.1) with condition f ∈ L1((0,+∞);H). We prove the weak and strong con-
vergence of solutions to (1.1) to a critical point of ϕ. These results extend the
similar classical results on the asymptotic behavior of non-homogeneous gra-
dient systems associated with convex functions which have been also extended
to non-smooth convex functions (see Bruck [2] as well as Morosanu [7] for a
complete bibliography). In Section 3, we consider the following backward Euler
discretization of (1.1)

(1.2)

{
xn−1 − xn = λn∇ϕ(xn) + fn,

x0 = x ∈ H.

We prove the existence of the sequence {xn} as well as some similar results on
the weak and strong convergence of solutions of equation (1.2) with condition∑+∞

n=1 |fn| < +∞. The generated sequence by (1.2) is called the proximal point
algorithm that has been studied initially by Martinet [6] and Rockafellar [9]
in the convex case even for non-smooth convex functions or more generally
maximal monotone operators to approximate a minimum point of a convex
function or a zero of a maximal monotone operator.

Our results extend the results of Goudou and Munier [5] to non-homogeneous
case and the classical results when ϕ is a convex function to quasi-convex
case in discrete and continuous cases. The results are also applicable even
for one dimensional differential and difference equations (where of course weak
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and strong convergence coincide). Consider the following nonlinear differential
equation {

−x′(t) = 2x(t)
((x(t))2+1)2 + 2

(t+1)3 − 2(t+1)6

((t+1)4+1)2 ,

x(0) = 1,

which is in the form (1.1) with ϕ(x) = x2

x2+1 and f(t) = 2
(t+1)3 − 2(t+1)6

((t+1)4+1)2 .

One can easily see that x(t) = 1
(t+1)2 is a solution of that which converges

to zero as predicated by Theorem 2.3. Also consider the following nonlinear
difference equation{

xn−1 − xn = λn
2xn

(x2
n+1)2 + 1

n(n+1) −
(n+1)2

((n+1)2+1)2 ,

x0 = 1.

Obviously if λn = 1
2(n+1) , then xn = 1

(n+1) is a solution of the above difference

equation, that converges to zero as n→ +∞.

2. Continuous case

In this section, we concentrate on the asymptotic behavior of solutions to
the gradient system (1.1). When ∇ϕ is Lipschitz and f ∈ L1((0,+∞);H)

an application of Banach contraction principle on W 1,1
loc (0,+∞;H) implies the

existence and uniqueness of a solution x ∈ W 1,1
loc (0,+∞;H). We prove the

weak convergence of solutions to (1.1) to a critical point of the quasi-convex
function ϕ. Then with some additional assumptions on ϕ, we prove the strong
convergence of solutions to (1.1).

Lemma 2.1. Suppose that x(t) is a solution to (1.1). If Argminϕ ̸= ∅, then
limt→+∞ |x(t)− x∗| exists for each x∗ ∈ Argminϕ.

Proof. Since x∗ ∈ Argminϕ, we have ϕ(x∗) ≤ ϕ(x(t)) for all t ≥ 0. By the
quasi-convexity of ϕ, we have

⟨∇ϕ(x(t)), x∗ − x(t)⟩ ≤ 0.

Therefore

d

dt
|x(t)− x∗|2 = 2⟨x′(t), x(t)− x∗⟩

= 2⟨−∇ϕ(x(t))− f(t), x(t)− x∗⟩

(2.1) ≤ 2|f(t)||x(t)− x∗|,
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for almost every t ∈ (0,+∞). Integrating (2.1) over [0, t] and then using a
Gronwall type lemma (see [7, Lemma 2.1, p. 47]), we get

|x(t)− x∗| ≤ |x(0)− x∗|+
∫ t

0

|f(s)|ds,

which implies the boundedness of x(t).
Let M := supt≥0 |x(t)− x∗|. Now integrating (2.1) from s to t > s, we get

|x(t)− x∗|2 − |x(s)− x∗|2 ≤ 2M

∫ t

s

|f(τ)|dτ.

Taking limsup as t→ +∞ and liminf as s→ +∞, we get that limt→+∞ |x(t)−
x∗| exists.

□

Lemma 2.2. Suppose that x(t) is a solution to (1.1) and Argminϕ ̸= ∅, then
limϕ(x(t)) exists.

Proof. Since ∇ϕ is bounded on bounded subsets of H, by equation (1.1) and
Lemma 2.1, we have

d

dt
ϕ(x(t)) = ⟨∇ϕ(x(t)), x′(t)⟩ = ⟨∇ϕ(x(t)),−∇ϕ(x(t))− f(t)⟩

= −|∇ϕ(x(t))|2 − ⟨∇ϕ(x(t)), f(t)⟩ ≤ |∇ϕ(x(t))||f(t)|
= |∇ϕ(x(t))−∇ϕ(x∗)||f(t)| ≤ L|x(t)− x∗||f(t)| ≤ LM |f(t)|,

for almost every t ∈ (0,+∞), where M = supt≥0 |x(t)− x∗|, L is the Lipschitz
constant of ∇ϕ and x∗ is a critical point of ϕ. Now limϕ(x(t)) exists; because
f ∈ L1((0,+∞);H). □

Theorem 2.3. Suppose that x(t) is a solution to (1.1). If Argminϕ ̸= ∅, then
there is x∗ ∈ H such that x(t)⇀ x∗ as t→ +∞ and ∇ϕ(x∗) = 0.

Proof. We consider two following cases:
1) limϕ(x(t)) = inf ϕ. Since x(t) is bounded by Lemma 2.1, there exist a
sequence {tn} and x∗ ∈ H such that x(tn) ⇀ x∗, as n→ +∞. By Lemma 2.2
and weak lower semicontinuity of ϕ (by Mazur’s Lemma), we have

ϕ(x∗) ≤ lim inf ϕ(x(tn)) = limϕ(x(t)) = inf ϕ.

Therefore x∗ ∈ Argminϕ, which implies by Lemma 2.1 and Opial’s Lemma [5],
x(t)⇀ x∗ ∈ Argminϕ.
2) limϕ(x(t)) > inf ϕ. Then there exist r > 0, t0 > 0 and x̃ ∈ Argminϕ
such that for all t ≥ t0 and every y ∈ B̄r(x̃), ϕ(y) ≤ ϕ(x(t)). In turn by
quasi-convexity of ϕ, ⟨y − x(t),∇ϕ(x(t))⟩ ≤ 0. Now if ∇ϕ(x(t)) ̸= 0 letting
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y = x̃+ r ∇ϕ(x(t))
|∇ϕ(x(t))| , we have

r|∇ϕ(x(t))| ≤ ⟨x(t)− x̃,∇ϕ(x(t))⟩

≤ −1

2

d

dt
|x(t)− x̃|2 +M |f(t)|, a.e. t ∈ (0,+∞),

where M = supt≥0 |x(t) − x̃|. This inequality being obviously true by (2.1) if

∇ϕ(x(t)) = 0. Therefore ∇ϕ(x(·)) ∈ L1((0,+∞);H). It implies that x′(·) ∈
L1((0,+∞);H). Therefore there is x∗ ∈ H such that x(t) → x∗, by continuity
of ∇ϕ, ∇ϕ(x(t)) → ∇ϕ(x∗). Since ∇ϕ(x(·)) ∈ L1((0,+∞);H), there exists a
sequence tn → +∞ such that ∇ϕ(x(tn)) → 0. Therefore ∇ϕ(x∗) = 0. □

Remark 2.4. Suppose that the assumptions of Theorem 2.3 are satisfied and ϕ is
pseudo-convex. By pseudo-convexity of ϕ, if ∇ϕ(x∗) = 0, then x∗ ∈ Argminϕ.
Suppose to the contrary that ∇ϕ(x∗) = 0 but x∗ ̸∈ Argminϕ, hence there is an
x′ ∈ H such that ϕ(x′) < ϕ(x∗). In turn, by pseudo-convexity of ϕ, we have
⟨x′−x∗,∇ϕ(x∗)⟩ < 0. This contradiction shows that x∗ ∈ Argminϕ. Therefore
x(t)⇀ x∗ ∈ Argminϕ.

Theorem 2.5. Suppose that x(t) is a solution to (1.1). If Argminϕ ̸= ∅ and
at least one of the following condition is satisfied:
a) x /∈ Argminϕ, where x is a weak cluster point of x(t),
b) int(Argminϕ) ̸= ∅,
then x(t) → x∗ and x∗ is a critical point of ϕ.

Proof. a) Suppose that x(tn)⇀ x /∈ Argminϕ. Then

lim
t→+∞

ϕ(x(t)) = lim inf
n→+∞

ϕ(x(tn)) ≥ ϕ(x) > inf ϕ.

Therefore the result is concluded by part 2 of the proof of Theorem 2.3.
b) If int(Argminϕ) ̸= ∅, then there exist x̃ ∈ Argminϕ, r > 0 and t0 > 0
such that for all t ≥ t0 and every y ∈ B̄r(x̃), ϕ(y) ≤ ϕ(x(t)). In turn by
quasi-convexity of ϕ, ⟨y − x(t),∇ϕ(x(t))⟩ ≤ 0. Now if ∇ϕ(x(t)) ̸= 0 by letting

y = x̃+ r ∇ϕ(x(t))
|∇ϕ(x(t))| , we have

r|∇ϕ(x(t))| ≤ ⟨x(t)− x̃,∇ϕ(x(t))⟩
= ⟨x(t)− x̃,−x′(t)− f(t)⟩

≤ −1

2

d

dt
|x(t)− x̃|2 +M |f(t)|,

for almost every t ∈ (0,+∞), where M = supt≥0 |x(t) − x̃|. This inequality is

obviously true by (2.1) if ∇ϕ(x(t)) = 0. Therefore ∇ϕ(x(·)) ∈ L1((0,+∞);H).
This implies that x′(·) ∈ L1((0,+∞);H). Therefore there is x∗ ∈ H such that
x(t) → x∗ as t → +∞. On the other hand, ∇ϕ(x(tn)) → 0 for a sequence
tn → +∞ as n→ +∞. The continuity of ∇ϕ implies that ∇ϕ(x∗) = 0. □
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Theorem 2.6. Suppose that x(t) is a solution to (1.1) and f(t) ≡ 0. If ϕ is
even, then there is x∗ ∈ H such that x(t) → x∗ as t→ +∞, where ∇ϕ(x∗) = 0.

Proof. By Lemma 2.2, we get that ϕ(x(t)) is nonincreasing. Therefore for all
t ≥ s, ϕ(x(t)) ≤ ϕ(x(s)). Quasi-convexity of ϕ implies that

⟨∇ϕ(x(s)), x(t)− x(s)⟩ ≤ 0.

Since ϕ is even, ϕ(−x(t)) = ϕ(x(t)). Therefore again by quasi-convexity for
each t ≥ s, we get

(2.2) ⟨−x(t)− x(s),∇ϕ(x(s))⟩ ≤ 0.

Summing up the last two inequalities, we get

⟨x(s),∇ϕ(x(s))⟩ ≥ 0 ⇒ d

ds
|x(s)|2 ≤ 0, a.e. s ∈ (0,+∞).

Therefore |x(t)| is nonincreasing. By (2.2) for each t ≥ s, we have

⟨x(t) + x(s), x′(s)⟩ ≤ 0 ⇒ d

ds
|x(s)|2 ≤ −2⟨x(t), x′(s)⟩, a.e. s ∈ (0,+∞)

Integrating this inequality, we get

|x(t)|2 ≤ |x(s)|2 − 2|x(t)|2 + 2⟨x(t), x(s)⟩, ∀t > s.

By the last relation, we get

|x(t)− x(s)|2 = |x(t)|2 + |x(s)|2 − 2⟨x(t), x(s)⟩ ≤ 2(|x(s)|2 − |x(t)|2) → 0,

as t, s → +∞. Therefore x(t) is a Cauchy net. So x(t) converges to x∗ ∈ H,
with ∇ϕ(x∗) = 0, by Theorem 2.3. □

Definition 2.7. Let f : H → (−∞,+∞] be proper, then f is uniformly
quasi-convex with modulus η. If η is increasing, η vanishes only at 0 and
(∀ x, y ∈ dom f , ∀α ∈ (0, 1))

f(αx+ (1− α)y) + α(1− α)η(|x− y|) ⩽ max{f(x), f(y)}.

Example 2.8. We define f and η as follows:

f(x) =


x2 x ⩾ −1

4
√
−x− 3 −4 ⩽ x ⩽ −1

+∞ x < −4

and

η(x) =
x2

16 + x2
, ∀x ∈ [0,+∞).

f is not convex but it is uniformly quasi-convex with modulus η.

Theorem 2.9. Suppose that x(t) is a solution to (1.1). If Argminϕ ̸= ∅ and
ϕ is uniformly quasi-convex with modulus η, then x(t) converges strongly to the
unique element of Argminϕ.
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Proof. Let x̃ be the unique element of Argminϕ, then ϕ(x̃) ⩽ ϕ(x(t)). Uniform
quasi-convexity of ϕ shows that

⟨x̃− x(t),∇ϕ(x(t))⟩ ⩽ −η(|x(t)− x̃|)

=⇒ 0 ⩽ η(|x(t)− x̃|) ⩽ ⟨x(t)− x̃,∇ϕ(x(t))⟩

= ⟨x(t)− x̃,−x′(t)− f(t)⟩ ≤ −1

2

d

dt
|x(t)− x̃|2 +M |f(t)|, a.e. t ∈ (0,+∞)

where M = sup
t⩾0

|x(t)− x̃| and in turn by taking integral, we have

0 ⩽
∫ +∞

0

η(|x(t)− x̃|)dt

⩽ 1

2
|x(0)− x̃|2 − lim

t→∞

1

2
|x(t)− x̃|2 +M

∫ +∞

0

|f(t)|dt < +∞.

Since lim
t→∞

|x(t)− x̃| exists, it follows that lim
t→∞

η(|x(t)− x̃|) = 0. On the other

hand η is an increasing function which vanishes only at 0. Hence, we conclude
that x(t) −→ x̃. □

3. Discrete case

In this section, we concentrate on (1.2), which is a discrete version of (1.1)
by backward Euler discretization. Let ϕ : H −→ (−∞,+∞] be a continu-
ously differentiable quasi-convex function and ∇ϕ be Lipschitz continuous on
bounded subsets of H with a Lipschitz constant L > 0. The existence of the
sequence satisfying (1.2) is a consequence of the following proposition.

Proposition 3.1. Let F : H → H be Lipschitz continuous with Lipschitz
constant L > 0, λ < 1

L and x̄ ∈ H, then there is a unique element x∗ ∈ H such
that x̄ = x∗ + λF (x∗).

Proof. Define G(x) := λF (x) + x. G : H → H is continuous and strongly
monotone with constant 1 − λL > 0. By [4, Theorem 11.2], G is surjective.
Uniqueness of x∗ is deduced by a simple computation. □

Corollary 3.2. Consider (1.2) and suppose that λn <
1
L and x0 ∈ H, then the

sequence {xn} is well-defined.

Proof. Since ∇ϕ is Lipschitz continuous with a Lipschitz constant L > 0, by
setting F := ∇ϕ, x̄ := xn−1 − fn and λ := λn and then using Proposition 3.1,
we can find the unique xn ∈ H such that xn−1 − xn = λn∇ϕ(xn) + fn, for all
n ∈ N. Therefore the sequence {xn} is well-defined. □

Lemma 3.3. Suppose that xn is a solution to (1.2). If Argminϕ ̸= ∅, then
limn→+∞ |xn − x| exists, where x ∈ Argminϕ.
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Proof. Let x ∈ Argminϕ. Since ϕ(xn) ≥ ϕ(x), by quasi-convexity of ϕ, we get

⟨∇ϕ(xn), x− xn⟩ ≤ 0.

Equation (1.2) implies that

⟨xn−1 − xn − fn, x− xn⟩ ≤ 0

⇒ |x− xn|2 + ⟨xn−1 − x, x− xn⟩ ≤ ⟨fn, x− xn⟩

⇒ |x− xn|2 +
1

2
(|xn − xn−1|2 − |x− xn−1|2 − |x− xn|2) ≤ |fn||x− xn|

(3.1) ⇒ |x− xn|2 − |x− xn−1|2 ≤ 2|fn||x− xn|.
First we prove {xn} is bounded. By contradiction if {xn} is unbounded, there
is a subsequence {xnk

} of {xn} such that |xnk
− x| −→ +∞ and |xnk+1

− x| >
2|xnk

− x| and |xnk
− x| < |xn − x| < |xnk+1

− x|, ∀nk < n < nk+1.
Summing up (3.1) from nk + 1 to nk+1, we get

|xnk+1
− x|2 − |xnk

− x|2 ≤ 2|xnk+1
− x|

nk+1∑
i=nk+1

|fi|.

Dividing both sides of the above inequality by |xnk+1
− x|, we obtain

3

2
|xnk

− x| ≤ 2

nk+1∑
i=nk+1

|fi|.

By letting k → +∞, we get a contradiction. Therefore {xn} is bounded. Now
summing up (3.1) from n = k + 1 to n = m, where m > k + 1, we get

|xm − x|2 ≤ |xk − x|2 +M
m∑

n=k+1

|fn|,

where M := 2supn≥0|xn − x|. Taking limsup when m→ +∞ and liminf when
k → +∞, we get that limn→+∞ |xn − x| exists. □

Lemma 3.4. Suppose that xn is a solution of (1.2), then limϕ(xn) exists.

Proof. First suppose that ϕ(xn) > ϕ(xn−1), then

⟨∇ϕ(xn), xn−1 − xn⟩ ≤ 0.

By (1.2), we have
|xn − xn−1|2 ≤ |fn||xn − xn−1|.

Since xn ̸= xn−1, by dividing the above inequality by |xn − xn−1|, we obtain

|xn − xn−1| ≤ |fn|.
By mean value theorem, boundedness of ∇ϕ on bounded subsets of H and
boundedness of the sequence {xn} by Lemma 3.3, we get

|ϕ(xn)− ϕ(xn−1)| ≤ K|xn − xn−1| ≤ K|fn|,
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for a constant K. Therefore

(3.2) ϕ(xn)− ϕ(xn−1) ≤ K|fn|,
If ϕ(xn) ≤ ϕ(xn−1) obviously we have (3.2) again. It yields the lemma. □

Theorem 3.5. Suppose that xn is a solution to (1.2). If Argminϕ ̸= ∅ and∑+∞
n=1 λn = +∞, then there is x∗ ∈ H such that xn ⇀ x∗ and ∇ϕ(x∗) = 0.

Proof. We consider two following cases:
1) limϕ(xn) = inf ϕ. Since {xn} is bounded by Lemma 3.3, there are a subse-
quence {xnj} of {xn} and x∗ ∈ H such that xnj ⇀ x∗, then

ϕ(x∗) ≤ lim inf ϕ(xnj ) = limϕ(xn) = inf ϕ.

Therefore x∗ ∈ Argminϕ. Now, Opial’s Lemma and Lemma 3.3 imply that
xn ⇀ x∗ ∈ Argminϕ and the first optimality condition implies that∇ϕ(x∗) = 0.
2) limϕ(xn) > inf ϕ. Then there exist r > 0 and x̃ ∈ Argminϕ such that for
each y ∈ B̄r(x̃), ϕ(y) < limn→+∞ ϕ(xn), which implies that there exists n0 > 0
such that for all n ≥ n0, ϕ(y) ≤ ϕ(xn). Therefore ⟨y − xn,∇ϕ(xn)⟩ ≤ 0,

∀n ≥ n0. Now if ∇ϕ(xn) ̸= 0, then set y = x̃+ r ∇ϕ(xn)
|∇ϕ(xn)| , therefore, we have

r|∇ϕ(xn)| ≤ ⟨xn − x̃,∇ϕ(xn)⟩.
Multiplying both sides by λn and using (1.2), we get

rλn|∇ϕ(xn)| ≤ ⟨xn − x̃, xn−1 − xn − fn⟩

≤ 1

2
|xn−1 − x̃|2 − 1

2
|xn − x̃|2 +M |fn|,

where M = supn≥0 |xn − x̃|. The previous inequality being true by (3.1) if
∇ϕ(xn) = 0. Summing up the above inequality from n = 1 to +∞, by the
hypothesis on {fn}, we get

(3.3)
∞∑

n=1

λn|∇ϕ(xn)| < +∞.

Equation (1.2) and summability assumption on the sequence {|fn|} imply that

+∞∑
n=1

|xn − xn−1| < +∞.

It follows that xn → x∗ ∈ H. On the other hand, by (3.3) and the assumptions
on {λn}, lim infn→∞ |∇ϕ(xn)| = 0. Continuity of ∇ϕ implies that ∇ϕ(x∗) =
0. □

Remark 3.6. By Theorem 3.5 and Remark 2.4, if ϕ is pseudo-convex with
Argminϕ ̸= ∅, then (1.2) gives an algorithm to approximate a minimum point
of ϕ, which extends inexact proximal point algorithm [9] for pseudo-convex
functions.
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Theorem 3.7. Suppose that xn is a solution to (1.2). If Argminϕ ̸= ∅ and at
least one of the following conditions is satisfied:
a) x /∈ Argminϕ, where x is a weak cluster point of xn,
b) int(Argminϕ) ̸= ∅,
then {xn} converges strongly to a critical point of ϕ.

Proof. a) If x /∈ Argminϕ, then limϕ(xn) > inf ϕ. Now the result is concluded
similar to the proof of case 2 of Theorem 3.5.
b) If int(Argminϕ) ̸= ∅, then there exist x̃ ∈ Argminϕ and r > 0 such that for
each y ∈ B̄r(x̃), ϕ(y) ≤ limn→+∞ ϕ(xn), which implies that there exists n0 > 0
such that for all n ≥ n0, ϕ(y) ≤ ϕ(xn). Therefore ⟨y−xn,∇ϕ(xn)⟩ ≤ 0, ∀n ≥
n0. Now if ∇ϕ(xn) ̸= 0, then set y = x̃+ r ∇ϕ(xn)

|∇ϕ(xn)| , therefore, we have

rλn|∇ϕ(xn)| ≤ λn⟨xn − x̃,∇ϕ(xn)⟩ = ⟨xn − x̃, xn−1 − xn − fn⟩

≤ 1

2
|xn−1 − x̃|2 − 1

2
|xn − x̃|2 +M |fn|,

whereM = supn≥0|xn−x̃|. The previous inequality is true by (3.1) if∇ϕ(xn) =
0. Summing up the last inequality from n = 1 to +∞, we get λn|∇ϕ(xn)| ∈ l1.
This implies that |xn − xn−1| ∈ l1, hence xn → x∗ ∈ H and ∇ϕ(x∗) = 0, by a
proof similar to the one in the continuous case (see Theorem 3.3). □

Theorem 3.8. Suppose that xn is a solution to (1.2) and ϕ is uniformly quasi-
convex with modulus η. If Argminϕ ̸= ∅ and

∑∞
n=1 λn = +∞, then {xn}

converges strongly to the unique minimum point of ϕ.

Proof. If x̃ is the unique element of Argminϕ, then ϕ(x̃) ⩽ ϕ(xn), for all n > 0.
Hence by uniformly quasi-convexity of ϕ, we have:

⟨x̃− xn,∇ϕ(xn)⟩ ⩽ −η(|xn − x̃|)

=⇒ 0 ⩽ η(|xn − x̃|) ⩽ ⟨xn − x̃,
xn−1 − xn − fn

λn
⟩

=
1

λn
⟨xn − x̃, xn−1 − xn⟩ −

1

λn
⟨xn − x̃, fn⟩

=⇒ 0 ⩽ λnη(|xn − x̃|) ⩽ 1

2
{|xn−1 − x̃|2 − |xn − x̃|2}+M |fn|,

where M = supn≥0|xn − x̃|. Summing up the both sides of the last inequality
from n = 1 to n = m, we obtain

0 ⩽
m∑

n=1

λnη(|xn − x̃|) ⩽ 1

2
{|x0 − x̃|2 − |xm − x̃|2}+M

m∑
n=1

|fn|.

Since lim
n→∞

|xn − x̃| exists, we have

∞∑
n=1

λnη(|xn − x̃|) < +∞.
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On the other hand, since
∑+∞

n=1 λn = +∞, thus lim
n→+∞

η(|xn − x̃|) = 0 and

hence, we deduce that xn → x̃, which is the unique element of Argminϕ. □

Theorem 3.9. Suppose that xn is a solution to (1.2) with fn ≡ 0, and ϕ is
even. If Argminϕ ̸= ∅, then xn → x∗, which is a critical point of ϕ.

Proof. Since ϕ is quasi-convex and by Lemma 3.4, {ϕ(xn)} is nonincreasing,
we have

∀k ≥ n , ϕ(xk) ≤ ϕ(xn) ⇒ ⟨xk − xn,∇ϕ(xn)⟩ ≤ 0.

On the other hand, since ϕ is even, ϕ(−xk) = ϕ(xk). Therefore, we have

(3.4) ⟨−xk − xn,∇ϕ(xn)⟩ ≤ 0.

By adding the last two inequalities, we obtain

⟨xn,∇ϕ(xn)⟩ ≥ 0.

By equation (1.2),

⟨xn,
xn−1 − xn

λn
⟩ ≥ 0 ⇒ |xn| ≤ |xn−1|,

hence lim
n→∞

|xn| exists. By (3.4), for all k ≥ n, we have

⟨xk + xn,
xn−1 − xn

λn
⟩ ≥ 0

=⇒ |xk + xn|2 ≤ |xk + xn−1|2 ⇒ 4|xk|2 ≤ |xk + xn|2, ∀k ≥ n.

Now using the parallelogram identity, we have

|xn − xk|2 = 2|xk|2 + 2|xn|2 − |xn + xk|2

≤ 2|xk|2 + 2|xn|2 − 4|xk|2

= 2(|xn|2 − |xk|2), ∀k ≥ n

Since lim
n→∞

|xn| exists thus lim
n→∞

|xn − xk| = 0, which implies that {xn} is a

Cauchy sequence and therefore xn → x∗ ∈ H and ∇ϕ(x∗) = 0, by Theorem
3.5. □
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