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FINITE GROUPS WITH A CERTAIN NUMBER OF
ELEMENTS PAIRWISE GENERATING A

NON-NILPOTENT SUBGROUP†

A. ABDOLLAHI AND A. MOHAMMADI HASSANABADI

Abstract. Let n > 0 be an integer and X be a class of
groups. We say that a group G satisfies the condition (X , n)
whenever in every subset with n + 1 elements of G there exist
distinct elements x, y such that 〈x, y〉 is in X . Let N and A be
the classes of nilpotent groups and abelian groups, respectively.
Here we prove that: (1) If G is a finite semi-simple group satis-
fying the condition (N , n), then |G| < c2[log21 n]n2

[log21 n]!, for
some constant c. (2) A finite insoluble group G satisfies the
condition (N , 21) if and only if G/Z∗(G) ∼= A5, the alternating
group of degree 5, where Z∗(G) is the hypercentre of G. (3)
A finite non-nilpotent group G satisfies the condition (N , 4)
if and only if G/Z∗(G) ∼= S3, the symmetric group of degree
3. (4) An insoluble group G satisfies the condition (A, 21) if
and only if G ∼= Z(G) × A5, where Z(G) is the centre of G.
(5) If d is the derived length of a soluble group satisfying the
condition (A, n), then d = 1 if n ∈ {1, 2} and d ≤ 2n − 3 if
n ≥ 2.
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1. Introduction and results

Let n > 0 be an integer and X be a class of groups. We say that
a group G satisfies the condition (X , n) whenever in every subset
with n+1 elements of G there exist distinct elements x, y such that
〈x, y〉 is in X . If X is subgroup-closed, then every group which is
the union of n X -subgroups satisfies the condition (X , n). Let N
be the class of nilpotent groups. Tomkinson in [23] proved that
if G is a finitely generated soluble group satisfying the condition
(N , n), then |G/Z∗(G)| < nn4

, where Z∗(G) is the hypercentre of
G. This result gives a bound for the size of every finite soluble
centerless group satisfying the condition (N , n); on the other hand,
Endimioni in [10] proved that if n ≤ 20, then every finite group
satisfying the condition (N , n) is soluble, and A5, the alternating
group of degree 5, satisfies the condition (N , 21). Hence for n ≤ 20
and all soluble groups, we have a positive answer to the following
question:
Does there exist a bound (depending only on n) for the size of every
centerless finite group satisfying the condition (N , n)?

Here we find a bound for the size of finite semi-simple groups sat-
isfying the condition (N , n) and also for all finite centerless groups
satisfying the condition (N , 21). We also obtain a characterization
for A5 (see Corollary 2.11, below). The main results are

Theorem 1.1. Let G be a finite semi-simple group satisfying the
condition (N , n). Then |G| < c2[log21 n]n2

[log21 n]!, for some constant
c.

Theorem 1.2. Let G be a finite insoluble group. Then G satisfies
the condition (N , 21) if and only if G/Z∗(G) ∼= A5.

In [10] Endimioni proved that if n ≤ 3, then every finite group
satisfying the condition (N , n) is nilpotent, and S3, the symmetric
group of degree 3, satisfies the condition (N , 4). In fact, the only
non-trivial finite centerless group satisfying the condition (N , 4) is
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S3. In section 2, we investigate finite groups satisfying the condi-
tion (N , 4).

Theorem 1.3. Let G be a non-nilpotent finite group. Then G sat-
isfies the condition (N , 4) if and only if G/Z∗(G) ∼= S3.

It follows from Corollaries 2.12 and 3.4 below that a finite group
satisfies the condition (N , 4) (respectively, (N , 21)) if and only if
it is the union of 4 (respectively, 21) nilpotent subgroups. Another
natural question is: “For which positive integers n is every finite
group satisfying the condition (N , n) the union of n nilpotent sub-
groups?”

In section 3, we investigate (not necessarily finite) groups satis-
fying the condition (A, n), where A is the class of abelian groups.
Indeed, in a group satisfying the condition (A, n), the largest set
of non-commuting elements (or the largest set of elements in which
no two generate an abelian subgroup) has size at most n. By a re-
sult of B.H. Neumann [19] a group satisfies the condition (A, n) for
some n ∈ N if and only if it is centre-by-finite. In fact, Neumann
answered affirmatively the following question of P. Erdös [19]: Let
G be an infinite group. If there is no infinite subset of G whose
elements do not mutually commute, is there then a finite bound
on the cardinality of each such set of elements? Neumann [19]
proved that a group has the condition of Erdös’s question if and
only if it is centre-by-finite. This result has initiated a great deal of
research towards the determination of the structure of groups hav-
ing some similar properties (for example see [1],[2],[3],[4],[5],[8],[9],
[11],[13],[16],[17],[18],[22]).

Pyber in [20] gave a bound for the index of the centre of a
group satisfying the condition (A, n). Here we characterize insolu-
ble groups satisfying the condition (A, 21). Note that every group
satisfying the condition (A, n) also satisfies the condition (N , n).
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Theorem 1.4. Let G be an insoluble group. Then G satisfies the
condition (A, 21) if and only if G ∼= Z(G)× A5.

We also obtain a result which is of independent interest, namely,
the derived length of soluble groups satisfying the condition (A, n)
is bounded by a function depending only on n.

Theorem 1.5. Let G be a soluble group satisfying the condition
(A, n) and let d be the derived length of G. Then d = 1 if n ∈ {1, 2}
and d ≤ 2n− 3 if n ≥ 2.

2. Semi-simple groups satisfying the condition (N , n) and
insoluble groups satisfying the condition (N , 21)

Recall that a group G is semi-simple if G has no non-trivial nor-
mal abelian subgroups. If G is a finite group then we call the
product of all minimal normal non-abelian subgroups of G the cen-
terless CR-radical of G; it is a direct product of non-abelian simple
groups (see page 88 of [21]).

We first prove a result on the direct product of (not necessarily
finite) groups not satisfying the condition (X , n), for a certain class
X of groups. This result may also be useful in other investigations
on groups satisfying the condition (X , n). For example, if one can
find a bound depending only on n for the size of finite non-abelian
simple groups satisfying the condition (X , n), then by the aid of
Lemma 2.1 below, it is easy to see that there exists a bound de-
pending only on n for the size of every semi-simple finite group
satisfying the condition (X , n) (for instance see Theorem 1.1).

Lemma 2.1. Let X be a class of groups which is closed with respect
to homomorphic images. Suppose for i ∈ {1, . . . , t} that Hi is a
group not satisfying the condition (X , ni). Then H1×· · ·×Ht does
not satisfy the condition (X , m), where m = n1 + · · ·+ nt.
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Proof. It suffices to show that if H and K are two groups which
do not satisfy (X , n) and (X , m), respectively, then H × K does
not satisfy the condition (X , n + m). By the hypothesis, there
exist x1, . . . , xn+1 in H and y1, . . . , ym+1 in K such that 〈xi, xj〉 6∈
X for 1 ≤ i < j ≤ n+1 and 〈yk, yl〉 6∈ X for 1 ≤ k < l ≤ m+1.
Now it is easy to see that the subgroup generated by each pair of
distinct elements of the set

{(x2, 1), . . . , (xn+1, 1), (x1, y1), (x1, y2), . . . , (x1, ym+1)} ,

does not have the property X . �

Our next lemma is about the direct product of finite groups not
satisfying (N , n). For finite groups, this is a better result than
Lemma 2.1.

Lemma 2.2. Suppose that Hi is a finite group not satisfying the
condition (N , ni) for i ∈ {1, . . . , t}. Then H1 × · · · × Ht does not
satisfy the condition (N , m), where m = (n1 + 1) · · · (nt + 1)− 1.

Proof. By the hypothesis, for every i ∈ {1, . . . , t} there exists
a subset Xi in Hi of size ni + 1 such that no pair of its distinct
elements generate a nilpotent subgroup. Now we show that the
subgroup generated by each pair of distinct elements of the set X =
X1 × · · · ×Xt is not nilpotent. Let a = (a1, . . . , at), b = (b1, . . . , bt)
be two distinct elements of X. Then for some i ∈ {1, . . . , t}, ai 6= bi.
Since ai, bi ∈ Xi, we have that K := 〈ai, bi〉 is not nilpotent. Since
K is a finite non-nilpotent group, it is not an Engel group by a
result of Zorn (see Theorem 12.3.4 of [21]). Therefore there exist
elements x, y ∈ K such that [x,n y] 6= 1 for all n ∈ N. Suppose that

x = aδ1
i bδ2

i · · · aδr−1

i bδr
i and y = aε1

i bε2
i · · · aεs−1

i bεs
i

where δp, εq ∈ {0, 1,−1} for all p ∈ {1, . . . , r} and q ∈ {1, . . . , s}.
Suppose, for a contradiction, that 〈a, b〉 is nilpotent. Then there
exists a positive integer m such that [x̄,m ȳ] = 1 where

x̄ = aδ1bδ2 · · · aδr−1bδr and ȳ = aε1bε2 · · · aεs−1bεs .
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But

[x̄,m ȳ] = ([x1,m y1], . . . , [xt,m yt]),

where

xj = aδ1
j bδ2

j · · · aδr−1

j bδr
j and yj = aε1

j bε2
j · · · aεs−1

j bεs
j

for all j ∈ {1, . . . , t}. Hence [x,m y] = [xi,m yi] = 1, a contradiction.
This completes the proof. �

Lemma 2.3. Let M1, . . . ,Mm be non-abelian finite simple groups.
Then M1 × · · · ×Mm does not satisfy the condition (N , 21m − 1).

Proof. Since by Proposition 2 of [10], Mi does not satisfy the
condition (N , 20) for all i ∈ {1, . . . ,m}, the proof follows easily
from Lemma 2.2. �

Now we are ready to prove Theorem 1.1.

Proof of Theorem 1.1. Let R be the centerless CR-radical of G.
Then R is a direct product of a finite number m of finite non-abelian
simple groups and G is embedded in Aut(R). Then by Lemma 2.3,
we have 21m − 1 < n and so m ≤ [log21 n]. On the other hand,
since Z(G) = 1, by Lemma 3.3 of [23] every prime divisor of |G| is
less than n. Thus by Remark 5.5 of [6], there is a constant c such
that the order of every non-abelian simple section of G is less than
cn2

. Hence |R| < cn2[log21 n]. Now using the following well-known
facts that: (a) for a finite simple group S we have |Aut(S)| < |S|2
and (b) if R is the product of m simple groups Si, then G acts on
these factors, the quotient group is embeddable into Sym(m) and
the kernel K of the action is embeddable into the product of groups
Aut(Si); hence |K| < |R|2. Thus |G| < c2n2[log21 n][log21 n]!. �

Since in every finite group G, the quotient G/Sol(G) is semisim-
ple, where Sol(G) is the soluble radical (the largest soluble normal
subgroup) of G, we have
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Corollary 2.4. Let G be a finite group satisfying (N , n). Then

|G/Sol(G)| < c2n2[log21 n][log21 n]!

for some constant c.

Combining the result of Tomkinson quoted in the introduction
and Corollary 2.4, we obtain as a further nice corollary that in fact:

Corollary 2.5. Let G be a finite group satisfying (N , n). Then

|G/F (G)| < nn4

c2n2[log21 n][log21 n]!

for some constant c, where F (G) is the largest nilpotent normal
subgroup of G.

We need the following proposition, which is of independent in-
terest, in the proof of Proposition 2.7.

Proposition 2.6. Let p be a prime number, n a positive integer
and r and q be two odd prime numbers dividing respectively pn + 1
and pn − 1. Then the number of Sylow r-subgroups (respectively,

q-subgroups) of G = PSL(2, pn) is pn(pn−1)
2

(respectively, pn(pn+1)
2

).
Also the intersection of every two distinct Sylow r-subgroups or q-
subgroups is trivial.

Proof. Our proof uses Theorems 8.3 and 8.4 in chapter II of [14].
Let q be an odd prime dividing pn − 1 and let k = gcd(pn − 1, 2).
By Theorem 8.3 in Chapter II of [14], PSL(2, pn) possesses a cyclic
subgroup U of order u = pn−1

k
such that

(1) The intersection of every two distinct conjugates of U is
trivial.

(2) For every non-trivial element w of U , the normalizer NG(〈w〉)
of 〈w〉 is a dihedral group of order 2u.

Since q is an odd prime number, q divides u, and since |G| =
pn(pn+1)(pn−1)

k
, we have gcd(pn(pn + 1), q) = 1. It follows that any

Sylow q-subgroup of U is also a Sylow q-subgroup of G and each
of them is cyclic. Therefore it follows from (2) that the number

of Sylow q-subgroups of G is pn(pn+1)
2

. Now (1) implies that the
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intersection of every two distinct Sylow q-subgroups of G is trivial.
By a similar argument the second statement of the proposition fol-
lows from the corresponding parts of Theorem 8.4 in Chapter II
of [14], namely that the group G contains a cyclic subgroup K of
order s = pn+1

k
such that

(1) The intersection of every two distinct conjugates of K is
trivial.

(2) For every non-trivial element t of K, the normalizer NG(〈t〉)
of 〈t〉 is a dihedral group of order 2s. �

Proposition 2.7. The only non-abelian finite simple group satis-
fying the condition (N , 21) is A5.

Proof. Suppose, for a contradiction, that there exists a non-abelian
finite simple group satisfying the condition (N , 21) which is not
isomorphic to A5. Let G be such a group of least order. Thus
every proper non-abelian simple section of G is isomorphic to A5.
Therefore by Proposition 3 of [7], G is isomorphic to one of the
following:
PSL(2, 2p), p = 4 or a prime;
PSL(2, 3p), PSL(2, 5p), p a prime;
PSL(2, p), p a prime ≥ 7;
PSL(3, 3), PSL(3, 5);
PSU(3, 4) (the projective special unitary group of degree 3 over the
finite field of order 42) or
Sz(2p), p an odd prime.

For each prime divisor p of |G|, let νp(G) be the number of all
Sylow p-subgroups of G. If p is a prime number dividing |G| such
that the intersection of any two distinct Sylow p-Subgroups is triv-
ial, then by Lemma 3 of [10], νp(G) ≤ 21 (*). Now, for every prime
number p and every integer n > 0, we have νp(PSL(2, pn)) = pn +1
and the intersection of any two distinct Sylow p-subgroups is trivial
(see chapter II Theorem 8.2 (b),(c) of [14]). Thus among the projec-
tive special linear groups, we only need to investigate the following
groups:

PSL(2, 32), PSL(2, 8), PSL(2, 24), PSL(3, 3), PSL(3, 5), PSL(2, p)
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for p ∈ {7, 11, 13, 17, 19}. Now if in Proposition 2.6, we take
q = 7 for PSL(2, 8); q = 5 for PSL(2, 16); r = 5 for PSL(2, 9);
q = 3 for PSL(2, 7), PSL(2, 13) and PSL(2,19); and r = 3 for
PSL(2, 11) and PSL(2, 17); we see, by (*), that G cannot be iso-
morphic with any of these groups. Therefore we must consider the
groups PSL(3, 3), PSL(3, 5), PSU(3, 4) or Sz(2p), p an odd prime.

H := PSL(3, 3) has order 24 × 33 × 13, so ν13(H) = 1 + 13k, for
some k > 0 and since 14 does not divide |H|, ν13(H) > 26.

K := PSL(3, 5) has order 53×25×3×31, so ν31(K) = 1+31k > 21
for some k > 0.

L := PSU(3, 4) has order 26 × 52 × 13 (see Theorem 10.12(d)
of chapter II in [14] and note that L is the projective special uni-
tary group of degree 3 over the finite field of order 42). Therefore
ν13(L) = 1 + 13k > 21 for some k > 0 and since 14 does not divide
|L|, ν13(L) > 26.

M := Sz(2p) (p an odd prime) has order 22p(2p − 1)(22p + 1) and
ν2(M) = 22p + 1 ≥ 65 (see Theorem 3.10 (and its proof) of chapter
XI in [15]). This completes the proof by (*). �

Lemma 2.8. S5, the symmetric group of degree 5, does not satisfy
the condition (N , 21).

Proof. Every subgroup generated by a pair of distinct elements of
22-element subset
{(3,4,5), (2,3,4), (2,3,4,5),(1,4,5), (2,3,5,4), (2,3,5), (2,4,5), (1,2,3),
(1,2,3,4),
(1,2,4,5,3), (1,2,4,3,5), (1,2,5),(1,3,4), (1,3,4,5), (1,3,5), (1,3,2,4,5),
(1,4,2),
(1,5,4,3,2), (1,5,3,2), (1,5,4,2), (1,5,2,4,3), (1,5,3,2,4)} is not nilpo-
tent. �

Remark 2.9. Here we state two properties of A5 which we use in
the sequel. Suppose that P1, . . . , P21 are all the Sylow subgroups of
A5. Then
(i) For all xi ∈ Pi\{1} (i = 1, . . . , 21), the set {x1, . . . , x21} is a
subset of A5 such that no pair of its distinct elements generate a



10 Abdollahi and Mohammadi Hassanabadi

nilpotent subgroup. (See the proof of Proposition 2 of [10]).
(ii) A5 = ∪21

i=1Pi.

We use the following fact in the sequel without any specific ref-
erence. If G is any group such that G/Zm(G) is nilpotent for some
integer m ≥ 0, then G is nilpotent. Because Zn(G/Zm(G)) =
G/Zm(G) for some integer n ≥ 0 and so by Theorem 5.1.11 (iv) of
[21], we have Zm+n(G) = G, which implies that G is nilpotent.

Lemma 2.10. Let G be a finite insoluble group satisfying the con-
dition (N , 21) and let S = Sol(G) be the soluble radical of G. Then
G/S ∼= A5, and for all a ∈ S and for all x ∈ G\S, the subgroup
〈a, x〉 is nilpotent. In particular, Z∗(G) = Z∗(S).

Proof. Let S be the soluble radical of G and consider the semi-
simple group G = G/S. Let R be the centerless CR-radical of G.
Then R is a direct product of non-abelian simple groups. Since G
is insoluble, R is non-trivial. Now, by Lemma 2.3 and Proposition
2.7, R ∼= A5. Since CG(R) = 1, we have G ∼= A5 or S5. By Lemma
2.8, G ∼= A5. Now, let Q1, . . . , Q21 be the Sylow subgroups of G/S.
For each i ∈ {1, . . . , 21}, let xiS be a non-trivial element of Qi.
Then, by Remark 2.9(i), 〈xi, xj〉S 6∈ N and so 〈xi, xj〉 6∈ N for
all distinct i, j ∈ {1, . . . , 21}. Now, fix k ∈ {1, . . . , 21} and for an
arbitrary element a ∈ S consider the elements

xk, x1, . . . , xk−1, axk, xk+1, . . . , x21.

For k, j ∈ {1, . . . , 21} and j 6= k, 〈axk, xj〉 is not nilpotent, since
〈axk, xj〉S = 〈xk, xj〉S. Since G satisfies the condition (N , 21),
the subgroup 〈xk, axk〉 is nilpotent and hence so is 〈a, xk〉 for all
k ∈ {1, . . . , 21}. On the other hand, the union of the subgroups
Q1, . . . , Q21 is G/S, by Remark 2.9(ii), and so 〈a, x〉 is nilpotent for
all x ∈ G\S and for all a ∈ S.

Since S is finite, Z∗(S) = Zm(S) for some m ∈ N. Now for all a ∈
Zm(S) and for all b ∈ S, the subgroup T := 〈a, b〉 is nilpotent, since
TZm(S)/Zm(S) ∼= T/(T∩Zm(S)) is cyclic and T∩Zm(S) ≤ Zm(T ).



Finite Groups 11

Thus 〈a, x〉 is nilpotent for all a ∈ Z∗(S) and for all x ∈ G. Since G
is finite, a is a right Engel element for all a ∈ Z∗(S) (see Theorem
12.3.7 of [21]) and so Z∗(S) ≤ Z∗(G). Hence Z∗(S) = Z∗(G). This
completes the proof. �

Proof of Theorem 1.2. Suppose that G satisfies the condition
(N , 21) and suppose, for a contradiction, that G is a counterexam-
ple of least order subject to G/Z∗(G) 6∼= A5. Let S = Sol(G) be the
soluble radical of G. We claim that Z(S) = 1. For if Z(S) 6= 1 then
G/Z(S) is a finite insoluble group satisfying the condition (N , 21)
and since |G/Z(S)| < |G| and the soluble radical of G/Z(S) is
S/Z(S), we have that the assertion of Theorem 1.2 is true for the
group G/Z(S), i.e.

G/Z(S)

Z∗(G/Z(S))
∼= A5. (∗)

Now Lemma 2.10 implies that Z∗(S/Z(S)) = Z∗(G/Z(S)). On the
other hand

Z∗(S/Z(S)) = Z∗(S)/Z(S) = Z∗(G)/Z(S),

by Lemma 2.10 (note that for a finite group K we have Z∗(K) =
Zm(K) for some integer m > 0). Thus it follows from (∗) that
G/Z∗(G) ∼= A5 which is a contradiction. Hence Z(S) = 1, which
implies that Z∗(S) = 1.

Now, let x ∈ G\S be such that x2 ∈ S. Thus for all b ∈ S, we
have bx ∈ G\S and (bx)2 ∈ S. By Lemma 2.10, 〈bx, a〉 is nilpotent
for all a ∈ S, and so also is 〈(bx)2, a〉. Therefore (bx)2 is a right
Engel element of S and so (bx)2 ∈ Z∗(S) = 1. Thus for all b ∈ S,
(bx)2 = 1. Now, again by Lemma 2.10, 〈bx, x〉 = 〈b, x〉 is nilpotent
and so is 〈b, x2〉. Thus as before x2 = 1. Therefore D := 〈b, x〉 is
a finite dihedral group which is nilpotent and so |D| is a power of
2 and b is a 2-element. Hence S is a 2-group, and since Z(S) = 1,
we conclude that S must be trivial. Therefore, by Lemma 2.10,
Z∗(G) = 1 and G/Z∗(G) = G/S ∼= A5, a contradiction.
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Conversely, suppose that G/Z∗(G) ∼= A5. By Remark 2.9(ii),

G

Z∗(G)
=

21⋃
i=1

Pi

Z∗(G)
,

where P1/Z
∗(G), . . . , P21/Z

∗(G) are the Sylow subgroups of G/Z∗(G).
But G is finite, so Z∗(G) = Zm(G) for some m ∈ N. Since
Zm(G) ≤ Zm(Pi) for all i ∈ {1, . . . , 21} and Pi/Zm(G) is nilpotent,
we conclude that each Pi is nilpotent. Now the proof is complete,
since G = ∪21

i=1Pi. �

From Theorem 1.2 we have a nice characterization for A5.

Corollary 2.11. The only finite centerless insoluble group satisfy-
ing the condition (N , 21) is A5.

Theorem 1.2 also gives us the following consequences.

Corollary 2.12. A finite insoluble group satisfies the condition
(N , 21) if and only if it is covered by 21 nilpotent subgroups.

Corollary 2.13. Let G be a finite group satisfying the condition
(N , 21). If the centerless CR-radical of G is non-trivial, then G ∼=
A5 × Z∗(G).

Proof. Let R be the centerless CR-radical of G. Then R is a
non-trivial direct product of some non-abelian simple groups and
so by Lemma 2.3 and Proposition 2.7, R ∼= A5. Since R is simple,
R ∩ Z∗(G) = 1. But, by Theorem 1.2, |G| = |Z∗(G)||A5|, and so
G ∼= A5 × Z∗(G). �

Remark 2.14. We note that not every finite insoluble group sat-
isfying the condition (N ,21) is necessarily isomorphic to a direct
product as in Corollary 2.13. For example if K := SL(2, 5) then
K/Z(K) ∼= A5 and so K satisfies the condition (N ,21), by Theo-
rem 1.2. However we conjecture that every finite insoluble group
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satisfying the condition (N ,21) is a direct product of a nilpotent
group and a group isomorphic to either A5 or SL(2, 5).

3. Finite groups satisfying the condition (N ,4)

In this section, we investigate finite groups satisfying the condi-
tion (N ,4), and give the proof of Theorem 1.3.

Lemma 3.1. Let G be a finite {2, 3}-group. If G satisfies the con-
dition (N ,4), then G is 2-nilpotent.

Proof. Suppose that G is a counterexample of least order. Thus
by a result of Itô (see Theorem 5.4 on page 434 of [14]), G is a
minimal non-nilpotent group and G has a unique Sylow 2-subgroup
P and a cyclic Sylow 3-subgroup Q such that Φ(Q) ≤ Z(G) and
Φ(P ) ≤ Z(G) (see Theorem 5.2 on page 281 of [14]). If Z(G) 6= 1
then G/Z(G) is nilpotent and so G is nilpotent, a contradiction.
Thus Z(G) = 1 and so |Q| = 3 and P is an elementary abelian
2-group.

Let Q = 〈a〉. Then CP (a) ≤ Z(G), and so CP (a) = 1. On the
other hand by Lemma 3.4 of [23], |P : CP (a)| ≤ 4 and so |P | ≤ 4.
If |P | = 4 then G ∼= A4, the alternating group of degree 4. But
A4 does not satisfy the condition (N ,4); thus |P | = 2. Therefore
G ∼= S3, a contradiction, since S3 is 2-nilpotent. This completes
the proof. �

Lemma 3.2. Let G = RX be an extension of an elementary abelian
3-group R by an abelian 2-group X such that X acts faithfully on
R and R = [R, X]. If G satisfies the condition (N ,4), then |X| ≤ 2
and |R| ≤ 3.

Proof. The proof follows from the argument of Lemma 3.7 of [23].
�
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We are now ready to give a proof for Theorem 1.3, the outline of
which is in fact a refinement of that of Theorem C in [23] for n = 4.

Proof of Theorem 1.3. Suppose that G satisfies the condition
(N ,4). By factoring out Z∗(G), we may assume that G is a finite
non-trivial group with trivial centre satisfying the condition (N ,4).
We note that G is a {2, 3}-group by Lemma 3.3 of [23].

Let Hp/Op′(G) be the hypercentre of G/Op′(G), for p = 2, 3.
Then, since G is finite, there is a positive integer m such that
[Hp,m G] ≤ Op′(G) for p = 2, 3. Hence

[H2 ∩H3,m G] ≤ O2′(G) ∩O3′(G) = 1,

and so H2 ∩H3 ≤ Z∗(G) = 1. But O2′(G) = O3(G) and by Lemma
3.1, is the unique Sylow 3-subgroup of G. Thus G/O2′(G) is a
2-group and so G = H2. Therefore H3 = 1 and so O2(G) = 1.
Hence P = Fitt(G) = O3(G). Let G = G/Φ(P ) and P = P/Φ(P ),
thus G/P acts faithfully on the GF(3)-vector space P (see [12],
Theorem 6.3.4). We note that P is an elementary abelian normal
3-subgroup of G, that P = O3(G), and that CG(P ) = P . Let
Q/P be the socle of G/P , so that Q/P is an abelian 2-subgroup.
We may write Q = PX, where X is an abelian 2-subgroup of
Q. Let R = [P , Q], so that P = R × CP (Q). If C = CG(R)
then C ∩ Q centralizes R × CP (Q) = P and so C ∩ Q = P . It
follows that CG(R) = P and so G/P acts faithfully on R. Now
R and X satisfy the conditions of Lemma 3.2 and so |R| ≤ 3.
Since G/P acts faithfully on R, the order of G/P is no more than
2. Let T be a Sylow 2-subgroup of G; then |T | ≤ 2 and hence
T is cyclic and by Lemma 3.4 of [23], |P : CP (T )| ≤ 3. Now,
we have [CP (T ),m G] = [CP (T ),m P ] = 1 for some m ∈ N. Thus
CP (T ) ≤ Z∗(G) = 1 and so |G| = |T ||P | ≤ 2 × 3 = 6. Therefore
G ∼= S3.

Conversely, suppose that G/Z∗(G) ∼= S3. Since S3 is covered by
4 abelian subgroups, G is also covered by 4 nilpotent subgroups.
This completes the proof. �
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Corollary 3.3. Every finite group satisfying the condition (N ,4)
is supersoluble. The alternating group A4 satisfies the condition
(N ,5).

Proof. Let G be a finite group satisfying the condition (N ,4). By
Proposition 1 of [10], G = H × K, where H is a nilpotent {2, 3}′-
group and K is a {2, 3}-group. If K is nilpotent, then there is
nothing to prove. Assume that K is not nilpotent. By Theorem
1.3, K/Z∗(K) ∼= S3 and so K is supersoluble. Thus G is also a
supersoluble group.

The group A4 is the union of its five Sylow subgroups , so A4

satisfies the condition (N ,5). �

Corollary 3.4. A finite group satisfies the condition (N ,4) if and
only if it is the union of four nilpotent subgroups.

Proof. Let G be a finite group satisfying the condition (N ,4).
Then by Theorem 1.3, G/Z∗(G) is the union of 4 nilpotent sub-
groups and hence so is G. The converse is clear. �

4. Finite groups satisfying the condition (A,n)

Now suppose that A is the class of abelian groups. Then ev-
ery group satisfying the condition (A,n) also satisfies the condition
(N ,n). The converse is not true, since as we have observed already,
SL(2, 5) satisfies the condition (N ,21). However SL(2, 5) does not
satisfy the condition (A,21).

Lemma 4.1. SL(2, 5) does not satisfy the condition (A,21).

Proof. Let P1, . . . , P5 be the Sylow 2-subgroups of SL(2, 5), Q1, . . . ,
Q10 the Sylow 3-subgroups of SL(2, 5), and R1, . . . , R6 the Sylow
5-subgroups of SL(2, 5). We note for each i = 1, . . . , 5 that Pi is a
quaternion group of order 8 and Z(Pi) = Z(SL(2, 5)) (see, for ex-
ample, Theorem 8.10 in chapter II of [14]). Let xi ∈ Pi\Z(Pi)
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(i = 1, . . . , 5), yj ∈ Qj\{1} (j = 1, . . . , 10) and zk ∈ Rk\{1}
(k = 1, . . . , 6). Then since SL(2, 5)/Z(SL(2, 5)) ∼= A5, it follows
from Remark 2.9(i) that no two distinct elements of the set

{x1, . . . , x5, y1, . . . , y10, z1, . . . , z6}
commute. Now since P1 is a quaternion group of order 8 and x1 ∈
P1\Z(P1), there exists an element x ∈ P1\Z(P1) such that x1x 6=
xx1. On the other hand, as above, no two distinct elements in

{x, x2 . . . , x5, y1, . . . , y10, z1, . . . , z6}
commute. Therefore no two distinct elements in the set

{x, x1, . . . , x5, y1, . . . , y10, z1, . . . , z6}
commute, which completes the proof. �

Lemma 4.2. Let G be a finite group satisfying the condition (A,21).
If there exists a central subgroup B of G of order no more than 2
such that G/B ∼= A5, then G ∼= B × A5.

Proof. Since G/B ∼= A5 it follows that G = G′B and G′/(B∩G′) ∼=
A5. Therefore if G′∩B = 1 then the proof is complete. So suppose,
for a contradiction, that G′ ∩ B 6= 1. Thus |B| = 2. According to
the Universal Coefficients Theorem (see Theorem 11.4.18 of [21])
the central extension B � G � G/B determines a homomorphism
δ : M(G/B) → B so that Imδ = G′∩B, where M(G/B) is the Shur
multiplicator of G/B (see for example Exercise 10 on page 354 of
[21]). But we know that the Shur multiplicator of the alternating
group A5 is Z2. Hence G′ ∩ B = B and so B ≤ G′. It follows that
G is a perfect group of order 120. But it is well-known that the
only perfect group of order 120 is SL(2, 5). Now Lemma 4.1 gives
a contradiction and the proof is complete. �

We need the following lemma in the proof of Theorem 1.4.

Lemma 4.3. Let G be a group satisfying the condition (A,n) (n >
1). Then for any normal non-abelian subgroup N of G, the quotient
G/N satisfies the condition (A,n− 1).
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Proof. Suppose, for a contradiction, that G/N 6∈ (A,n− 1). Then
there exist elements x1, . . . , xn in G such that [xi, xj] 6∈ N for all
distinct i, j ∈ {1, . . . , n} (∗). Let a, b be two distinct arbitrary
elements of N and consider the subset X = {ax1, . . . , axn, bx1}.
By the hypothesis, there exist two distinct commuting elements in
X. But, by (∗), the only commuting pair of elements of X are bx1

and ax1. Therefore for all a, b ∈ N , we have ax1b = bx1a (∗∗) and
in particular for b = 1, we have ax1 = x1a for all a ∈ N . Thus for
all x, y ∈ N we have

xyx1 = xx1y = yx1x = yxx1

(the middle equality follows from (∗∗)) and so xy = yx. Hence N
is abelian, a contradiction. �

Proof of Theorem 1.4. Suppose that G ∼= Z(G) × A5. Then
G is covered by 21 abelian subgroups as A5 has this property, by
Remark 2.9(ii).

Now, suppose that G satisfies the condition (A,21). Then by a
famous Theorem of B. H. Neumann [19], G/Z(G) is finite. Thus,
by Theorem 1.2,

G/Z(G)

Z∗(G/Z(G))
∼= G/Z∗(G) ∼= A5.

If H := Z∗(G) is not abelian, then Lemma 4.3 shows that A5

satisfies the condition (A,20), which contradicts Proposition 2 of
[10]. Thus H is abelian; we show that in fact H = Z(G). To prove
this let Q1, . . . , Q21 be the Sylow subgroups of G := G/H. For
each i ∈ {1, . . . , 21}, let xiH be a non-trivial element of Qi. Then
[xi, xj] 6∈ H and so [xi, xj] 6= 1 for all distinct i, j ∈ {1, . . . , 21}, by
Remark 2.9(i). Now fix k ∈ {1, . . . , 21} and consider the elements

xk, x1, . . . , xk−1, axk, xk+1, . . . , x21,

for an arbitrary element a ∈ H. Then for j ∈ {1, . . . , 21} and
j 6= k, we have [axk, xj] 6= 1, since [axk, xj]H = [xk, xj]H. Since G
satisfies the condition (A,21), [xk, axk] = 1 and so [a, xk] = 1 for all
k ∈ {1, . . . , 21}. Since the union of Q1, . . . , Q21 is G, by Remark
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2.9(ii), we have [a, x] = 1 for all x ∈ G\H and for all a ∈ H.
Therefore H = Z(G).

Now by the same argument as in Lemma 4.2, by considering
the central extension Z(G) = H � G � G, we have that K =
G′ ∩ Z(G) is of order no more than 2, G = G′Z(G) and G′/K ∼=
A5. Thus Lemma 4.2 implies that there is a subgroup L of G′

such that G′ = K × L and L ∼= A5. Therefore G = G′Z(G) =
LKZ(G) = LZ(G) and it is clear that L ∩ Z(G) = 1. Therefore
G = L× Z(G) ∼= A5 × Z(G). �

We end this paper by proving Theorem 1.5.

Proof of Theorem 1.5. We first prove that if n = 2, then G
is abelian. Consider two distinct elements x, y ∈ G. Then X =
{x, y, xy} is a subset of size 3. Thus by the hypothesis two distinct
elements of X commute. But commutativity of each pair of distinct
elements of X implies the commutativity of x and y. Hence G is
abelian.

Now suppose that n ≥ 2 and use induction on n. If n = 2 then
G is abelian and d = 1. So let n > 2. Then 2 < 2n − 3. Thus
we may assume that d > 2. Therefore Gd−2 is not abelian and so
G/Gd−2 satisfies the condition (A,n − 1) by Lemma 4.3. Thus by
induction the derived length of G/Gd−2 is at most 2(n− 1)− 3 and
so d− 2 ≤ 2(n− 1)− 3. Hence d ≤ 2n− 3. �
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