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A NECESSARY CONDITION FOR
WEYL-HEISENBERG FRAMES

A. SAFAPOUR AND R. KAMYABIGOL

Abstract. In some papers like [6] some conditions are given
for a triple (g, a, b) so that it generates a Weyl-Heisenberg
frame for L2(R). When G is a locally compact abelian group,
in [10] it is given a necessary and sufficient condition for a
function f ∈ L2(G) and a uniform lattice K in G such that
the pair (f,K) generates a Weyl-Heisenberg frame for L2(G).
But this condition depends on the Zak transform of f . Also
it is stated there a sufficient condition for a pair S(f,K) such
that it generates a frame for L2(G). Here we give a neces-
sary condition for the pair (f,K) to generate a W-H frame for
L2(G) which depends only on f and K.

1. Introduction and Preliminaries

Frames and wavelets have been one of the most interesting fields
for research in the last twenty years. A wide spectrum of researchers
including pure and applied mathematicians, engineers, and physi-
cists have been focused on them. One of the aims of these works is
finding out the methods by which one can construct frames for some
special Hilbert spaces. In some papers like [6] it is given conditions
on a function g ∈ L2(R) and constants a and b such that the triple
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(g, a, b) generates some special kinds of frames for L2(R), namely
Weyl-Heisenberg (abbreviated as W-H) frames. In fact these frames
come from a unitary representation of a topological group on the
space of all unitary operators on L2(R). G.Kutyniok in [10] has
given a necessary and sufficient condition for generating such frames
for L2(G) when G is an LCA group. But this condition depends
on the Zak transform of some function f ∈ L2(G) ( [10], Theorem
2.1). Also it is stated there a sufficient condition for generating
W-H frames for L2(G)([10],Lemma 2.2). In this paper we give a
necessary condition for generating W-H frames for L2(G), indepen-
dent of the Zak transform. To do so, first we give some preliminary
definitions and results; then we introduce the Haar measure of a
generalized W-H group. We will prove that this group is unimod-
ular. Our main result is Theorem 2.3.2 Finally we state and prove

the relation between frames for L2(G) and L2(Ĝ).

1.1. Preliminaries

Let G be a locally compact group. A unitary representation
of G is a continuous homomorphism π of G into the space of all
unitary operators on some Hilbert space which we will show it by
Hπ. The space of such operators will be shown by U(Hπ). π is
called irreducible if π(x) has no nontrivial invariant subspace for
every x ∈ G. When G is abelian, every unitary representation of
G is 1-dimensional([4],Corollary 3.6). In this note we will assume
that G is abelian. A character of G is a continuous homomorphism
ξ : G → C such that ξ(x−1) = ξ(x). It is customer to show the
action of ξ on x by < x, ξ > instead of ξ(x). The set of all characters

ofG will be shown by Ĝ. In fact Ĝ is the set of all irreducible unitary

representations of G. Ĝ is an abelian group and moreover it is a
topological group with compact convergence topology. Because of

these, Ĝ is called the dual group of G. In some special cases, there
is an interesting relation between the topological structures of G

and Ĝ :

Lemma 1.1.1. If Gis discrete, then Ĝ is compact; if G is compact,

then Ĝ is discrete.



A necessary condition for Weyl-Heisenberg frames 69

Proof. See [4], Proposition 4.4.

Example 1.1.2. Here are three well-known groups and their dual
groups.

1. Ẑ ∼= T with the pairing < n, a >= an, where T denotes the unit
circle.
2. T̂ ∼= Z with the pairing < a, n >= an.

3. R̂ ∼= R with the pairing < x, ξ >= e2πixξ.

Let G be a topological group. By Aut(G) we mean the set of
all automorphisms of G which are also homeomorphism. This is a
group with the multiplication to be the composition of automor-
phisms. Moreover it is a topological group under the topology so
called Braconnier topology ([8],Theorem 26.5). Let G1 and G2 be
two locally compact groups and τ : G1 −→ Aut(G2) be a homo-
morphism such that the mapping (x, g) 7→ τx(g) is a continuous
homomorphism of G1 × G2 onto G2. Then the Cartesian product
G1 ×G2 endowed with the operation

(x1, g1)(x2, g2) = (x1x2, g1τx1(g2))

is a group with the identity element (eG1 , eG2) and the inverse:
(x, g)−1 = (x−1, τx−1(g2)). In fact this is a topological group with
the product topology. This group is denoted by G1 ×τ G2 and is
called the semidirect product of G1 and G2, respectively.

1.2. Generalized Weyl-Heisenberg Group

Let H = R × R̂ × T . For (a1, b1, t1) and (a2, b2, t2) in H, the
operation

(a1, b1, t1)(a2, b2, t2) = (a1 + a2, b1 + b2, t1t2e
2πia1b2)

gives a group structure to H with the identity element (0, 0, 1) and
the inverse as (a, b, t)−1 = (−a,−b, t−1e2πiab). On the other hand

we can write H = R×τ (R̂×T ) that, is the semidirect product of R

and R̂×T related to the homomorphism τ : R→ Aut(R̂×T ) such
that τa(b, t) = (b, te2πiab). Anywhere, it is a locally compact (and
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nonabelian) topological group with respect to the product topology.
So, by [4], Theorem 2.10, it possesses a left Haar measure.

Proposition 1.2.1. The product measure dadbdt is the left and
right Haar measure on H. In particular H is unimodular.

Proof. See [6], Proposition 3.2.3. �

H is called Weyl-Heisenberg (or simply W-H) group. In [9], G.
Kuytniok has given a generalized notion of the W-H group. Since
we haven’t seen any discussion about the Haar measure of this
generalized case, for reader’s convenience we include a definition
and a proof to introduce such a measure.

Definition 1.2.2. Let G be a locally compact abelin group, Ĝ its
dual group, and µ and ν their Haar measure, respectively. Also

let T be the unit circle. Put HG = G ×τ (Ĝ × T ), where ×τ is
the semidirect product related to the homomorphism τ : G →
Aut(Ĝ × T ) such that τg(w, z) = (w, z.w(g)). For (g1, w1, z1) and
(g2, w2, z2) in HG let

(g1, w1, z1).(g2, w2, z2) = (g1g2, w1w2, z1z2w2(g1)).

HG is closed under this action. Also this action is associative.
(e, 1Ĝ, 1) is the neutral element of this action, where e is the iden-
tity of G, and (g, w, z)−1 = (g−1, w̄, z−1w(g)). This makes HG a
group. HG is called the Weyl-Heisenberg group associated with G.
It is a nonabelian group which is locally compact ( with product
topology). So, it possesses a left Haar measure (which is also a
right Haar measure).

Proposition 1.2.3. HG is a unimodular group whose Haar mea-
sure is dµdνdz/2πi.

Proof. ∫
T

∫
Ĝ

∫
G

F ((x, v, z
′
)(g, w, z))dµ(g)dν(w)dz/2πi
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=

∫
T

∫
Ĝ

∫
G

F (xg, vw, zz
′
w(x))dµ(g)dν(w)dz/2πi

=

∫
T

∫
Ĝ

∫
G

F (g, w, zz
′
(v−1w)(x))dµ(g)dν(w)dz/2πi

=

∫
T

∫
Ĝ

∫
G

F (g, w, zz
′
v−1(x)w(x))dµ(g)dν(w)dz/2πi.

There exist θ, θ1, θ2, θ3 in [0, 2π] such that z = eiθ, z
′
= eiθ1 , w(g) =

eiθ2 and v−1(x) = eiθ3 . So the last integral equals to∫ 2π

0

∫
Ĝ

∫
G

F (g, w, ei(θ+θ1+θ2+θ3))dµ(g)dν(w)dθ/2π

=

∫ 2π

0

∫
Ĝ

∫
G

F (g, w, eiθ)dµ(g)dν(w)dθ/2π

=

∫
T

∫
Ĝ

∫
G

F (g, w, z)dµ(g)dν(w)dz/2πi.

A similar argument shows that this is also the right Haar measure
of HG. �

2. Generalized W-H frames

In this section first we introduce W-H frames. Then, according
to the definition of generalized W-H group, we give the definition of
the generalized W-H frame. Finally we state and prove a theorem
that gives a necessary condition for existence of such frames. Most
of the definitions and results in the literature are due to Daubechies,
Grassman, and Meyer, Heil and Walnut, and also Kutyniok in [2],
[1] ,[6] , and [10].

2.1. Frames and bases

Definition 2.1.1. A sequence{fn} in a separable Hilbert space H
is a basis for H if for every h ∈ H there exists a unique sequence of
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scalars{cn} such that h =
∑
cnfn. {fn} is called an orthonormal

basis if it is also an orthonormal set.The basis is bounded if

0 < inf ‖ fn ‖≤ sup ‖ fn ‖<∞.

It is unconditional if
∑
cnfn converges unconditionally for every

h ∈ H, i.e., the series converges for every rearrangement of its
terms.

In Hilbert spaces all bounded unconditional bases are equivalent
to an orthonormal basis. In other words, if {fn} is a bounded
unconditional basis for H then there exists an orthonormal basis
{en} and a bounded invertible operator U : H → H such that fn =
Uen for each n. The necessity of orthogonality for bases makes some
difficulties and limitations for finding a suitable basis forH. Frames
are a generalization of bases without these limitations. They were
firstly introduced by Duffin and Scheafer in early fifties [3]. One
of the advantages of frames is that they can be constructed from
a single vector f ∈ H. Two of the most famous frames for L2(R)
are Gabor frames (or Weyl-Heisenberg frames) and affine frames.
Both of these frames come from a unitary representation of two
well-known topological groups : Weyl-Heisenberg group and affine
group. Here we state some definitions and results related to frames.

Definition 2.1.2. A sequence {fn} in a separable Hilbert space
H is a frame if there exist finite constants A,B > 0 such that for
every h ∈ H,

0 < A ‖ h ‖2≤
∑

n

|〈h, fn〉|2 ≤ B ‖ h ‖2<∞.

Constants A and B are called frame bounds. The frame is called
tight if A=B. It is a Parseval frame if A=B=1. A frame is exact if
it ceases to be a frame whenever any single element is deleted from
it. There is a close relation between exact frames and bounded
unconditional bases :

Theorem 2.1.3. A sequence {fn} in a Hilbert space H is an exact
frame if and only if it is a bounded unconditional basis.
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Proof. See [7] , [11]. �

2.2. W-H Frames

Notation. For real numbers a and b and a real function f put

Taf(x) = f(x− a),

Ebf(x) = e2πibxf(x).

Ta and Eb are unitary operators on L2(R) which are called the
translation and modulation operators, respectively. Also we have

TaEbf(x) = e2πib(x−a)f(x− a),

EbTaf(x) = e2πibxf(x− a).

Definition 2.2.1. Let H be the W-H group. For (a, b, t) ∈ H and
f ∈ L2(R) let

π(a, b, t)f(x) = t.TaEbf(x) = t.e2πib(x−a)f(x− a).

Then π(a, b, t) is a unitary operator on L2(R) for every (a, b, t) ∈ H.
So π is a unitary representation of H on L2(R).

If we assume that t = 1 and a, b > 0 , then we can give the
definition of a W-H frame.

Definition 2.2.2. Given g ∈ L2(R) and a, b > 0, we say that
(g, a, b) generates a W-H frame for L2(R) if {EmbTnag}m,n∈Z is a
frame for L2(R). The function g is called the mother wavelet and
the numbers a, b are frame parameters.

Lemma 2.2.3. {EmbTnag} is a frame for L2(R) if and only if
{TnaEmbg} is so.

Proof. For f ∈ L2(R) it can be easily shown that

|〈EmbTnag, f〉|2 = |〈TnaEmbg, f〉|2.

The rest of the proof is straightforward. �
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Theorem 2.2.4. Let g ∈ L2(R) and a, b > 0 be such that
(1) There exist constants A,B such that

0 < A ≤
∑

n

|g(x− na)|2 ≤ B <∞ a.e.,

(2) g has a compact support, with supp(g) ⊂ I ⊂ R, where I is
some interval of length 1/b.
Then (g,a,b) generates a W-H frame for L2(R) whit frame bounds
b−1A, b−1B.

Proof. See [6], Theorem 4.1.4. �

2.3. Generalized W-H Frames

Let G be a locally compact abelian group. A uniform lattice in
G is a discrete subgroup K of G that is also cocompact, i.e., G/K

is compact. For an arbitrary subgroup K of G, the set of all ω in Ĝ
for which ω(k) = 1 for every k ∈ K, is called the annihilator of K.
We denote the annihilator of K by Ann(K) . In [8], lemma 24.5,

it is shown that Ann(K) = Ĝ/K and Ĝ/Ann(K) = K̂. Because of

this and according to Lemma 1.1.1, Ĝ/K is a uniform lattice in Ĝ
when K is so in G.

Let G be as above with the Haar measure µ, Ĝ its dual group

with the Haar measure ν, K a uniform lattice in G, and Ĝ/K its

corresponding lattice in Ĝ. Also let Ψ : HG → U(L2(G)) be the
Schrödinger representation which is an irreducible unitary repre-
sentation defined by

(Ψ(x, γ, z)f)(t) = zγ(t)f(xt)

for every (x, γ, z) ∈ HG and for every f ∈ L2(G). We use this
representation for constructing W-H frames for L2(G). To do so
we restrict ourselves to those elements of HG that are of the form

(x, γ, 1), where x ∈ K and γ ∈ Ĝ/K. Explicitly, for f ∈ L2(G) and

(k, γ) ∈ K × Ĝ/K we define

ψf
(k,γ)(t) := (Ψ(k, γ, 1)f)(t) = γ(t)f(kt),
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and

S(f,K) = {ψf
(k,γ) : (k, γ) ∈ K × Ĝ/K}.

Now we are ready to give the definition of W-H frames in the general
case.

Definition 2.3.1. Let K be a uniform lattice in G and g ∈ L2(G).
We say that the pair (g,K) generates a Weyl-Heisenberg frame for
L2(G) if S(g,K) is a frame for L2(G).

Theorem 2.3.2. Let G be a locally compact abelian group, µ its
Haar measure, K a uniform lattice in G and g ∈ L2(G) be com-
pactly supported with µ(supp(g)) = b. If there exist constants A
and B such that

0 < A ≤
∑

k∈K | g(xk) |2≤ B <∞ a.e (*) ,

Then (g,K)generates a W-H frame for L2(G) with frame bounds
bA and bB.

Proof. Let the support of g be the set I ⊂ G. With our assumption
µ(I) = b < ∞. The operator Tx : G → G defined by Tx(g) = gx
is the translation operator. It is clear that for every f ∈ L2(G)
the function f.Txḡ is supported in Ik = {xk−1 : x ∈ I} for every
k ∈ K and µ(Ik) = µ(I) = b. Also, if we put γ

′

k = γ |Ik
, then the

collection {b−1/2γ
′

k}γ∈Ĝ/K
will be an orthonormal basis for L2(Ik)

for each fixed k ∈ K. We explain it here.
First we will show that {b−1/2γ

′

k} is an orthonormal set. If γ
′

k1
6=

γ
′

k2
on Ik, there exists x0 ∈ Ik such that γ

′

k1
(x0) 6= γ

′

k2
(x0), i.e.,

γ
′

k1
(x0)γ

′
k2

(x0) 6= 1, where 1 denotes the identity element of C. So,

〈γ′k1
, γ

′

k2
〉 =

∫
Ik

γ
′

k1
(x)γ

′
k2

(x)dµ(x) =

∫
Ik

γ
′

k1
(x0x)γ

′
k2

(x0x)dµ(x0x)

= γ
′

k1
(x0)γ

′
k2

(x0)

∫
Ik

γ
′

k1
(x)γ

′
k2

(x)dµ(x) = γ
′

k1
(x0)γ

′
k2

(x0)〈γ
′

k1
, γ

′

k2
〉,

which implies that 〈γ′k1
, γ

′

k2
〉 = 0. Normality follows simply ( sim-

ilar to the Prop. 4.3, [1] ). Next we show the completeness of
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{b−1/2γ
′

k}k∈K . Since (γ
′

kω
′

k)(x) = γ
′

k(x)ω
′

k(x), the finite linear com-
binations of these restricted characters is an algebra . By Gelfand-
Raikov theorem and also Pontriagin duality theorem (see [4]) the
set of all characters separate points on G. Now, if there exist x1k
and x2k in Ik such that x1k 6= x2k, since k is fixed, it will follow
that x1 6= x2 and with the above discussion there exists a γ such
that

γ(x1k) = γ(x1)γ(k) = γ(x1) 6= γ(x2) = γ(x2)γ(k) = γ(x2k).

The second and the third equalities hold because γ ∈ Ĝ/K, the
annihilator of K. Hence the algebra mentioned above separate
points on Ik. Also this algebra is conjugate closed and vanishes
at no point of Ik. So by Stone-Weierstrass theorem this algebra
is dense in C(Ik) = Cc(Ik) in the uniform norm and hence in the
L2- norm. C(Ik) itself is dense in L2(Ik) ([5], Theorem 7.9). So
{b−1/2γ

′

k} is complete and hence an orthonormal basis for L2(Ik).
So

∑
(k,γ) |〈f, ψ

g
(k,γ)〉|2 =

∑
(k,γ) |〈f, γ(.)Tkg〉|2 =

∑
(k,γ) |〈f.Tkḡ, γ〉|2 =

∑
(k,γ) |

∫
G
f(x)ḡ(xk)γ̄(x)dµ(x)|2

=
∑

(k,γ) |
∫

G
f(x)ḡ(xk)γ(x)dµ(x)|2

=
∑

(k,γ) |
∫

Ik
f(x)ḡ(xk)γ(x)dµ(x)|2

=
∑

(k,γ
′
k) |

∫
Ik
f(x)ḡ(xk)γ

′

k(x)dµ(x)|2

=
∑

(k,γ
′
k) |〈f.Tkḡ, γ

′

k〉|2 =
∑

k

∑
γ
′
k
|〈f.Tkḡ, γ

′

k〉|2

= b
∑

k

∑
γ
′
k
|〈f.Tkḡ, b

−1/2γ
′

k〉|2 = b
∑

k ‖ f.Tkḡ ‖2
2
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= b
∑

k

∫
Ik
|(f.Tkḡ)(x)|2dµ(x) = b

∑
k

∫
Ik
|f(x)ḡ(xk)|2dµ(x)

= b
∑

k

∫
Ik
|f(x)|2|g(xk)|2dµ(x) = b

∫
G
(|f(x)|2

∑
k |g(xk)|2)dµ(x).

Now from (*) the result follows. �

Example 2.3.3. If we put G = R, then Theorem 2.2.4 will be a
special case of this theorem with ab = 1.

Example 2.3.4. If we put G = Rd and we consider it with its
usual Haar measure, the Lebesgue measure dx, and K = Zd, then
G/K =

∏d
i=1[0, 1)which is isomorphic to T d, the d-times product

of T. Everything is similar to the above example with the exception
of modulation operator which is: Ey(x) = e2πiyxt

where xt denotes
the transpose of x. Also a and b are as above and if n = (n1, ..., nd)
is in Zd, then na = (n1a, ..., nda).

Example 2.3.5. Let G = T , the 1-dimentional torus. Then, its
dual group is Z and K = {e inπ

2 : n ∈ Z} is a discrete subgroup of
T . Also T/K = {eiθ : 0 ≤ θ < π

2
} which is compact with respect

to the quotient topology. For n ∈ Z = T̂ , let n(t) = tn, where
t ∈ T . Then n(t1t2) = (t1t2)

n = tn1 t
n
2 = n(t1)n(t2) for every t1, t2 in

T . So this action is well-defined for characters of T . Accordingly,
ψf

(k,γ)(t) = tγf(kt) and hence Ann(K) = {m ∈ Z : m = 4l, l ∈
Z} = 4Z. Now if g ∈ L2(T ) satisfies the conditions of theorem 2.3,
then (g,K) generates a W-H frame for L2(T ).

Example 2.3.6. Let G = T n, the n-dimensional torus. Then

Ĝ = Zn and K = {(e
im1π

2 , e
im2π

2 , ..., e
imnπ

2 ) : mj ∈ Z, j = 1, ..., n}
is a uniform lattice in Ĝ. Also if γ = (γ1, ..., γn) ∈ Zn and t =
(t1, ..., tn) ∈ T n, then γ(t) =

∏n
i=1 t

γi

i . As in previous example for
the case n=1, the annihilator of K is the set 4Zn = {4m : m ∈ Zn}.
The rest is as above.
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2.4. Frames for L2(Ĝ)

In the previous section we showed the construction of W-H frames

of L2(G). Now it is the time to discus about W-H frames for L2(Ĝ).

In fact it is easy to construct a W-H frame for L2(Ĝ) when we have
such a frame for L2(G). Here we compute the Fourier transform of

ψf
(k,γ) for some fixed f ∈ L2(G) and (k, γ) ∈ K × (̂G/K). By this

computing we will prove the following theorem.

Theorem 2.4.1 {ψf
(k,γ)} is a frame for L2(G) if and only if {ψf̂

(γ̄,k)}is
a frame for L2(Ĝ) .

Proof.

(̂ψf
(k,γ))(ξ) =

∫
G
ψf

(k,γ)(x)ξ̄(x)dµ(x) =
∫

G
γ(x)f(xk)ξ̄(x)dµ(x)

=
∫

G
γ(x)γ(k)f(xk)ξ(x)dµ(x) =

∫
G
γ(xk)f(xk)ξ̄(x)dµ(x)

=
∫

G
γ(x)f(x)ξ̄(xk−1)dµ(x) =

∫
G
γ(x)f(x)ξ̄(x)ξ̄(k−1)dµ(x)

=
∫

G
ξ(k)f(x)ξ̄γ(x)dµ(x) = 〈k, ξ〉

∫
G
f(x)ξγ̄(x)dµ(x)

= 〈k, ξ〉f̂(ξγ̄) = ψf̂
(γ̄,k)(ξ).

The third equality holds because γ ∈ (̂G/K) and so γ(k) = 1

for every k ∈ K. So we showed that (̂ψf
(k,γ)) = ψf̂

(γ̄,k). Hence by

the unitary nature of the Fourier transform,{ψf
(k,γ)} is a frame for

L2(G) if and only if {ψf̂
(γ̂,k)} is a frame for L2(Ĝ). �
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