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ABSTRACT. In 2009, Salemkar et al. extended the notion of the Schur
multiplier of a Lie algebra to the c-nilpotent multiplier. In this paper, we
study the c-nilpotent multiplier of a pair of Lie algebras and give some
inequalities for the dimension of the c-nilpotent multiplier of a pair of Lie
algebras.
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1. Introduction

The notion of Schur multiplier arises from works of Schur on the projective
representation in 1904 [18]. Let G be a group with a free presentation 1 —
R — F — G — 1. The abelian group

M(G) = (RN F?)/[F,R)

is said to be the Schur multiplier of G (See [7,8, 11, 12] for more information).
Analogous to the Schur multiplier of a group, the Schur multiplier of a Lie
algebra L, can be defined as M(L) = (RN F?)/[R, F], where L = F/R and F
is a free Lie algebra (See [3,4,0, 13] for more details).

In 2009, Salemkar and colleagues [17] generalized the concept of the Schur
multiplier to the c-nilpotent multiplier as follows. For a given Lie algebra L,
the c-nilpotent multiplier of L, ¢ > 1, is

ML) = (RN Yer1 (F)/ver1(R, F),
where .41 (F) is the (¢+1)-st term of the lower central series of F, y1(R, F) =
R, ye+1(R,F) = [v.(R,F),F] and L = F/R for a free Lie algebra F. This
is analogous to the definition of the Bear-invariant of a group with respect to

the variety of nilpotent groups of class at most ¢ (See [2]). The Lie algebra
MM(L) is the Schur multiplier of L.
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In [15], Saeedi et al. defined the Schur multiplier of a pair of Lie algebras
(Also, see [] for more details). Let (N, L) be a pair of Lie algebras, in which
N is an ideal in L, if N has a complement in L, then for each free presentation
0>R—F—L—0of L, M(N,L) is isomorphic to the factor Lie algebra
(RN[S,F])/[R, F], in which S is an ideal in F such that N = S/R (See [1,14]
for more information). Using the above concept, we define the c-nilpotent
multiplier of a pair (N, L) as M) (N, L) = (RN[S,. F])/[R, F]. In particular,
if N = L, then M()(L, L) is the c-nilpotent multiplier of L (See [16,17]). In
this paper, we generalize some results of Rismanchian and Araskhan [14].

2. Preliminaries

In this section, we study some notions and results, which are needed for the
next section.

All Lie algebras are considered over a fixed field A and [,] denotes the Lie
bracket. Recall from [9] that Kassel and Loday investigated the notion of
Lie crossed module of pairs of Lie algebras (N, L) to be a Lie homomorphism
o : M — L together with an action of L on M, which is denoted by ‘m for all
l € L,m € M satisfying the following conditions:

(i) o(*m) =[l,o(m)], foralll € Lym € M
(ii) ™m/ = [m,m/], for all m,m’ € M
(iii) o(M) = N.
Also, see [10] for more information. The inclusion map i : N — L is a crossed
module of the pair (N, L). In this case, [N, L] and Z(N, L) denote the com-
mutator subalgebra and centralizer of L in N, respectively. Using the above
notions, we define the subalgebras Z.(N, L) and [N, L], for all ¢ > 1, as follows:

ZJ(N,L)={n€ N|[nl,...,lI.] =0,Vl,,l. € L},

[N, e L] = {[n,l1,...,lc] | n€ N,li,...,l. € L),

where [n,l1,...,1l] = [...[n,l1],12],...,l.]. Moreover, a pair (N, L) is called
nilpotent of class k, if [N,x L] = 0 and [N,;_1 L] # 0, for some positive integer
k.

The following Lemmas are useful for the proof of our main results.

Lemma 2.1 (See [11, Lemma 2.2]). Let L be a finite dimensional Lie algebra

with an ideal N. Let 0 - R — F — L — 0 be a free presentation of L and

S L F
N = = for some ideal S of the free Lie algebra F such that K = N = ek

Then, there exists the following epimorphism
[, F]
[Rac F} + [S,c+1 F] + Zfizl ’}/C+1(S, F)Z’

®@“TYN,K) —
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where for all 2 <1i < ¢, Yetr1(S, F); = [D1,...,Dey1] such that Dy = D; = S,
Dj =F, forall j # 1,i and @ (N,K) = N®@ K®---® K is the abelian
—_——
c—times
tensor product.
Lemma 2.2 (See [14, Lemma 2.5]). Let H and N be ideals of Lie algebra L
and N = Ng 2 Ny D -+, a chain of ideals of N such that [N;, L] C N;11 for
alli=1,2,.... Then
[Ni,[H,; L]] € Nitjt1
foralli,j.

Proposition 2.3. Let L be a Lie algebra and K be an ideal in L contained in
N; then the following sequences are exact

(a)
0— MO(K,L) — M (N, L) %
N L KN[N,. I
ol = 2 e B .
M (K’K)_> K. 1] — 0;
(b)
N L
() (L =
MY (N, L) — M (K,K)—>K

— 0.

— —

[N, L] [N, L]+ K

Proof. Let 0 — R — F — L — 0 be a free presentation of L and let S
F F

and 7T be ideals in F' such that K = T and N = —. By definition we obtain

S
. . _RN[T+R.F]
(1) Ml )(K, L) = W,
.. . _ RN[S+R,F]
OON“WWM—A—ﬁngf,
.. o N L. (T+R)N[S+R.F]
(iii) M )(?, E) = T+ R, F] ;
. KN[N.L] (T+RN[S+R.F|))+R
(iv) K.L] T+R.F|+R

(a) Clearly the following sequence, with obvious natural homomorphism is exact
RNI[T + R, F] RN[(S+ R),. F]
—

(R, F (R, F]
(T+R)N[(S+R),F)

[T+ R,. F|
(T+R)N[(S+R),.F))+ R

(T+R),cFl+R

0

— 0.
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(b) The inclusion maps
RN[(S+R),.F] — (T+R)N[(S+ R),. F)
— (T'+R) — F — F;
induce the following exact sequence of homomorphisms
RN[(S+ R),.F] . (T+R)N[(S+R),. F] _T+R
(R, F] (T + R),c F] R
F F
—
[(S+R),.F]+R (S+R),.F]+T+R

— — 0;

which gives the result.

The following corollary is an immediate consequence of Proposition 2.3.

Corollary 2.4. Let (N, L) be a pair of finite dimensional Lie algebras and K
be an ideal in L contained in N. Then

KNI[N, L]
(K, L]

= dim M© 5,5 +dim M9(K, L).
K'K

dim( ) + dim M©(N, L)

3. Some inequalities on dimension of M) (N, L)

In this section, we give some inequalities for the dimension of the c-nilpotent
multiplier of a pair of finite dimensional Lie algebras.

Theorem 3.1. Let (N, L) be a pair of finite dimensional Lie algebras and K
be a central subalgebra of L contained in N. Let0 - R - F — L — 0 be a

T
free presentation of L and = =~ K. Then

KN[N,. L]

i (e)
K. L) + dim M'“(N, L)

dim
N L L

< di (c) : c+1

<dim MY (=, =) + dim(®°“ (K, —))

: [Rac F] + 25221 Ye 1(T7 F)z
+d1m< [R,CF]+ )

Proof. Since K is a central subalgebra of L, we have [T, F] < R. Then by
Lemma 2.1,

L T.F

®c+l(K77)) SN [ 2 ] ,

K [va F] =+ 21:2 'Yc+1(T7 F)Z




2415 Arabyani

is an epimorphism. On the other hand, we have
(RN[T,c F])/[R,c F]

([Roe F + X552 ves1(T, F)) /[ Roc F]
T, F]

dim

= dim oI1 .
[Rac F] + Zi:Q ’YC+1(Ta F)i
Therefore,
T.F F L
dim (R mc[+170 ])/[va } S dim(@cH(K, 7)),
([Roe FI 4 32520 Yer1 (T, F)i) /[Re F K
and so,
L
dim M©(K, L) < dim(@°t (K, 7))
. [va F] + Zcir; 'Vchl(Tv F)l
d = .
+ dim ( [R,c F]
Hence, the result holds by Corollary 2.4. |
In Theorems 3.2 and 3.3, we generalize [14, Corollary 2.7].

Theorem 3.2. Let (N, L) be a pair of finite dimensional nilpotent Lie algebras
of class t. Then

(1) If t > c+1, then
dim[N,,_; L] 4+ dim M(9(N, L)

N L
< dim M) ( , )
= [Nyt—1 L] [Ny—1 L]

+dim (®C“([N,t_1 1, Ztl(LNL))) .

(2) Ift<c+1, then
dim[N,. L] + dim M9(N, L)

< dim M(©) ( N L )

[Nat—l L} ' [N’t—l L]

+dim (®C+1([Nat1 L], Zt_l(LN,L))> '

S
Proof. Let 0 = R — F — L — 0 be a free presentation of L. Let N = = and
Z;(N,L) = 7 for all 0 < i < t. Consider the following chain

S=Ty2--2T,2-- 2T 2T, =R [R,F]2--- D[R, F.
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Since [Tk, F] C Ti41, we have [T;,[S;1—1 F]] C [R,; F] by Lemma 2.2. This
inclusion induces the following epimorphism

®c+1

[Si-1F]+ R F [[Syt—1 F| + R, F|
R "Ty [R,c F]
(+R Q@14+ Tio1)® @ (e +Ti—1) +— [8,21,...,2c] + [Rye F.

So, we have

0 (B cam o (8158 )

On the other hand, considering K = [N,;—1 L] in Corollary 2.4, if t > ¢+ 1,
then

N L
i i (©) - di (0)
dim[N,;—1 L] + dim M'“(N, L) = dim M <[N’t_1 ik [N,t—lL]>
([[S-1 Fl.c F]
+dim ( . Fl ,

and if t < ¢+ 1, then

N L
dim[N,. L] + dim M©(N, L) = dim M(©) < , )
[ ] ( ) [Nat—l L} [Nat—l L]
. [[S,t—1 F] + R, F]
d
+ dim ( W3
Now the theorem follows by (3.1). O

Theorem 3.3. Let (N, L) be a pair of finite dimensional nilpotent Lie algebras
of class at most t > 2. Then

N L
I T d (©) < di @ ——, ——
dim[N, L] + dim M'(N, L) < dim M ([N,L}’[N,L]>

+ (i dim(®“T ([N ,; L], [NLiL])> )

Proof. Let F, S and R be as in Theorem 3.2. Considering K = [N, L] in
Corollary 2.4, we have

dim[N,cLHdimM(C)(ML):dimM“)( Dh )

+dim M ([N, L], L) + dim[N, .41 L].
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On the other hand,
dim([N,e41 L] + dim M9([N, L], L)

dim <[S,C+1£’] + R) + dim <(R NS, F[’E’izfr [R,CF]>

IS FI4+ ReF S~ [[SiFl+ R F
dim —/—————"—=+ % dim .
[R?c F] ; [[Svi-i-l F] + R)C F]
By the assumption, [N, L] = W = 0, and hence we can write [[S,; F]+
R,. F] = [R,. F]. Therefore
L
im[N,. L] + dim M© (N, L) = di (e) ——
dim[N,. L] 4+ dim M'“ (N, L) = dim M V.1 IN. I

Sip1 F1+ R, F]

On the other hand for all 1 <i<t—1,
c+1
Z’}/C-f—l([‘s’n' F] +R7F)] + [[S?’L F] + R)C-‘rl F] + [R7CF] g [[Sai-i-l F] + RaCF]'

Jj=2

Considering this relation, Lemma 2.1 implies that

dim <dim [ @ T([N,; L], ,
[Set 1+ Roc F IVt Ty
and hence the proof is complete. O
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