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B. CASSELMAN

Abstract. This paper gives several examples of the basic functions in-

troduced in recent years by Ngô. These are mainly conjectures based on
computer experiment.
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1. Introduction

At the core of the program laid out by Langlands many years ago are the
L functions he associated to automorphic forms. In particular, one would like
to know that they have meromorphic continuation and functional equation,
and to know the structure of their poles. There have been so far two principal
approaches to this problem. One is due to Shahidi and Kim, in which they take
advantage of certain low-dimensional accidents. Shahidi has tried extending
this method by looking at Kac-Moody groups of infinite dimension, but so far
without success. In any case this approach, although attractive in many ways,
is necessarily limited, since it relies on Whittaker models of automorphic forms,
and is hence restricted to generic representations and forms.

Another approach can be found in [14]. Godement and Jacquet were loosely
following [36] (who was in turn following Tate). They proved meromorphic
continuation and the functional equation for the function L(s, π, σ) attached
by Langlands to any automorphic representation π occurring on GL(F )\GL(A)
and the standard representation σ of GLn(C). They did this by Fourier analysis
on Schwartz spaces of the matrix algebras Mn, both local and global, combined
with a global Poisson summation formula.

Up to now, neither approach appeared to be capable of further development.
In recent years, however, the following question has become of new interest:

Is an approach similar to that of Godement and Jacquet possible for other
groups? What would replace the matrix algebra? What would replace
the Schwartz functions?
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Langlands’ program ‘Beyond Endoscopy’ suggests that one might answer
some of these questions by using in the Trace Formula certain functions that are
not of compact support. Ngô, Lafforgue, and others have proposed a particular
class of such functions associated to monoids defined by Vinberg. This seems
to fit well an idea of Langlands and Arthur about a Trace Formula associated
to each finite-dimensional representation of an L-group. For GLn and the
standard representation, these functions would be those in S(Mn).

There are now several characterizations of the local functions that would
replace Schwartz functions on matrix algebras, at least those which are unram-
ified (these are called basic functions) but none is so far very concrete. In
this paper I shall describe computations of basic functions that I have made for
a small number of cases. The formulas I arrive at are so far only conjectural,
but there is much reason to believe that they are correct.

According to the definition of basic functions, computing them takes place
in two major steps. One involves computing Satake transforms and their in-
verses. The other involves decomposing symmetric powers of irreducible rep-
resentations of Langlands’ dual groups. The latter is a classic problem, up to
now resolved only in a very limited sense. One intriguing, perhaps surprising,
by-product of my computer experiments is a hint that one might in the end
come up with a completely explicit formula for the decomposition of symmetric
powers of irreducible finite-dimensional representations of complex groups.

In the last part of this paper I’ll present explicit formulas for all basic func-
tions associated to GL2. In this case, evaluating basic functions reduces to
finding the irreducible decomposition of all symmetric powers of irreducible
representations. There is a classic formula for this, which I’ll explain, but I’ll
also present an algorithm that seems to be new. The nature of the new algo-
rithm leads one to think that similar results might well be within reach for all
semi-simple groups.

This article comes in three main parts. The first five sections are a survey
of the Satake transform, with emphasis on how to compute it. The next four
look at some of the results of computation. The last few look closely at GL2,
for which results are nearly complete.

Throughout, let

k = a p-adic field
o = the ring of integers in k
p = the prime ideal of o
ϖ = a generator of p
Fq = o/p

and
G = a split reductive group defined over k
K = G(o)
B = a Borel subgroup

= AN
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Σ = corresponding set of roots
∆ = simple roots
W = Weyl group .

From time to time G will be a specific group.
Parts of this essay have been written at the Morningside Center in Beijing,

at the Tata Institute in Mumbai, and during a conference at AIM in San Jose. I
am extremely grateful to all of these institutions. I also wish to thank Wen-wei
Li, Ali Altug, and Stavros Kousidis for helpful comments.

2. Preliminaries

In this section, let

G = GL2(k)
B = subgroup of upper triangular matrices
A = diagonal matrices in G
det(g) = − logq | det(g)|

ϖm,n =

[
ϖm 0
0 ϖn

]
.

Thus

det(ϖm,n) = m+ n.

The unramified characters of A, hence the unramified representations of G, are
parametrized by α, β in C×:

χ[α,β] : ϖm,n 7−→ αmβn.

To each of these is associated the unramified principal series representation
π[α,β] of G. The subspace of K-fixed vectors in this has dimension one. Any
function in the Hecke algebra H(G//K) acts on this by scalar multiplication.
This gives rise to the Satake homomorphism S from H(G//K) to the ring of
symmetric polynomials in α±1, β±1. It is an isomorphism.

The Hecke algebra has as basis the characteristic functions

Fm,n = char(Kϖm,nK) (m ≥ n).

An explicit formula for the Satake transform is well known:

S : Fm,n 7−→


αnβn m = n

q1/2 ·αnβn · (α+ β) m = n+ 1
q(m−n)/2 ·αnβn · (αm−n + · · ·+ βm−n)

− q((m−1)−(n+1))/2 ·αn+1βn+1 · (αm−n−2 + · · ·βm−n−2)
m ≥ n+ 3.

There is an intriguing way to express these. The representation πα,β is gener-
ically isomorphic to πβ,α, and it is this that is ultimately reponsible for the
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fact that the expressions on the right are symmetric. This also says that the
expressions are affine functions on (C×)2 modulo swaps, which parametrizes
the semi-simple conjugacy classes in GL2(C). The expressions on the right are
characters of certain irreducible representations of GL2(C).

Let σstd be the standard representation of GL2(C) on C2, and let σm be
the corresponding representation on the symmetric power Sm(σstd) (so that
σ1 = σstd). It has dimension m + 1. The character of detn ·σm evaluated on
the semi-simple matrix [

α 0
0 β

]
is

τm+n,n = αnβn(αm + αm−1β + · · ·+ βm).

The formulas above can now be abbreviated as

S : Fm,n 7−→
{

q(m−n)/2τm,n m = n, n+ 1
q(m−n)/2τm,n − q((m−1)−(n+1))/2τm−1,n+1 m ≥ n+ 2.

There are reasons to choose occasionally a very slightly different basis of the
Hecke algebra:

fm,n = q−(m−n)/2Fm,n.

With this new basis:

S : fm,n 7−→

 τn,n m = n
τn+1,n m = n+ 1
τm,n − q−1 ·τm−1,n+1 m ≥ n+ 2.

Such an equation now expresses one basis for the Hecke algebra in terms of
another. The matrix of the Satake isomorphism is now unipotent, with entries
in the ring Z[q−1]. Since (I −xT )−1 = I +xT +x2T 2 + · · · , its inverse is easy
to calculate:

(2.1) S−1 : τm,n 7−→ fm,n + q−1fm−1,n+1 + q−2fm−2,n+2 + · · · .

The sum in the last expression is over all i such that m−i ≥ n+i. Reverting
to the Fm,n as basis, this implies that

qm/2τm,0 =
∑

k≥ℓ≥0
k+ℓ=m

Fk,ℓ .

The term τm,0 on the left is the character of Sm(σstd). The right hand side
is the characteristic function Mm of M2(o) ∩ det−1(m). We therefore obtain



21 Casselman

Tamagawa’s formula (in this case originating with Hecke):

L(s− 1/2, π[α,β], σstd) = 1
(1− q1/2αq−s)(1− q1/2βq−s)

= (1 + q−(s−1/2)α+ · · · )(1 + q−(s−1/2)β + · · · )
=

∑
m≥0 qm/2(αm + · · ·+ βm)q−ms

=
∑

m≥0 qm/2 τm,0 q
−ms

=
∑

m≥0 Mm q−ms .

In effect, this says that the Satake transform of the characteristic function
of M(o) ∩GL2(k) is (at least formally) the symmetric rational function

1

(1− q1/2α)(1− q1/2β)
.

3. Basic functions

Something similar happens for G = GLn(k). In this case, the torus A is
isomorphic to a product of n copies of k×. Unramified representations of G are
parametrized by elements (αi) of (C×)n, modulo permutations. This may be
identified with the set of semi-simple conjugacy classes in the Langlands dual

Ĝ, which happens to be GLn(C).
The map f 7→ π(f) for unramified representations π of G induces an iso-

morphism of the Hecke algebra H(G//K) with the ring of symmetric polyno-
mials C[α±1

1 , . . . , α±1
n ]Sn , which may be identified with the ring of conjugation-

invariant affine functions on Ĝ. It was Tamagawa who first showed that un-
der a natural extension of the Satake transform the characteristic function of
Mn(o) ∩GLn(k) maps to

1∏n
i=1(1− q(n−1)/2αi)

= L(−(n− 1)/2, π[α], σstd).

This extends to an isomorphism of S(Mn(k))
K×K with the space of meromor-

phic functions of the form

P (α)∏n
i=1(1− q(n−1)/2αi)

,

in which P is a symmetric polynomial.
This can be generalized to other groups and other representations. The sim-

plest place to start is perhaps with the Langlands dual. Suppose Ĝsc to be
any simply connected semi-simple complex group, σ an irreducible representa-

tion of it. Let Ĝ be the quotient of Ĝsc by the kernel of σ, which is then a

faithful representation of Ĝ. Alternatively, one could start with an arbitrary

semi-simple Ĝ and a faithful representation, but it turns out that that makes
some of the discussion a little more awkward. In my computer programs, all
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representations are parametrized by dominant weights of a group Ĝsc whose
root system is specified.

One can embed Ĝ into a reductive group Ĝσ whose centre is isomorphic

to C×, and extend σ to a representation of Ĝσ such that σ(z) = z · I. More
precisely, define

Ĝσ =
C× × Ĝ

{(σ(z), 1/z) | z ∈ Z(Ĝ)}
.

The dual p-adic group Gσ hence possesses a dual homomorphism

Gσ −→ k× ,

which is conventionally expressed in the literature as det. As earlier, let det =
− logq det.

For example:

Ĝ = SL2, σ = σ2k+1, Ĝσ = GL2

Ĝ = PGL2, σ = σ2k, Ĝσ = C× × PGL2

Ĝ = SLn, σ = σstd, Ĝσ = GLn

Ĝ = Sp2n, σ = σstd, Ĝσ = GSp2n.

I recall that GSp2n is the group of all 2n× 2n matrices X such that

(3.1) tX J X = cX J,

for some scalar cX , in which

J =

[
0 −ω
ω 0

]
, ω =

 0 1
. . .

1 0

 .

In general, the group dual to GSp2n is isomorphic to GSpin2n+1, but since the
root systems B2 and C2 are isomorphic the dual of GSp4 is again GSp4. The
homomorphism I have called det then takes X to cX . (Do not be too bothered
by the fact that det ̸= det.)

Unramified representations π of Gσ are parametrized by semi-simple conju-

gacy classes Fπ of Ĝσ. The associated L-function is

L(s, π, σ) =
1

det
(
I − σ(Fπ)q−s

) .
Theorem 3.1. There exists on Gσ a unique function φσ whose Satake trans-
form evaluated at π is L(0, π, σ).

Proof. This is a direct consequence of Molien’s formula

1

det(I −Ax)
=

∑
k

trace [Sk(A)]xk (A ∈ GLn(C))
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which is in turn a consequence of the equation

1∏n
i=1(1− αi)

=
∏

(1 + αi + α2
i + · · · ) =

∑
k∈Nn

αk (α = (αi)).

□

In these circumstances, the Satake transform of φσ · | det |s is L(s, π, σ).

Remark 3.2. It is significant that in all cases in which meromorphic continua-
tion and functional equation of a global L-function is known, there is a group
involved in which a map like det exists, and the factor q−s in the L-function is
essentially |det |s. It is often forgotten, or at least not generally acknowledged,
that in Langlands’ original definition of L-functions this factor comes from the
local Frobenius automorphism, which cannot be ignored if G is quasi-split but
not split over k.

I’ll say more about this, since it is commonly misunderstood. Suppose G to
be any unramified reductive group defined over k. It may be defined by Galois
descent from a split group over an unramified extension l/k, by means of a single
outer automorphism Φ preserving B and T . The group G(k) is then the points

g of G(l) such that gF = gΦ. The dual group Ĝ is defined as before in terms of
the root system dual to that of G, but the full L-group LG is the semi-direct

product Ĝ⋊Wk, in which the Frobenius of the Weil group acts on Ĝ by means

of the complex automorphism Φ̂ dual to Φ. The Satake isomorphism now takes

its values in the affine ring of conjugate-invariant functions on the coset Ĝ×F.
An unramified representation π gives rise to a homomorphism from this to C,
or in other words a semi-simple conjugacy class Fπ in LG, called by Langlands
its Frobenius-Hecke class. The L-function associated to π is then

L(s, π, σ) =
1

det(I − σ(Fπ)|F|s)
.

Here |F| = q−1 is derived from the isomorphism of the maximal abelian quotient
of Wk with k× given by local class field theory. This formulation makes it
apparent that Langlands’ definition is a generalization of that of the Artin
L-function, which in fact is a special case when G is the trivial group of one
element. The paper [6] is a good reference for this material.

In this papre I deal only with split groups, but the Satake transform for
arbitrary unramified groups has some new and interesting features. I’ll deal
with them elsewhere.

The function φσ is defined by its Fourier transform. Can one find a more
explicit description? As I shall explain later, computer programs offer some
interesting conjectures.

The example of GLn suggests that a certain shift of s in the L-function
would be a good idea. To see what shift, let’s look at GLn more closely. Let
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ε∨
i be the coweight of GLn taking x to the diagonal matrix with 1 along the
diagonal except an x in the i-th place. The coroots of SLn are

ε∨
1 − ε∨

2

ε∨
1 − ε∨

3 , ε∨
2 − ε∨

3

. . .
ε∨
1 − ε∨

n, ε∨
2 − ε∨

n, . . . , ε∨
n−1 − ε∨

n

so that the sum of positive coroots is

2ρ∨ = (n− 1)ε1 + (n− 3)ε2 + · · · − (n− 1)εn .

Hence, we may express (n− 1)/2 as ⟨ε1, ρ∨⟩.
Keep in mind that ε1 is the highest weight of the standard representation

on Cn. It is therefore suggested that for general Ĝ we set σ = σλ (with highest
weight λ) and look at

L(s− ⟨λ, ρ∨⟩, π, σ) = 1
det(I − q⟨λ,ρ

∨⟩σ(Fπ)q
−s)

=
∑

k≥0 q
k⟨λ,ρ∨⟩ trace [Sk(σ)](Fπ) q

−ks .

Let Φλ,k be the unique function on Gσ whose Satake transform at π is qk⟨λ,ρ
∨⟩

trace [Sk(σ)](Fπ). Thus

Φλ,k = qk⟨λ,ρ
∨⟩φλ,k .

There are reasons for working with both Φ and φ.
The function Φλ is called the basic function associated to Gσ and σ = σλ.
The support of φλ,k or Φλ,k lies in det−1(k). Set Φσ =

∑
Φσ,k. The Satake

transform of Φσ · |det |s, at least formally, is L(s− ⟨λ, ρ∨⟩, π, σ).
One hopes to apply the trace formula to global functions whose local com-

ponent is such a Φλ almost everywhere. It is natural to ask, is there a more
explicit way to describe the function Φσ (or, equivalently, each Φσ,k)?

There are at the moment many interesting answers to this question. One is
geometrical. To the representation σ and group Gσ is associated a monoid Mσ.
This is an algebraic variety defined over k in which Gσ embeds as a Zariski-open
subvariety, and on which Gσ ×Gσ acts compatibly with its action on Gσ. The
variety Mσ is in general singular, and it is conjectured that the behaviour of
Φσ is related to this singularity. This has been confirmed to some extent in [7],
and conjectures extend their results.

Furthermore, there ought to be some space of functions on Gσ, designated
by some the Schwartz space of the monoid, characterized by their behaviour
near the singularity. One example is GLn, embedded in Mn. Here the monoid
is non-singular, and the correct space is just S(Mn). This conjectured Schwartz
space has been defined in analytical terms by Lafforgue, in terms of a Plancherel
formula extending that of G itself.
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Although it is not entirely clear exactly what properties of Φλ will be needed
in the long run, one thing one probably wants is some understanding of its as-
ymptotic behaviour as det → ∞. For G itself, the Plancherel formula is closely
related to the asymptotic behaviour of matrix coefficients, and consequently
also to Jacquet modules. Does Lafforgue’s formula tell us that something sim-
ilar is going on here? Is there an algebraic characterization of the asymptotic
behaviour of Schwartz functions on the monoid?

In the rest of this essay I’ll give some idea of how to compute basic functions
(by machine). The results will turn out to be fairly interesting. From the very
definition of basic functions it is immediate that this computation involves
two main processes: (1) computing the decomposition of symmetric powers of
irreducible representations; (2) computing the inverse Satake transform. I’ll
next look at the second of these, which is the more straightforward.

4. The Satake transform

The characteristic functions of the double cosets KϖλK form a basis of the
Hecke algebra, as λ ranges over X++

∗ (A). I introduce as well a normalization:

Fλ = char(KϖλK),

fλ = q−⟨λ,ρ∨⟩Fλ .

Macdonald’s formula asserts that the Satake transform of fλ is

S(fλ) =
∑

0≪µ≤λ

Sµ,λ(q
−1)τµ .

Here Sµ,λ is a polynomial with integral coefficients, τµ the character of the
irreducible representation with dominant weight µ. Also, 0 ≪ µ means that µ
is dominant, and µ ≤ λ means that λ−µ is a sum of positive roots. The point
of the normalization of fλ is that Sλ,λ = 1. I shall later say more about the

polynomial Sµ,λ. We have already seen how this goes when Ĝsc = SL2.

This formula makes sense because the lattice X∗(Â) of weights of the dual

torus Â in the dual group Ĝ is the same as X∗(A), and because the Weyl
group and the dual Weyl group may be identified. From now on I shall identify
fλ with its Satake transform S(fλ). Macdonald’s formula therefore relates
two different bases of the W -invariant polynomials in the group algebra of the
lattice A/A(o), which may be identified with X∗(A).

Since Sλ,λ = 1 and Sµ,λ ̸= 0 only when µ ≤ λ, the matrix of the linear map
S is unipotent, and may be solved to give

τλ =
∑

0≪µ≤λ

Kµ,λ(q
−1)fµ .

The Kµ,λ are remarkable polynomials with integral coefficients (see [21]).

• Kµ,λ(q
−1) = q−⟨λ−µ,ρ∨⟩Pµ,λ(q) where the Pµ,λ(q) are Kazhdan-Lusztig

polynomials for the pair λ, µ in the affine Grassmannian. They hence
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have non-negative coefficients and constant term 1. The degree of Pµ,λ

is less than ⟨λ− µ, ρ∨⟩ if µ ̸= λ, and Pλ,λ = 1.

• The Pµ,λ are the q-weights of the weight µ in the representation πλ,
which is defined by a q-version of a vector partition function introduced
by Kostant. In particular, Pµ,λ(1) is the multiplicity of µ in V λ.

• They are also the Poincaré polynomials of a subtle filtration defined by
Ranee Brylinski on the weight spaces V λ

µ .

Of these, the first two are clearly important in understanding basic functions.
The significance of the last remains something of a mystery.

For example, suppose G = GL2. The dominant weights may be identified
with pairs (m,n), m ≥ n. The positive root α is (1,−1), ρ∨ = α∨/2, and
⟨α, ρ∨⟩ = 1. Equation (2.1) tells us that

Kλ−nα,λ(1/q) = q−n, Pλ−nα,λ(q) = 1.

What is the relevance to basic functions? The representation of Ĝsc on the
m-th symmetric power Sm(σλ) can be decomposed as

∑
mµσµ. The sum is

over dominant µ ≤ mλ. By Molien’s formula the inverse of
∑

mµτµ with
respect to the Satake transform is

φλ,m =
∑

0≪µ≤mλ mµτµ

=
∑

0≪µ≤mλ mµ

(∑
0≪ν≤µ Kν,µ(q

−1)fν

)
=

∑
0≪ν≤mλ fν

(∑
ν≤µ≤mλ mµKν,µ(q

−1)
)
.

The coefficient of fν is a polynomial in q−1. From this and the first remark
about Kµ,λ the following is immediate:

Proposition 4.1. The multiplicity mν of σν is the constant term in the coef-
ficient of fν .

I can now offer a new proof of the formula of Hecke and Tamagawa.

Theorem 4.2. Suppose Ĝ to be GLn, σ is its standard representation (with
highest weight ε1). The polynomial Pµ,λ = 1 for all 0 ≪ µ ≤ λ = kε1.

This follows easily from what I have just said, together with known facts
about Sk(σ)—it is irreducible, and since it has as explicit basis the monomials

xk1
1 . . . xkn

n with
∑

ki = k, all weight multiplicities are 1.
Already around 1963, Satake and Shimura (independently) looked at the

groups GSp2n to see if they could obtain a formula like Tamagawa’s. The
group GSp2n is that of all 2n × 2n matrices satisfying equation (3.1). The
scalar in that equation is what I call det(g), although it is not in fact the
determinant. This group in turn is embedded in the monoid MSp2n, for which,
roughly speaking, the scalar is allowed to be 0. The space MSp2n is a singular
cone for n ≥ 2.
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What Satake and Shimura did was to copy Tamagawa’s calculation, but
replacing the matrix algebra by MSp2n(o). What they found in the case of
GSp4 was that its Satake transform was (in modern notation)

Q ·L(s− ⟨ε1, ρ∨⟩, π, σ),

where Q was a certain non-trivial polynomial in the group algebra of Â, (see
[33, Section 3]). After this, there were one or two brief attempts to understand
what was going on, but in essence research on this topic came to a dead halt.

For larger n, Satake expressed the transform of the characteristic function of
MSp2n(o) as an infinite series, and conjectured that this was the Taylor series
of a rational function that we would now write as

Q ·L(s− ⟨λ, ρ∨⟩, π, σ),

with Q an invariant polynomial. The Langlands dual of GSp2n is GSpin2n+1, as
pointed out in [2, Section 2]. What we see now is that in Satake’s conjecture the
L-factor is Langlands’ L-function associated to the spin representation σ = σλ

of the Langlands dual, although it is not clear that Satake recognized this.
Keep in mind that at that time Langlands’ definition of L-functions had not
yet been made, and that it was not entirely clear at that time what ‘good’
L-functions were.

The point is that Satake and Shimura apparently never came to ask the ques-
tion that now seems the natural one. Instead of asking, what is the transform
of char(MSp4(o)), they might have asked, what function has as its transform
L(s−⟨ε1, ρ∨⟩, π, σ)? It is not clear that they could have answered this satisfac-
torily, however, because the answer that we can see now depends on technology
developed (by Lusztig et al.) quite a bit later.

I’ll give later a conjectural answer to this question, produced by computa-
tion. It will be both surprisingly simple and surprisingly interesting.

5. Details of the Satake transform

In this section, let G be an arbitrary split reductive group defined over k.
As λ ranges over the positive cone inX∗(A), the functions Fλ = char(KϖλK)

make up a basis of the Hecke algebra H. Their Satake transforms make up a

basis of W -invariant polynomials in X∗(A). But X∗(A) = X∗(Â), and an-
other basis of W -invariant polynomials is made up of irreducible characters of

irreducible finite-dimensional representations of the dual group Ĝ.. The Sa-
take homomorphism is given explicitly in terms of these bases according a well
known formula due to Ian Macdonald.

Let χ be any unramified character of A. The original form of Macdonald’s
formula is for the spherical function Γχ defined by the corresponding principal
series representation of G. which is completely determined by its values on

A−− =
{
a ∈ A

∣∣ |α(a)| ≤ 1 for all α ∈ ∆
}
.
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(I use here Macdonald’s notation. The cone X−−
∗ (A) is acute, whereas X−

∗ (A)
is obtuse.)

There are a few variants of the formula, describing the asymptotic behaviour
of very general matrix coefficients in terms of Jacquet modules. The only
version needed here is an explicit formula for unramified spherical functions, in
which case the asymptotic behaviour is valid everywhere.

Let I be the Iwahori subgroup of K, the inverse image of the Borel subgroup
in G(Fq) corresponding to P . Define

µG =
meas(IwℓI)

meas(K)
=

1∑
w∈W q−ℓ(w)

.

This is the proportion of points in G(Fq) contained in the largest open Bruhat
cell. It is also the ratio of two natural Haar measures on G—one of them is
such that meas(K) = 1, while the other is determined by a natural G-invariant
differential form on G, one used in defining a Tamagawa measure.

Let γ/χ be the unique function in the induced representation Iχ fixed by K
and such that γ/χ(1) = 1. The associated spherical function is defined by the
formula

Γχ(g) =

∫
K

γ/χ(kg) dk .

It is a function on K\G/K, hence determined by its restriction to A−−. Mac-
donald’s formula is for this spherical function:

Theorem 5.1 (Macdonald). For χ an unramified character of A and a ∈ A−−

Γχ(a) = µG ·δ1/2(a)

 ∑
w∈W

∏
γ>0

(
1− q−1[wχ](ϖ−γ)

)
∏

γ>0

(
1− [wχ](ϖ−γ)

) · [wχ](a)

 .

Here δ is the modulus character | detAdn|. This formula is proved by a
careful analysis of the asymptotic behaviour of the spherical function and its
relation to the Jacquet module.

The relationship between the Satake homomorphism and Macdonald’s for-
mula is very simple:

Lemma 5.2. For F = char(KaK) with a in A−−

Sχ(F ) = |KaK/K|Γχ(a) .

This is an easy exercise. It is to be paired with:

Lemma 5.3. For a in A−−

|KaK/K| = µMa

µG
·δ−1(a) ,

where Ma is the Levi component centralizing a.
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Here a corresponds to an element λ∨ of X∗(A) and Ma = MΘ = Mλ, where

Θ =
{
α ∈ ∆

∣∣ ⟨α, λ∨⟩ = 0
}
.

The proof fibres K/K ∩ aKa−1 over the flag variety G(Fq)/PΘ(Fq), whose size
follows from the Bruhat decomposition.

Theorem 5.4. For F = char(KϖλK) with λ in X++(A)

Sχ(F ) = µMλ
·δ−1/2(ϖλ)

 ∑
w∈W

∏
γ>0

(
1− q−1[wχ](ϖ−γ)

)
∏

γ>0

(
1− [wχ](ϖ−γ)

) · [wχ](ϖλ)

 .

This second version has a subtly different meaning from the first, since we
are no longer talking about the asymptotic behaviour of a matrix coefficient
on G, for a fixed value of χ, but now looking at a function of χ.

From now, I’ll use additive notation. The character of Â corresponding to
λ will be expressed as eλ. Why is this reasonable? Through the exponential

map, the group Â may be identified with a quotient of C ⊗ X∗(Â), and then

for µ∨ in X∗(Â), the dual of X∗(Â),

⟨λ, x⊗ µ∨⟩ = ex⟨λ,µ
∨⟩ .

The setA−−/A(o) may be identified with the setX++(A) of dominant weights of

Â. Each dominant weight in X∗(Â) gives rise to an irreducible representation

σλ of Ĝ with highest weight λ. Its image in the Grothendieck group of Â
may be identified with its character. As we shall see in a moment, somewhat
hidden in Macdonald’s formula are instances of Weyl’s character formula for

representations of Ĝ.
The basic point is very simple—the image of char(KϖλK) in H with respect

to the Satake transform, considered as a function of χ, is a conjugation-invariant

function of semi-simple classes in Ĝ, and in fact the Satake homomorphism
is an isomorphism of H with C ⊗ RĜ. The characters of finite-dimensional

representations of Ĝ are a basis of the representation ring RĜ. This may

be interpreted also as the ring of functions on Ĝ that are invariant under
conjugation. As I have already pointed out, Macdonald’s formula tells us the
relationship between two natural bases.

By definition of the dual torus Â, the character χ : A → C× may be inter-

preted as an element âχ of Â. Thus χ(ϖλ) may be interpreted as λ(âχ).

The factor δ−1/2(ϖλ) can be expressed as q⟨λ,ρ
∨⟩, in which ρ∨ is half the

sum of positive coroots. The right hand side of Macdonald’s formula can now

be interpreted as an identity of functions on Â:

S(Fλ) = µMλ
·q⟨λ,ρ

∨⟩

 ∑
w∈W

∏
γ>0

(
1− q−1e−wγ

)
∏

γ>0

(
1− e−wγ

) ·ewλ

 .
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I now expand the product and invert the order of sums.

S(Fλ) = µMλ
q⟨λ,ρ

∨⟩

 ∑
S⊆Σ+

(−q)−|S|
∑
W

ew(λ−γS)∏
γ>0

(1− e−wγ)

 .

Here, for S ⊆ Σ+

γS =
∑
γ∈S

γ.

One form of Weyl’s character formula tells us that for λ dominant

τλ =
∑
W

ewλ∏
γ>0

(1− e−wγ)
,

in which τλ is the character of σλ. I therefore write the previous formula as

S(Fλ) = µMλ
·q⟨λ,ρ

∨⟩
∑

S⊆Σ+

(−q)−|S|τλ−γS
.

There is a small problem with this, since even when λ is dominant it may
well happen that λ− γS is not. It is important to take this into consideration
at the same time as a matter of symmetry.

Another form of Weyl’s formula asserts that

τλ =

∑
w
sgn(w) ew(λ+ρ)∑
w
sgn(w) ewρ

.

This form possesses a certain symmetry that allows us to evaluate it even when
λ is not dominant. It tells us that τλ = sgn(w)τµ whenever w(λ+ ρ) = µ+ ρ.
This suggests that defining

Πλ = τλ−ρ, equivalently Πλ+ρ = τλ .

The symmetry now becomes Πwλ = sgn(w)Πλ. With this new notation, Mac-
donald’s formula becomes

S(Fλ) = µMλ ·q⟨λ,ρ
∨⟩

∑
S⊆Σ+

(−q)−|S|Πλ+(ρ−γS) = µMλ ·q⟨λ,ρ
∨⟩

∑
S⊆Σ+

(−q)−|S|Πλ+ρS ,

with ρS = ρ − γS . Thus, for example, ρ∅ = ρ and ρΣ+ = −ρ. In fact, every
wρ is one of the ρS , since

2ρ =
∑

γ>0 γ,

2wρ =
∑

γ>0 wγ

=
∑

γ>0,w−1γ>0 γ −
∑

γ>0,w−1γ<0 γ

=
∑

γ>0 γ − 2
∑

γ>0,w−1γ<0 γ

= 2(ρ− γSw
) (Sw = {γ > 0 |w−1γ < 0}) .

Let Cρ be the set of all ρS . It is in fact the set of weights of the irreducible
representation σρ of highest weight ρ. It plays an important role in proving
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Weyl’s character formula, and I shall say more about it in the next section. For
each µ in Cρ define

Pµ(x) =
∑

S|ρS=µ

x|S| .

Thus Pρ(x) = 1, Pwρ(x) = xℓ(w), and if we set x = 1 this becomes the same as
the multiplicity of the weight µ in πρ, the finite-dimensional representation of

Ĝ with highest weight ρ. Our formula now becomes

S(Fλ) = µMλ
·q⟨λ,ρ

∨⟩
∑
µ∈Cρ

Pµ(−q−1)Πλ+µ .

There is still one more modification to come. In calculating with this formula,
any Πλ can be transformed to some ±Πµ with µ in X++, by applying the
familiar algorithm of W -reduction to the positive chamber. And then either µ
is of the form ν + ρ with ν dominant, in which case Πµ = πν , or it is singular
and Πµ = 0.

There is one significant case in which one can use these observations to
improve the formula we have so far. Suppose Θ ⊆ ∆ to be the subset of α
with ⟨λ, α∨⟩ = 0. Let WΘ be the subgroup of W generated by the simple
corresponding to the simple roots in Θ. Then wλ = λ for w in WΘ, and
w(λ + µ) = λ + wµ for w in WΘ. If µ is singular with respect to Θ then
Πλ+µ = 0, so in the previous formula one can restrict to the µ that are not
singular in this sense. Every such µ in Cρ is equal to the WΘ-transform of some
unique ν in the subset

[WΘ\Cρ] =
{
ν ∈ Cρ

∣∣ ⟨ν, α∨⟩ > 0 for α ∈ Θ
}
,

Therefore the previous formula can be rewritten once again to get my final
version of Macdonald’s formula:

Theorem 5.5. Suppose λ dominant, and let Θ be the subset of simple roots α
such that ⟨λ, α∨⟩ = 0. Then

q−⟨λ,ρ∨⟩S(Fλ) = S(fλ) =
∑

µ∈[WΘ\Cρ]

Mµ(q
−1)Πλ+µ .

in which

Mµ(x) =

∑
WΘ

sgn(w)Pwµ(−x)∑
w∈WΘ

xℓ(w)
.

The denominator can be expressed as∑
WΘ

sgn(w)Pwρ(−q−1) ,

and this guarantees that the matrix of the Satake transformation is unipotent.
We can now do a simple reality check. If λ = 0 then fλ = char(K) and
S(f0) = 1 identically, for trivial reasons. What does the formula tell us? If
λ = 0 then Mλ = G and the µ-term is

∑
q−ℓ(w). A basic property of the
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set Cρ is that all weights in it are singular except the extremal weights wρ. I
shall recall the proof in the next section. This implies that the weight ρ is the
smallest of the regular dominant weights. This is because if λ is in X++, it
must be either in ρ+X++ or fixed by some sα, since the intervening band has
width 1. So all terms in the sum over Cρ vanish except those for the wρ, and
for one of those Πwρ = sgn(w)Πρ = sgn(w). So there is no contradiction with
the trivial evaluation.

There is one thing about this formula that is not a priori evident. The
denominator µMλ

implies that the coefficient of Πλ−µ is at least a formal series
in q−1. In fact:

Lemma 5.6. Suppose Θ ⊆ ∆ and µ to be an element of [WΘ\Cρ]. Then the
quotient

Mµ(x) =

∑
WΘ

sgn(w)Pwµ(−x)∑
w∈WΘ

xℓ(w)

is a polynomial in x.

Here x is a variable to be set equal to q−1.
A proof of this Lemma was first published in [26, Section 3.3.8]. Other

proofs appear in the discussion after the statement of [25, Theorem 6.6] and at
the end of [16]. These are not as direct as I’d like. It ought to be possible to
understand better how the action of W on Cρ interacts with the polynomials
Pµ(x), or perhaps how to interpret the function Pµ on Cρ.

Remark 5.7. There are two natural bases of W -invariant affine functions on Â.
One is made up of the

∑
Wwλ as λ ranges over X++(Â). The other is made

up of the characters πλ. If we set q = 1 in the previous Theorem we obtain an
expression for the first in terms of the second, whereas the inverse transform
amounts to a version of Weyl’s character formula.

6. Programming matters

The set Cρ is crucial in the calculation of the Satake transform. A priori this
might be a serious bottleneck. That’s because the obvious method involves
examining every subset of the positive roots. For F4, for example, there are 224

such subsets, and each of these leads to quite a bit more computation. This is,
even for modern computers, a large amount of work. But the set of data one
finally needs is not nearly so large, and it ought not to be too surprising that
a short cut exists.

I recall that for S ⊆ Σ+

γS =
∑
γ∈S

γ, ρS = ρ− γS ,

and that
wρ = ρSw with Sw = {γ > 0 |w−1γ < 0} .
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Lemma 6.1. For S ⊆ Σ+, w in W

w(γS) = γT

with
T =

{
γ > 0

∣∣w−1γ ∈ S or w−1γ ∈ −(Σ+ − S)
}
.

Proof. From the formula

(6.1) ρS =
1

2

( ∑
γ>0,γ /∈S

γ −
∑

γ>0,γ∈S

γ
)
.

□
In particular, if α is a simple root then sα(γS) = γT with

T =

[
sα(S − {α}) α ∈ S
sα(S) ∪ {α} otherwise.

(Keep in mind that sα permutes the complement of α in the set of positive
roots.) This generalizes how sα acts on W itself, incrementing or decrementing
length.

Lemma 6.2. If µ lies in Cρ and is not in the W -orbit of ρ, then it is singular.

Proof. We may assume that µ is in the positive Weyl chamber X++. But then
if it is not in ρ+X++ we must have 0 ≤ ⟨µ, α∨⟩ < 1 for some simple α. □

For every µ in Cρ, recall that

Pµ(−x) =
∑

S|ρS=µ

(−x)|S| .

Lemma 6.3. The set Cρ is contained in the convex hull of the W -orbit of ρ.
Every µ in Cρ is a weight of the irreducible representation and its multiplicity
is Pµ(−1).

Proof. The first claim follows from equation (6.1), the second from Weyl’s
character formula. □

The computation of the polynomials Pµ(x) for µ in Cρ is by induction. Make
the set of positive roots into an ordered list {γi}. Start by defining variants of
Pµ, for certain subsets S of Σ++. Let

S∅ = ∅, Si+1 = Si ∪ {γi+1} .
Set Q∅(µ) for all µ in ρ+ L∆:

Q∅(µ, x) =

[
1 µ = 0
0 otherwise.

Then proceed inductively:

QS∪{γ}(µ, x) = QS(µ, x) + (−x)QS(µ− γ, x) .



Symmetric powers and the Satake transform 34

det = 1

λ

Figure 1. Lattice cone for σ3

det = 1

λ

Figure 2. Lattice cone for σ4

The final function QΣ+(µ, x) is the same as Pµ(−x).

7. GL(n)

In this section and the next one, I shall exhibit a few explicit examples of
basic functions. Later on, I’ll look at GL2 in detail. Before I do that, I explain
first what we shall see.

The basic function always has support on Gσ(k) ∩ Mσ(o), and is bi-K-
invariant. It is therefore determined by its restriction to A−−, and may be
identified with a function on the lattice cone in A/A(o) = X∗(A) spanned by
the weights of σ.

Suppose, for example, that σ is the representation σ3 of GL2. Figure 7, for
example, is a picture of the lattice cone (with the dominant weights on the
right).

The slices det = constant are also shown. And in Figure 7 the group Ĝσ =
C× × PGL2.
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Figure 3. The slice det = 6

When the rank of Ĝσ is more than two, we cannot visualize well the entire
lattice cone. When the rank is three, at least, we can look at slices det =
constant. I haven’t yet attempted to investigate groups of rank more than
three.

One point to keep in mind, convenient in computations, is that it is not

really necessary to consider the group Ĝσ. What is at stake, at least most of

the time, is really a result about the original simply connected group Ĝsc. The
question now becomes this: suppose σ to be an irreducible representation of

Ĝsc with highest weight λ. What can one say about the value of the basic
function Φλ,m at dominant weights µ ≤ mλ on the slice det = m? The hope
is that these values possess some uniformity and consequently behave well as
k → ∞ (and points on Gσ thus pass off to the singular locus of the monoid
Mσ).

As we have seen, Pµ,λ = 1 for all 0 ≪ µ ≤ λ when G = GLn, σ is its
standard representation (with highest weight ε1), and λ = kε1.

To get a better feel later for more complicated cases, suppose now that

Ĝ = SL3(C), σ = σstd. Figure 7 is a picture of the root system and weights on
the slice det = 6, for S6(σ).

The weights are the monomials in three variables of degree 6. Each weight
has multiplicity 1, which means indeed that we are looking here at the char-
acteristic function of the integral matrices with det = 6. The entire support of
fσ is a cone with triangular slices like this at every level.
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Figure 4. A slice for GSp4

8. GSp(4)

As we have already seen, already around 1963 Satake and Shimura looked
at the groups GSp2n to see if they could obtain a formula like Tamagawa’s.
But, as I also said, they asked the wrong question.

It turns out that the basic functions for Sp2n and σstd are, according to
extensive computations, apparently rather simple. This ought not to be too
surprising, since in these cases the representations Sm(σ) are irreducible. In
fact, the groups SLn and Sp2n and their standard representations are unique
in this regard.

The diagram for GSp4 analogous to that for GL3 and the basic function
associated to σstd is in Figure 8.

This just gives literally the numerical weights at level 6. But a label n
signifies also the polynomial Pn(q) = 1 + q2 + · · · + q2(n−1). So in 3D we are
looking at a sequence of square cones embedded in one large one, each with a
fixed multiplicity, even q-weighted multiplicity. In the centre at level 2n is the
polynomial Pn+1(q). The boundary values are the constants 1, and increase by
one monomial on inside layers.
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In words, suppose σ to be the standard representation of GSp4, with highest
weight λ = ε1. The representation Sk(σ) is irreducible, with highest weight
nλ.

Let α be the short simple root, β the long one, γ = β + α. The dominant
weights occurring in Sn(σ) are those of the form µ = nλ − aα − cγ with
0 ≤ c ≤ a ≤ n/2. The multiplicity of this weight in Sn(σ) is c + 1, and its
q-weight (the value of the basic function of the coset KϖµK) is

1 + q2 + · · ·+ q2c .

I should point out that this simplicity is exceptional. Most basic functions
are far more complicated (and presumably more interesting).

9. Vector partitions

How might one be able to prove the formula for the basic function of GSp4
suggested in the previous section? Perhaps by using the second feature of the
polynomials Kµ,λ, relating them to q-weighted partition functions.

The vector space Rn may be identified with Hom(Zn,R). To each γ in Zn

associate a function on Rn:

⟨eγ , x⟩ = e⟨γ,x⟩ .

Of course eλ+µ = eλeµ.
Suppose Γ = {γi}g1 to be any finite set of vectors in Zn spanning an acute

cone. For each n in Ng define

σ(n) =

g∑
i=1

niγi .

This is a linear map from Ng to Zn. Define now the infinite series

PΓ = 1∏
γ>0

(1− eγ)

=
∑

Ng eσ(n)

=
∑

Nd PΓ,λ e
λ .

in which PΓ,λ is the number of points n in Ng such that σ(n) = λ. The support
of the function PΓ is the cone CΓ spanned by Γ. It is called a vector partition
function, being somewhat analogous to the usual partition function on the
positive integers.

The Kostant partition function is what one gets with Γ equal to the
set of positive roots in a root system. Its support is the cone in the lattice of
weights spanned by the positive roots. Figure 9, for example, is a diagram of
the Kostant partition function for SL3.

On each of the domains separated by the dark line, it is the restriction of a
polynomial to the root lattice.



Symmetric powers and the Satake transform 38

1

2

4

21 2

1

1

8

2 4

2

51

33

1

4

3

2

6

2 4

332

3 6

1

3

1

3

4

5

7

6

4

5

2

53

6

1

2

5

6

7

1

5

1

5

7

4 4

73

2 8

3 4

1

5

62 7

1

8

Figure 5. The Kostant partition function for SL3
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Figure 6. The Kostant partition function for Sp4

In contrast is Figure 9, the diagram of the Kostant partition function for
Sp4.
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This exhibits what is more commonly seen in the behaviour of vector par-
tition functions. On each of three domains the function is the restriction of a
quasi-polynomial, which is to say a polynomial plus a polynomial adjustment
of lower degree depending on congruence conditions. It follows from [35] that
this phenomenon is universal. Hales has pointed out to me that similar results
are among the main theorems of motivic integration (for example, [13, Section
4]), which antedate Sturmfels’ theorem.

This function occurs in a formula also due to Kostant for the weight multi-
plicities mµ,λ of an irreducible representation with highest weight λ:

mµ,λ =
∑
w∈W

(−1)ℓ(w)PΣ+,w(λ+ρ)−(µ+ρ) .

Here ρ is the half-sum of positive roots. I’d say it is not entirely clear that this
is a practical tool for computing weight multiplicities, since it calculates relative
small numbers as a linear combination of large ones. There is nonetheless a
large literature applying it in special cases. The point is to find the domains
of quasi-polynomial behaviour, then its exact nature on each domain.

The lattice of weights occurring in an irreducible representation can be bro-
ken up into relatively simple domains on which it is a quasi-polynomial function.
For some idea of how things go, look at [4] or [5].

There is one bright side, however—a well known asymptotic formula for
the weight multiplicities of σnλ as n → ∞ can be found in [17]. Heckman’s
theorem shows that as n goes to infinity lattice geometry is replaced by ordinary
Euclidean geometry. The simplest example of this phenomenon is that if Π is a
bounded polytope then the number of lattice points inside nΠ is asymptotically
the volume of nΠ.

What does this have to do with basic functions? There exist a q-weighted
version of vector partition functions. For n in Ng let |n| =

∑
ni. Define the

infinite series

PΓ =
∏

Γ
1

1− qeγ

=
∑

Ng q|n|eσ(n)

=
∑

PΓ,λ(q)e
λ,

where now PΓ,λ(q) is a polynomial in q that counts the points n in the inverse

image of λ, but weighting them by a factor q|n|. Of course PΓ(1) = PΓ.
Let P be the q-weighted version of Kostant’s function. A remarkable formula

conjectured by Lusztig and proved in [21] asserts that if P

Kµ,λ(q) =
∑
w∈W

(−1)ℓ(w)Pw(λ+ρ)−(µ+ρ)(q) .

If q is set to 1, this becomes Kostant’s formula for weight multiplicities. If
wλ = λ, this takes a particularly simple form, and Kµ,λ is the difference be-
tween two slightly shifted partition functions. If G = GLn or GSp2n and λ is
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the highest weight of the standard representation, then for dominant weights µ
things are especially simple, and we presumably recover rigourously the com-
puter’s conjecture. The q-weighted partition functions also occur in motivic
integration, and in [13, Section 4] there is a version of Sturmfels’ theorem for
them.

In [24] it is proved that basic functions are q-weighted vector partition func-
tions. Among other things, it suggests that basic functions have significance
beyond the applications one has in mind to automorphic forms. For this, sup-

pose given Ĝsc, σ etc. Let S be the set of weights of σ. Let W be the series∏
γ∈Σ−

1

1− qeγ
·
∏
γ∈S

1

1− eγ
=

∑
µ

Wµ(q) e
µ .

Its coefficients Wµ have support on the lattice cone spanned by Σ− and S.

Theorem 9.1. (Wen-wei Li) For dominant weights µ

ϕµ =
∑
w∈W

(−1)wWµ+(ρ−wρ)(q
−1) .

Wen-wei Li’s proof uses algebraic geometry. Another, somewhat more direct,
proof is suggested in [32], using methods also used by [21]. I suspect that there is
a simpler derivation that follows even more directly from Kato’s main formula.
I do not see how to use this formula for practical computation, although some
part of it is incorporated in my programs.

10. Decomposing symmetric powers

As we have seen, there are two principal steps to computing basic functions.
One involves the decomposition of symmetric powers of an irreducible repre-
sentation into irreducible components. The other involves finding the Satake
transform and its inverse. I have explained an apparently efficient way how to
do the second. What about the first?

The program LiE (which can be downloaded from
http://wwwmathlabo.univ-poitiers.fr/~maavl/LiE/)

computes decomposition multiplicities of symmetric powers. The algorithm
it uses—which incorporates Adams operations—looks very reasonable, but in
practice it balks at symmetric powers of even moderately high degree.

The method I use currently seems to be acceptably efficient, although for
various reasons one might hope that something better will come along. It
uses Molien’s formula! First it finds the denominator as a polynomial in the
single variable t (which replaces q−s in the form we have seen previously). The
amount of work involved in this is not at all great, especially in comparison
with what is involved in all other parts of the computation. It is very, very
roughly proportional to the square of the dimension of the representation. The
inverse of this polynomial is an infinite series in t whose coefficients are linear



41 Casselman

combinations of characters. They satisfy a linear difference equation that may
be solved for successive terms, at least up to a given degree. According to
Molien’s formula the coefficients of powers of t in this series give us the weight
multiplicities of symmetric powers. One unfortunate feature of this method,
and indeed all methods I am aware of, is that it produces all weights of the
symmetric powers, even though only those in a small subset are necessary. We
shall see later a method for GL2 that does not have this problem.

From this, one deduces the decomposition into irreducibles. For this step
there are, at least in principle, a number of choices.

The paper [22] gives a very explicit formula for the character of a symmetric
product, which of course gives implicitly the weight multiplicities. But in §6 of
this paper Kousidis expresses doubts that anything practical will come of it.

Once one knows the weight multiplicities of a representation, there are sev-
eral ways to find the multiplicities in the decomposition into irreducibles.

The method I used at first applies an algorithm of [27] for finding the dom-
inant weight multiplicities of an irreducible representation. One scans through
the list of weight multiplicities given, starting with a maximal one λ and peel-
ing off the multiplicities of the irreducible with highest weight λ. This has the
advantage that it only requires knowing the dominant weight multiplicities.
But more recently I came across a formula to be found as Corollary III.1 or in
[12] or in [11, Section 6]. Its basic idea is suggested in the well known [34].

Proposition 10.1. If we are given weight multiplicities mµ for a representa-
tion σ, then for λ dominant the multiplicity of the representation with highest
weight λ in σ is ∑

W

(−1)ℓ(w)mλ+(ρ−wρ) .

Here ρ is the half-sum of positive roots. The Proposition is an easy conse-
quence of Weyl’s character formula.

When W is small, this is undoubtedly the method of choice. It does have
one drawback, in that it requires knowing multiplicities outside the positive
chamber, but that is not difficult to deal with efficiently. Besides, when W is
large, for example when G is of type F4 and |W | = 1152, my programs generally
fail for many reasons. It is not clear to me which of the two principal steps
are the main bottleneck in my programs, nor what one might hope to come up
with eventually.

In the rest of this paper I’ll discuss in detail what seems to be the best one
can do for GL2. But even in this case there are interesting open questions.

11. Basic functions for GL(2)

From now on in this paper, let Ĝsc be SL2(C). Recall that σm is the repre-
sentation of GL2(C) on Sm(σstd), which has dimension m+ 1.
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det = 1

λ

Figure 7. σ3 again

The irreducible representations of Ĝsc are the restrictions of the σm. If
m = 2n + 1 the group Gσ is then GL2(C), and the extended representations

are the σ2n+1 ·det−n. If m = 2n, we have Ĝ = PGL2(C), the group Ĝσ is equal

to C××PGL2(C), and the admissible representations of Ĝσ are the σ2n· det−n.

In all cases, let σ̃n be the relevant representation of Ĝσ. Let λ be its highest
weight, with det(λ) = 1.

The basic function is bi-K-invariant, hence determined by its values on the
dominant weights µ in the cone spanned by the weights of σ, which are of the
form nλ− cαα, for cα with 0 ≤ cα ≤ ⟨λ, α∨⟩.

Figure 11 recalls the diagram for σ̃3 (with dominant weights shaded more
darkly).

There are a number of features of basic functions that occur for SL2 but
do not occur for other groups. This ought not to be too surprising, since the
Satake homomorphism in this case is very simple. All the complexity of the
basic function follows from complexity of symmetric power decomposition, and
this turns out to be amenable to reasonable analysis.

For SL2, the relation between symmetric power decompositions and basic
functions is very simple. Here, for example, is the slice of the basic function
for det = 6 with σ = σ̂3 (i.e. with λ = 3):

n Φ6λ−nα

0 [1]
1 [1, 0]
2 [1, 0, 1]
3 [1, 0, 1, 1]
4 [1, 0, 1, 1, 1]
5 [1, 0, 1, 1, 1, 1]
6 [1, 0, 1, 1, 1, 1, 2]
7 [1, 0, 1, 1, 1, 1, 2, 0]



43 Casselman

8 [1, 0, 1, 1, 1, 1, 2, 0, 1]
9 [1, 0, 1, 1, 1, 1, 2, 0, 1, 0].

Here I continue to interpret arrays as polynomials, indexed from low degree
to high, so that the array for n = 3 is the polynomial 1+q2+q3. In conformity
with Proposition 4.1, the last entries record the coefficients in symmetric power

decompositions. What we see in this example is always true—when Ĝsc = SL2,
the polynomial values of the basic function on a slice det = constant are initial
segments of the central values of the slice, which are just the multiplicities in
the symmetric power decomposition.

Proposition 11.1. Suppose λ a dominant weight for GL2, and that

Sm(σλ) =
∑

miσmλ−iα .

Then the basic function evaluated at mλ− iα is

Φmλ−iα =
∑

0≤ℓ≤i

mℓq
ℓ .

Proof. Suppose that

Sm(σλ) =
∑

miσmλ−iα .

From equation (2.1) we know that

S−1τmλ−iα =
∑

q−jfmλ−iα−jα

which leads to

Sm(σλ) =
∑
i,j

mifmλ−iα−jα =
∑
ℓ

fmλ−ℓα

∑
i

q−(ℓ−i)mi,

in which the first sum is over all ℓ for which mλ − ℓα ≥ 0, the second over
0 ≤ i ≤ ℓ. Dualize. □

In other words, because the Satake transform for SL2 is so simple, evaluating
basic functions reduces to evaluating symmetric power decompositions.

In the rest of this paper I’ll explain a well known formula for symmetric

power decompositions when Ĝsc = SL2, and another conjectured formula which
might be valuable in dealing with groups of higher rank. It is not clear how
much these formulas will tell what we want to know about basic functions, but
they will make it easier to compute many examples that brute-force methods
will not.
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12. q-ology

In the remaining sections, I’ll discuss the decomposition of symmetric powers
of finite-dimensional representations of G = GL2(C).

Let

γ =

[
1 0
0 q

]
.

If π is any finite-dimensional representation ofG, I define its trace polynomial
to be the trace of π(γ) expressed as a Laurent polynomial in the variable q.
If the restriction of π to scalar matrices is a single character, then the trace
polynomial and that character determine π, since[

α 0
0 β

]
=

[
α 0
0 α

] [
1 0
0 β/α

]
,

so that the entire character of π is determined. For example, the trace polyno-
mial of σk is

1 + q + · · ·+ qk =
qk+1 − 1

q − 1
.

In this section I’ll find explicit formulas for the trace polynomials of all
∧p

(σk)
and Sp(σk), thus in effect enabling the computation of their decomposition into
irreducible representations.

For any n ≥ 0 define

[n]q = 1 + q + · · ·+ qn−1 =
qn − 1

q − 1
.

If we set q = 1 then [n]q becomes n, and [n]q is known as the q-analogue of the
function f(n) = n. As we have seen, the trace polynomial of σk is [k + 1]q.

The q-analogue of the factorial function is

[n]!q = [1]q · [2]q . . . [n]q .

These are easy to compute inductively:

[0]!q = 1
[1]!q = 1
[n]!q = [n]q[n− 1]!q .

The q-analogue of the binomial coefficient is

[
n

m

]
q

=


[n]!q

[m]!q[n−m]!q
0 ≤ m ≤ n

0 otherwise.

This is also
[n−m+ 1]q . . . [n]q

[m]!q
(0 ≤ m ≤ n).
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It is symmetric in m and n−m:[
n

m

]
q

=

[
n

n−m

]
q

.

Special cases are[
n

0

]
q

= 1 (n ≥ 0) and

[
n

1

]
q

= [n]q (n ≥ 1) .

These fit into a q-analogue of Pascal’s triangle:

n
0 : 1
1 : 1 1
2 : 1 1 + q 1
3 : 1 1 + q + q2 1 + q + q2 1
4 : 1 1 + q + q2 + q3 1 + q + 2q2 + q3 + q4 . . . 1
5 : 1 1 + q + q2 + q3 + q4 1 + q + 2q2 + 2q3 + 2q4 + q5 + q6 . . . . . . 1

. . .

This illustrates the truth of the following, which is easily verified:

Proposition 12.1. We have[
n+ 1

m

]
q

=

[
n

m− 1

]
q

+ qm
[
n

m

]
q

.

Which is to say that, as in Pascal’s triangle, the expression at (n + 1,m)
is a simple linear combination of those at (n,m) and (n,m − 1). This can be
combined with the evaluation of the first row:[

0

m

]
q

=

{
1 m = 0
0 otherwise,

to recover by induction:

Corollary 12.2. The function [ n
m

]
q

is a polynomial in q.

Here is the point. From now on, for n ≤ m let

λm
n = the trace polynomial of

∧m
(σn−1) .

Since the dimension of σn−1 is n, the dimension of
∧m

(σn−1) is
(n
m
)
, and

therefore the following should not be too surprising:

Corollary 12.3. For 0 ≤ m ≤ n,

λm
n = qm(m−1)/2

[
n

m

]
q

.
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Proof. Let the ei for 0 ≤ i ≤ n− 1 be an eigenbasis of σn−1 with respect to γ,
and for an ordered subset I = {ij} of size |I| = m with 0 ≤ i1 < . . . < ip ≤ n−1
let eI = ei1 ∧ · · · ∧ eim . The eI with |I| = m form a basis of

∧m
(σn−1). We

can partition these into the e0 ∧ eI with I ⊆ [1, n− 1] of size m− 1 and the eI
with I ⊆ [1, n− 1], |I| = m. This gives us

λm
n+1 = qm−1λm−1

n + qmλm
n .

But if we multiply the recursion equation of Proposition 12.1 by qm(m−1)/2 we
get the same relation. Initial conditions are obviously the same. □

Corollary 12.4. The trace polynomial of Sm(σn) is equal to[
m+ n

m

]
q

.

This is apparently well known. It seems to have been rediscovered often, and
is sometimes formulated equivalently in terms of Young diagrams. For example,
it is Lemma 4.1.22 of [15], proved by an application of Molien’s formula. It
ought perhaps to be thought of as a generalization of Weyl’s character formula,
although no generalization for other reductive groups seems to be known or
even conjectured.

Proof. It suffices to prove that the polynomial λn+m
m is equal to the trace poly-

nomial of Sm(σn) multiplied by qm(m−1)/2.
There is a simple bijection of eigenvectors for γ in the two spaces

∧m
(σn−1)

and Sm(σn−m). The exterior product ei1 ∧ · · · ∧ eim with 0 ≤ i1 < i2 < . . . <
im ≤ n− 1 maps to the symmetric product ei1ei2−1 . . . eim−(m−1). □

The oldest result about the representation Sm(σn) that I am aware of is
Hermite reciprocity (from [18]). It follows from the previous corollary, since if
π is either Sm(σn) or S

n(σm) then

π :

[
α 0
0 α

]
7−→ αmn ·I .

Corollary 12.5. The representation Sn(σm) is isomorphic to Sm(σn).

This can be used to reduce work in computation by swapping m and n.
According to Proposition 10.1, Corollary 12.4 has as consequence a formula

for the decomposition of Sm(σk). For GL2 this result is elementary, as we shall
see in a moment.

13. The irreducible decomposition

The highest weight of Sm(σk) is km, and the center acts on it by a single
character. Its decomposition into irreducible components is therefore of the
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form

Sm(σk) =

⌊km/2⌋∑
i=0

ci ·σkm−2i ·deti .

In these circumstances I define its decomposition polynomial to be

δm,k(q) =

⌊km/2⌋∑
i=0

ciq
i .

I’ll often assume m, k to be fixed, and ignore them in subscripts.
The trace polynomial of Sm(σk) is then

∑⌊km/2⌋
i=0 ci ·qi ·

qkm−2i+1 − 1
q − 1

=

∑⌊km/2⌋

i=0
ciq

i −
∑⌊km/2⌋

i=0
ciq

km−i+1

1− q
.

If P has degree ≤ d and it is assigned nominal degree d, define its dual to be
the polynomial qdP (q−1). Thus

if P (q) = p0 + p1q + · · ·+ pdq
d then P#(q) = pd + pd−1q + · · ·+ p0q

d .

This gives us a convenient form:

(13.1) (1− q)τm,k = δ(q) + qkm−⌊km/2⌋+1δ#(q) .

The first term has degree ⌊km/2⌋. The second term starts off with a term of
degree km−⌊km/2⌋+1. Since km ≥ 2⌊km/2⌋, there is no overlap in the two.
That is to say, δ(q) is a truncation of (1− q)τ at its midpoint. Hence:

Proposition 13.1. The decomposition polynomial δm,k(q) of Sm(σk) is the
polynomial obtained from (1 − q)τm,k by truncating all terms of degree more
than ⌊km/2⌋.

This provides a simple way to find the decomposition polynomial, but for
various reasons I shall now explore variants of this formula.

Since [n]q = (qn − 1)/(q − 1), Corollary 12.4 implies that

(13.2) τm,k =
(qm+1 − 1) . . . (qm+k − 1)

(q − 1) . . . (qk − 1)
.

Let

Pk(q) =
k∏
2

(qi − 1), Qk(q) = (q − 1)Pk(q) =
k∏
1

(qi − 1) .
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Expanding the product in the numerator of (13.2), we see that it is

Qk(q)τ(q) = 1− qm+1(q0 + q1 + · · ·+ qk−1)
+ q2(m+1)(q0+1 + q0+2 + · · · q(k−2)+(k−1))

− · · · ± qk(m+1) ·q1+2+k−1

=
∑k

p=0(−1)p
(
q(m+1)p

∑
0≤i1<i2<...ip≤k−1 q

i1+···+ip
)

=
∑k

p=0(−1)p ·qp(m+1) · trace polynomial of
∧p

(σk−1)

=
∑k

p=0(−1)p · trace polynomial of
∧p

(detm+1 ·σk−1) .

We deduce the following curious and suggestive reformulation of (13.2):

Proposition 13.2. We have

τm,k =

∑k
p=0(−1)p · trace polynomial of

∧p
(detm+1 ·σk−1)∑k

p=0(−1)p · trace polynomial of
∧p

(det ·σk−1)
.

This has degree of the numerator is d = km+ k(k+1)/2 . From now on, let

λp
k = trace polynomial of

∧p
(σk−1) .

The degree of λp
k is

(k − 1) + (k − 2) + · · ·+ (k − p) = pk − p(p+ 1)/2
= p

(
k − (p+ 1)/2

)
.

Set
λ<

k =
∑

2p<k(−1)pqp(m+1)λp
k ,

λ≤
k =

∑
2p≤k(−1)pqp(m+1)λp

k ,

λ≥
k =

∑
2p≥k(−1)pqp(m+1)λp

k .

The numerator in (13.2) can hence be expressed as λ<

k + λ≥
k .

Let a = ⌊km/2⌋, b = k(k − 1)/2 − 1. Then δm,k(q) has degree at most a,
and Pk has degree b. Let

X(q) = Pk(q)δm,k(q) ,

which has degree at most a+ b.

Lemma 13.3. In these circumstances,

X(q) = λ<(q) + qa+1R(q) ,

in which R(q) has degree at most b− 1.

Assign the product X(q) the nominal degree d = a+ b.

X#(q)=P#(q)δ#(q) = qa+bX(q−1)=qa+b(Π(q−1)+q−a−1R(q−1)
)
=Π#(q)+R#(q) .

As a consequence:

Proposition 13.4. The dual δ#(q) of the decomposition polynomial is the
‘integral quotient’ of Π#(q) by P#(q).
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Proof. (Of the Lemma.) Let

Y (q) = Pk(q) q
km−⌊km/2⌋+1δ# .

Then

(1− q)Pk(q)τ(q) = λ<

k (q) + λ≥
k (q) = X(q) + Y (q) ,

The Lemma now follows from the following facts:
• The coefficients of λ≥

k vanish in degrees ≤ ⌊km/2⌋.
The lowest degree of λ≤ is p(m + 1) where p is the smallest p such that

2p ≥ k. The two cases k odd and k even are slightly different. If k = 2ℓ then
the minimal p is equal to ℓ, ⌊km/2]⌋ = ℓm, and

(k/2)(m+ 1) = km/2 + k/2 = ℓm+ ℓ ≥ ⌊km/2⌋ .

Otherwise, say k = 2ℓ+ 1. The minimal p is equal to ℓ+ 1, ⌊km/2⌋ = ℓ, and

p(m+ 1) = (ℓ+ 1)(m+ 1) = ℓm+ ℓ(m+ 1) + 1 ≥ ⌊km/2⌋+ 1 .

• So do those of Y (q). The lowest degree of Y (q) is (km − ⌊km/2⌋ + 1) +
k(k − 1)− 1, which is certainly ≥ ⌊km/2⌋+ 1.

• The degree of X(q) is at most ⌊km/2⌋+ k(k − 1)/2− 1. Trivial.
• So is that of λ≥. I claim that λ≤(q) has degree at most a+ b. The degree

of each term in the defining sum is

p(m+ 1) + (k − 1) + (k − 2) + · · ·+ (k − p) = p(m+ 1) + pk − p(p+ 1)/2
= p

(
m+ 1 + k − (p+ 1)/2

)
.

As one can see by calculating derivatives, this is a monotonic function of p. It
suffices to show that 2p ≤ k implies that

2p(m+ 1) + 2p+ 2pk − p(p+ 1) ≤ km+ k(k + 1)− 2 .

But if 2p ≤ k then

2p(m+ 1) + 2p+ 2pk − p(p+ 1) ≤ km+ k + k2 − p(p+ 1) ,

so all is all right except possibly if k = 1. But in this case also everything is
all right.

We are done. □

The point of the Proposition is that we frequently want to compute the
decomposition of Sm(σk) for a fixed k and many m. It is easy enough to
compute λp

k for the small number of p in the range 2p < k, and then easy to
compute λ< for many m. The Proposition then reduces by a factor of roughly
two the amount of work one might expect.
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0 10 20 30 40 50 60 70 80 90 100

Figure 8. Decomposition of S31(σ)

0 10 20 30 40 50 60 70 80 90 100

Figure 9. Decomposition of S32(σ)

0 10 20 30 40 50 60 70 80 90 100

Figure 10. Decomposition of S33(σ)

0 10 20 30 40 50 60 70 80 90 100

Figure 11. Decomposition of S34(σ)

14. Pictures

There are still a few unsolved problems regarding the representations Sm(σk).
I’ll exhibit in the section some of them for σ = σ3. Figures 8–13 illustrate
graphically the decomposition of Sn(σ) for n = 31 through 36. Indexing is by
the highest weight of components. The highest weight is always 3n, at the far
right.

Some kind of periodicity appears at the left as well as on the right, and we see
also an asymptotic approach to a piecewise linear function. The decompositions
of all of the Sm(σ3) are shown at once in the more striking image of Figure 14.
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0 10 20 30 40 50 60 70 80 90 100

Figure 12. Decomposition of S35(σ)

0 10 20 30 40 50 60 70 80 90 100

Figure 13. Decomposition of S36(σ)

0 1 2 3 4 5 6 7 8 9

Figure 14. Decompositions of all of the Sm(σ3)

Let me at least explain what the picture means. First of all, I have scaled
the lattice of points (i,m) so as to accommodate hexagons nicely. The vertical
coordinate is m, the horizontal one i. This is illustrated in Figure 15.

The hexagon in Figure 14 at (i,m) indicates the multiplicity of σi in Sm(σ3).
But it does this by shading, as the key shows. The most obvious symmetry is
the shift diagonally up, indicated by special marks on certain hexagons. I have
only vaguely explained this. As I have mentioned, vector partition functions
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Figure 15. How Figure 14 is constructed

are piece-wise quasi-polynomial. This mean that you can divide up the sup-
port of the function into a finite number of polyhedra on which the function
is polynomial plus some lower order correction terms that depend on lattice
congruence conditions. Here, the cone is divided into two such regions by the
diagonal line, and that the polynomials are linear functions. The congruence
conditions are visible. For the σk with k > 3, the images are similar but more
complicated. In the literature are many examples for which such decompo-
sitions have computed, but it is not yet clear to me how valuable they are
here.
Final remarks. Since writing this, I have found (and proved) a formula for the
decomposition of the Sm(σ3) that explains clearly what one sees in the figures
above. I have also found extraordinarily simple formulas for the asymptotic
behaviour of all Sm(σk) for a fixed k, as m → ∞. Explaining these things
would require a major revision of this paper which I do not have time to carry
out. They will be covered in a sequel, along with speculations about, if not
proofs of, what one might consequently expect for groups of higher rank.
Added in proof: Aaron Pollack has proved my conjecture about the ba-
sic function associated to GSp(4), and in fact found a formula for all groups
GSp(2n) and the standard representation.
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