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DIFFIE-HELLMAN TYPE KEY EXCHANGE PROTOCOLS

BASED ON ISOGENIES

H. DAGHIGH∗, R. KHODAKARAMIAN GILAN AND F. SEIFI SHAHPAR

Abstract. In this paper, we propose some Diffie-Hellman type key ex-
change protocols using isogenies of elliptic curves. The first method which
uses the endomorphism ring of an ordinary elliptic curve E, is a straight-
forward generalization of elliptic curve Diffie-Hellman key exchange. The

method uses commutativity of the endomorphism ring End(E). Then
using dual isogenies, we propose a second method. This case uses the
endomorphism ring of an elliptic curve E, which can be ordinary or su-

persingular. We extend this method using isogenies between two elliptic
curves E and E′. Our methods have the security level of that of [D. Jao
and L. De Feo, Towards quantum-resistant cryptosystems from supersin-
gular elliptic curve isogenies, J. Math. Cryptol. 8 (2014), no. 3, 209–247],

with the advantage of transmitting less information between two parties.
Keywords: Supersingular elliptic curves, isogeny, cryptography, key ex-
change.
MSC(2010): Primary: 65F05; Secondary: 46L05, 11Y50.

1. Introduction

A key exchange protocol is the process of securely exchanging a secret key be-
tween two or more parties over a public channel. The security of a key exchange
protocol is usually based on the hardness of some mathematical problems such
as Discrete Logarithm Problem (DLP), the problem of finding positive integer
k from ak in the cyclic group G = ⟨a⟩. Diffie-Hellman problem, first proposed
by Whitfield Diffie and Martin Hellman in 1976, is the problem of computing
akl from given values of a, ak and al in G. This problem is directly used to
construct the Diffie-Hellman key exchange protocol and has become one of the
most practical ways for secure key distribution over a public channel.

Different algorithms have been proposed for solving DLP. In particular the
index calculus method solves the DLP on the group F∗

q in subexponential time.
Frey and Ruck [5] and Menezes et al. [11] proposed algorithms to reduce
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the discrete logarithm problem on an elliptic curve E over Fq to a DLP in
some finite field extension Fqk . Menezes et al. [11] also showed that in the
supersingular case, one has k ≤ 6.

On the other hand, many of the mathematical problems which are consid-
ered hard, will not remain hard for quantum computers. One of the promising
candidates for quantum-resistant cryptography is the isogeny-based cryptogra-
phy [9]. Stolbunov in [17], proposed a quantum-resistant Diffie-Hellman type
system using the class group action on a set of isogenious elliptic curves. The
security of this cryptosystem is based on the hardness of the Isogeny Problem
(IP), the problem of finding an isogeny between two given isogenious elliptic
curves. This method shares a common secret key between two parties by walk-
ing on the isogeny graph of ordinary elliptic curves. A few years later, Childs
et al. [3] presented an algorithm that could recover these common secret keys
in quantum subexponential time.

Later Jao-De Feo [9], proposed a new candidate for quantum-resistant public
key cryptosystems based on the difficulty of finding isogeny between supersin-
gular elliptic curves instead of ordinary ones. In this method they construct
a commutative diagram which results in the j-invariant of a common curve
between two parties.

In this paper, we propose two new Diffie-Hellman type key exchange pro-
tocols based on the difficulty of solving isogeny problem along with an ex-
tra condition. We recall that the Elliptic Curve Discrete Logarithm Problem
(ECDLP) is the problem of finding an integer n such that Q = nP , where E
is an elliptic curve, P ∈ E and Q ∈ ⟨P ⟩, where by ⟨P ⟩, we mean the group
generated by P . As multiplication-by-n map is an isogeny of the curve E, we
can generalize ECDLP to the following problem:

Isogeny Logarithm Problem (ILP): Let E and E′ be two isogenous
elliptic curves, P ∈ E and Q ∈ E′. Find an isogeny ϕ : E → E′ such that
Q = ϕ(P ), if any.

In this paper, we introduce two new key exchange methods. The first
method, which uses the endomorphism ring of an ordinary elliptic curve E, is
a straightforward generalization of elliptic curve Diffie-Hellman key exchange.
This method uses the commutativity of End(E), the ring of endomorphisms
of E, and therefore cannot be applied to supersigular elliptic curves. Our sec-
ond method, which uses the notion of dual isogenies, works for both ordinary
and supersingular elliptic curves. We then generalize this method to a key ex-
change protocol using isogenies between two elliptic curves E and E′. We also
introduce a public key encryption scheme using our key exchange protocol.

The remainder of this paper goes as follows. Section 2 contains a brief
summary of some preliminaries on elliptic curves and isogenies. In Sections 3
and 4, we introduce our new key exchange protocols and public key algorithm.
Section 5 discusses implementation aspects of the proposed scheme by reviewing



79 Daghigh, Khodakaramian Gilan and Seifi Shahpar

the methods for computing isogenies between elliptic curves and presenting an
example. Finally Section 6 is devoted to the security analysis of the proposed
algorithms.

2. Preliminaries

In this section we introduce some basic concepts from the theory of elliptic
curves and isogenies. For more details see [13, 19].

2.1. Elliptic curves.

Definition 2.1. Let p be a prime number and q = pα, where α is a positive
integer. An elliptic curve E over the finite field Fq is a nonsingular projective
plane curve with the Weierstrass equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6,

where a1, a2, a3, a4, a6 ∈ Fq. If p ̸= 2, 3, one can write the equation in the short
form

y2 = x3 + ax+ b, a, b ∈ Fq.

Let E be an elliptic curve defined over the field Fq. The set of Fq-rational
points of E is defined as

E(Fq) = {(x, y) ∈ E | x, y ∈ Fq} ∪ {O},
where O is the point at infinity. We also denote E(F̄q) simply by E. The set
E(Fq) forms an abelian additive group with O as the identity element. The
n-torsion subgroup of E, denoted by E[n], is the set of points P ∈ E(F̄q) such
that nP = O.

For p ̸= 2, 3, an elliptic curve E/Fq can be determined (up to isomorphism)
by its j−invariant defined by

j(E) = 1728
4a3

4a3 + 27b2
.

2.2. Isogenies.

Definition 2.2. Let E and E′ be two elliptic curves defined over a finite field
Fq. An isogeny from E to E′ is a morphism ϕ : E → E′ satisfying ϕ(O) = (O).

For every isogeny ϕ : E → E′, the degree of ϕ is the degree of ϕ as an
algebraic map and is denoted by deg(ϕ). For separable isogeny ϕ, we have
deg(ϕ) = |ker(ϕ)|. Two elliptic curves E and E′ are l-isogenous if there exists
an isogeny of degree l from E to E′. For every l-isogeny ϕ : E → E′, there

exists an l-isogeny ϕ̂ : E′ → E such that ϕϕ̂ = [l]E′ and ϕ̂ϕ = [l]E , where
[l]E and [l]E′ are the multiplication-by-l maps on E and E′ respectively. The

isogeny ϕ̂ is called the dual of ϕ.
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By Tate’s theorem [18], two elliptic curves are isogenous over a finite field
Fq if and only if they have the same number of points over Fq. The group of
isogenies from E to E′ is denoted byHom(E,E′) and End(E) = Hom(E,E) is
called the endomorphism ring of E. The Frobenius map τq is the endomorphism
τq(x, y) = (xq, yq).

Let E be an elliptic curve defined over Fq. The endomorphism ring of E
is either an order in an imaginary quadratic field or an order in a quaternion
algebra over Q (see [13, p. 100]). The curve E is called ordinary in the first case
and supersingular in the second case. Equivalently, a curve E/Fq is ordinary
if and only if E[p] ≃ Z/pZ and is supersingular if and only if E[p] = {0} (see
[13, p. 145]).

3. Our key exchange method

We remind that in elliptic curve Diffie-Hellman key exchange protocol, Alice
and Bob agree on an elliptic curve E and a point P ∈ E. Then Alice chooses
her secret integer a and sends aP to Bob. Similarly Bob chooses his secret
integer b and sends bP to Alice. Now Alice and Bob can compute the common
key abP . In this section, we present two new methods using the notion of
isogenies. First we briefly recall the Jao-De Feo key exchange method [9].

Let p = ℓeAA ℓeBB · f ± 1 be a prime, where ℓA and ℓB are two small primes,
eA and eB are positive integers, and f is some (typically very small) cofactor.
Also let E be a supersingular elliptic curve over Fp2 such that (ℓeAA ℓeBB )2 divides
|E(Fp2)|. Moreover assume that E[ℓeAA ] = ⟨PA, QA⟩ and E[ℓeBB ] = ⟨PB , QB⟩,
where ⟨P,Q⟩ is the subgroup generated by P and Q. Now Alice and Bob can
share a common key as it is described in Figure 1.

Figure 1. Jao-De Feo Method.

Parameters:
Prime number p = ℓ

eA
A

ℓ
eB
B

· f ± 1, Ellipic curve E, {PA, QA} ⊂ E[ℓ
eA
A

] and {PB , QB} ⊂ E[ℓ
eB
B

]

Alice Bob

Chooses two secret numbers Chooses two secret numbers
mA, nA ∈ Z/ℓeAA Z mB , nB ∈ Z/ℓeBB Z
Compute ϕA : E → EA Compute ϕB : E → EB

EA = E/⟨[mA]PA + [nA]QA⟩ EB = E/⟨[mB ]PB + [nB ]QB⟩
ϕA(PB),ϕA(QB),EA−→
ϕB(PA),ϕB(QA),EB←−

Compute EAB = Compute EBA =
EB/⟨[mA]ϕB(PA) + [nA]ϕB(QA)⟩ EA/⟨[mB ]ϕA(PB) + [nB ]ϕA(QB)⟩
Compute j(EAB) Compute j(EBA)

The common key is j(EAB) = j(EBA), since two elliptic curves EAB and
EBA are both isomorphic to the curve

E/⟨[mA]PA + [nA]QA, [mB]PB + [nB ]QB⟩.
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Now we describe our new key exchange protocols. Note that our descriptions
in this section are brief. We will see how to choose the parameters and isogenies
in Section 5.

Method 1: Alice and Bob agree on an ordinary elliptic curve E over finite
field Fq and a point P ∈ E[n]. Alice chooses an endomorphism ϕ ∈ End(E)
and sends ϕ(P ) to Bob. Similarly Bob chooses ψ ∈ End(E) and sends ψ(P )
to Alice. Then they will have a common key ϕψ(P ) = ψϕ(P ) due to the
commutativity of End(E).

Figure 2. Method 1.

Parameters:
Finite field Fq, Ordinary elliptic curve E/Fq and P ∈ E[n]

Alice Bob

Chooses ϕA ∈ End(E) Chooses ϕB ∈ End(E)
ϕA(P )−→
ϕB(P )←−

Computes ϕA(ϕB(P )) Computes ϕB(ϕA(P ))

The common key is ϕA(ϕB(P )) = ϕB(ϕA(P )).
Note that the above method can not be applied to supersingular elliptic

curves, because the points ϕψ(P ) and ψϕ(P ) do not necessarily coincide due
to the noncommutativity of End(E). We overcome this obstacle using the
properties of dual isogenies.

Method 2: In this method, Alice and Bob agree on an elliptic curve E
over Fq and a point P ∈ E[n] as public knowledge. Then Alice chooses an
endomorphism ϕA ∈ End(E) and sends ϕA(P ) to Bob. Similarly, Bob chooses
the endomorphism ϕB ∈ End(E) and sends ϕB(P ) to Alice.

In the second step, Alice computes Q = ϕ̂A(ϕB(P )) and j1 = j

(
E

⟨P,Q⟩

)
.

Similarly Bob computes Q′ = ϕ̂B(ϕA(P )) and j2 = j

(
E

⟨P,Q′⟩

)
. Figure 3,

describes Method 2. Proposition 3.1 shows that j1 = j2 is a common key.

Proposition 3.1. The values of j1 and j2 in the above are equal.

Proof. Let α ∈ End(E) and Tr(α) = α̂+ α = k ∈ Z, then we have

⟨P, α̂(P )⟩ = ⟨P, kP − α(P )⟩ = ⟨P, α(P )⟩.

Therefore,
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Figure 3. Method 2.
Parameters:
Finite field Fq , Elliptic curve E/Fq , P ∈ E[n]

Alice Bob

Chooses ϕA ∈ End(E) Chooses ϕB ∈ End(E)
ϕA(P )−→
ϕB(P )←−

Computes Q = ϕ̂A(ϕB(P )) Computes Q′ = ϕ̂B(ϕA(P ))

Output: j1 = j( E
⟨P,Q⟩ ) Output: j2 = j( E

⟨P,Q′⟩ )

j

(
E

⟨P, α(P )⟩

)
= j

(
E

⟨P, α̂(P )⟩

)
.

Now if we set α = ϕ̂BϕA, we have α̂ = ϕ̂AϕB . Therefore,

j1 = j

(
E

⟨P,Q⟩

)
= j

(
E

⟨P, ϕ̂AϕB(P )⟩

)

= j

(
E

⟨P, ϕ̂BϕA(P )⟩

)
= j

(
E

⟨P,Q′⟩

)
= j2.

□

In the following generalization of Method 2, we use two isogenous elliptic
curves E and E′ and isogenies between them, instead of a single elliptic curve
E and elements of End(E).

Generalization of Method 2: Alice and Bob agree on two isogenous
elliptic curves E and E′ and a point P ∈ E(Fq)[n]. Alice chooses an isogeny
ϕA : E → E′ and sends ϕA(P ) to Bob. Similarly, Bob chooses an isogeny
ϕB : E → E′ and sends ϕB(P ) to Alice.

Now Alice computes Q = ϕ̂A(ϕB(P )) and j1 = j

(
E

⟨P,Q⟩

)
. Similarly Bob

computes Q′ = ϕ̂B(ϕA(P )) and j2 = j

(
E

⟨P,Q′⟩

)
. Since for two isogenies

ϕA, ϕB ∈ Hom(E,E′), the maps ϕ̂AϕB and ϕ̂BϕA are in End(E), as in the
proof of Proposition 3.1 we can see that j1 = j2. This method is summarized
in Figure 4.

The advantage of our protocols is that the transmitted information is only
ϕA(P ) and ϕB(P ). The exchanged information in [9] includes the image of
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Figure 4. Generalized Method 2.

Parameters:
Finite field Fq , Elliptic curves E/Fq , E

′/Fq , and P ∈ E[n]

Alice Bob

Chooses ϕA ∈ Hom(E,E′) Chooses ϕB ∈ Hom(E,E′)
ϕA(P )−→
ϕB(P )←−

Computes Q = ϕ̂A(ϕB(P )) Computes Q′ = ϕ̂B(ϕA(P ))

Output: j1 = j( E
⟨P,Q⟩ ) Output: j2 = j( E

⟨P,Q′⟩ )

the generators of E[ℓeAA ] and E[ℓeBB ] under the secret isogenies ϕB and ϕA
respectively.

4. Public key encryption

In this section, we show that our key exchange protocol can be used to con-
struct a public key encryption system, inspired from the way that El-Gamal
encryption can be constructed from Diffe-Hellman problem. Let all the nota-
tions be the same as before.

Public Parameters: Choose a finite field Fq, two supersingular elliptic
curves E and E′ over Fq and a point P ∈ E(Fq). Also let Hk : Fp2 → {0, 1}k
be a hash function and k ∈ Z (see [12, p. 321]).

Key Generation: Choose the isogeny ϕpriv : E → E′, a point P /∈
ker(ϕpriv) and compute Q = ϕpriv(P ). The public key is Q and the private
key is the isogeny ϕpriv.

Encryption: For given public key Q and the message m ∈ {0, 1}k, choose
the isogeny ϕenc : E → E′ and compute R = ϕ̂enc(Q),

S = ϕenc(P ),
j = j(E/⟨P,R⟩).

Then compute c = Hk(j) ⊕m, where ⊕ denotes the XOR operation (see [14,
p. 550]). The ciphertext is (S, c).

Decryption: Given a ciphertext (S, c), compute{
Q′ = ϕ̂priv(S),
j = j(E/⟨P,Q′⟩).

The plaintext is m = Hk(j)⊕ c.
Note that in the above public key encryption, we can use the endomorphisms

of a single elliptic curve E instead of isogenies between two curves.
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5. Implementation aspects

In this section, we discuss the computation of required isogenies and pa-
rameters to execute the proposed key exchange protocols. We also give an
example.

5.1. Computing Isogenies. In order to have an endomorphism on ordinary
elliptic curve E over Fq in Method 1, one can choose two random integers m,n
and constructs m+ nτq, where q = pα and τq is the Frobenius endomorphism.
In supersingular cases (Method 2), one can use the following construction. Let
O be a maximal order in the quaternion algebra Bp over Q ramified at p and
∞ and let {1, α1, α2, α3} be the set of generators of O. Using the method of
[2], one can construct a supersingular elliptic curve E with endomorphism ring
End(E) = O over Fq. The running time of this method is O(p2.5+ϵ) which can
even be reduced to O(p1+ϵ) in some special cases.

For the generalized method, we can select two elliptic curves and an isogeny
ϕ between them as follows. Let E be an elliptic curve and G be an arbitrary
subgroup of E. Then there exists an elliptic curve E/G (unique up to isomor-
phism) and an isogeny ψ : E → E′ = E/G with ker(ψ) = G. This isogeny
can be computed using Velu’s formula as follows. Let E be defined by the
polynomial F (x, y) = x3 + a2x

2 + a4x+ a6 − (y2 + a1xy + a3y) = 0, and S be
the set of points of order two in G. Also assume that T is a subset of G such
that G = {O}∪S ∪ T ∪ {−Q : Q ∈ T} and |G| = 1+ |S|+2|T |. We compute

Fx =
∂F

∂x
= 3x2 + 2a2x+ a4 − a1y and Fy =

∂F

∂y
= −2y − a1x− a3.

Now for a point Q = (xQ, yQ) ∈ T ∪ S, define the values
u(Q) = (Fy(Q))2 and

t(Q) =

{
Fx(Q) if Q ∈ S,
2Fx(Q)− a1Fy(Q) if Q ∈ T.

Set
t(G) =

∑
Q∈T∪S

t(Q)

and
w(G) =

∑
Q∈T∪S

u(Q) + xQt(Q).

Then the map ψ : (x, y) 7→ (X,Y ) defined by

X = x+
∑

Q∈T∪S

t(Q)

x− xQ
+

u(Q)

(x− xQ)2

and

Y = y −
∑

Q∈T∪S

u(Q)
2y + a1x+ a3

(x− xQ)3
+ t(Q)

a1(x− xQ) + y − yQ

(x− xQ)2
+

a1u(Q)− Fx(Q)Fy(Q)

(x− xQ)2
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is a separable isogeny from E to

E′ : Y 2 +A1XY +A3Y = X3 +A2X
2 +A4X +A6,

where A1 = a1, A2 = a2, A3 = a3, A4 = a4 − 5t(G), and A6 = a6 − (a21 +
4a2)t(G)−7w(G). The kernel of this isogeny is the subgroup G and the running
time for this algorithm is O(|G|) (see [7, p. 517]).

In the case where G = ⟨R⟩ is cyclic with order |G| = ℓe, Jao-De Feo [9]
presented a more efficient method to compute the isogeny ψ. In their method
ψ decomposes as a chain of ℓ-isogenies. Set E0 = E, R0 = R, and for 0 ≤ i < e,

Ei+1 = Ei/⟨ℓe−i−1Ri⟩, ψi : Ei → Ei+1, Ri+1 = ψi(Ri).

Then we construct the isogeny ψ : E −→ E′ with E = E0, E
′ = Ee = E/⟨R⟩

and ψ = ψe−1 · · ·ψ0. In each step, the curve Ei+1 and the isogeny ψi can be
computed by Velu’s formula.

Finally using the generated isogeny ψ and the generators {1, α1, α2, α3} of
O, we make public the four isogenies ϕ0 = ψ, ϕ1 = ψ ◦ α1, ϕ2 = ψ ◦ α2 and
ϕ3 = ψ ◦ α3 from E to E′.

Now in the generalized method, Alice chooses random integers a0, a1, a2, a3
and sets ϕA = a0ϕ0+a1ϕ1+a2ϕ2+a3ϕ3. Similarly Bob chooses b0, b1, b2, b3 and
sets ϕB = b0ϕ0 + b1ϕ1 + b2ϕ2 + b3ϕ3. Moreover, for the ℓ-isogeny ϕ : E → E′,

since ker(ϕ̂) = ϕ(E[ℓ]), one can compute the dual isogeny ϕ̂ using the above
procedure.

5.2. Example. We present an example in the following two steps. We have
used the SAGE software [15, 16] for our computations. In every key exchange
process, Alice can construct isogeny ϕA using a linear combination of the iso-
genies ϕ0, ϕ1, ϕ2, and ϕ3 to execute the protocol.
Setup: Let F5032 = F503(w), where w

2+w+1 = 0. Also let E : y2 = x3−1 and
G = (496, 320w + 160) ∈ E. We also choose a point P = (258w + 158, 210w +
90) ∈ E[504]. Using Velu’s formula, we compute

ψ : E → E/⟨G⟩ = E′,

where E′ : y2 = x3 + 159x+ 155.
The endomorphism ring of E is an order in the quaternion algebra B503 =

Q+Qi+Qj +Qk, where i2 = −3, j2 = −503 and ij = k = −ji. Here

i : (x, y) 7−→ (X,Y ),

where

X = −9

4
wx7 + 2wx− x+

(
9 (wx4−4wx)w2x2y

x3−1 − 16 y

)2

4 (9wx7 − 8wx− 4x− 16)
2 + 4,



Diffie-Hellman type key exchange protocols based on isogenies 86

and

Y = −
9
(
wx4 − 4wx

)
w2x2y

8 (x3 − 1)
+ y.

We also have
j : (x, y) 7−→ (wx, y).

In fact End(E) is the order End(E) = Z+Zα1 +Zα2 +Zα3 in B503, where

α1 = 1/2(−1 + i), α2 = j, α3 = 1/6(3 + i+ 3j + k).

We have

α1 : (x, y) −→ (wx, y),

α2 : (x, y) −→ (x503
2

, (x3 − 1)126504y).

Set ϕ0 = ψ, ϕ1 = ψ ◦ α1, ϕ2 = ψ ◦ α2 and ϕ3 = ψ ◦ α3.

Key Exchange: Alice chooses ϕA = ϕ0 + 2ϕ1 and sends ϕA(P ) = (163w +
197, 81w+224) to Bob. Similarly Bob chooses ϕB = 3ϕ0 +ϕ1 +2ϕ2 and sends
ϕB(P ) = (359w + 317, 88w + 356) to Alice.
Now Alice computes

Q = ϕ̂A(ϕB(P )) = (304w + 318, 154w + 273)

and E/⟨P,Q⟩ : y2 = x3 + (333w + 135)x+ 278w + 385 and obtains

j1 = j(E/⟨P,Q⟩) = 1728(
4(333w + 135)3

4(333w + 135)3 + 27(278w + 385)2
) = 283w + 459.

Similarly Bob computes

Q′ = ϕ̂B(ϕA(P )) = (318w + 304, 349w + 119)

and E/⟨P,Q′⟩ : y2 = x3 + (333w + 135)x+ 278w + 385 and obtains

j2 = j(E/⟨P,Q′⟩) = 1728(
4(333w + 135)3

4(333w + 135)3 + 27(278w + 385)2
) = 283w + 459.

Therefore the common key is 283w + 459.

6. Security analysis

In this section, we analyse the security of the proposed algorithms, as well
as listing some problems that their hardness is the basis of the security of our
protocols.

As before, let E and E′ be two supersingular elliptic curves, ϕA and ϕB be
two isogenies from E to E′, and P ∈ E[n]. In the following, we define some
problems which are very important from security point of view and solving any
one of them leads to breaking our protocols.

Problem 1 (Isogeny Problem (IP)): For two given isogenious elliptic curves
E and E′, find an isogeny ϕ : E → E′.
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Problem 2 (Isogeny Logarithm Problem (ILP)): Let E and E′ be two
isogenous elliptic curves, P ∈ E and Q ∈ E′. Find an isogeny ϕ : E → E′ such
that Q = ϕ(P ), if any.

Problem 3 (Computational Isogeny-based Diffie-Hellman Problem (CIDH)):
For two isogenies ϕA, ϕB : E → E′ and the point P ∈ E[n], let E′ and the

points Q1 = ϕA(P ) and Q2 = ϕB(P ) be given. Compute j

(
E

⟨P, ϕ̂A(ϕB(P ))⟩

)

or j

(
E

⟨P, ϕ̂B(ϕA(P ))⟩

)
from Q1 and Q2.

Problem 1 is a hard problem that has been studied by many authors [3, 10,
6, 8, 17]. In 2013, Galbraith and Stolbunov [8] introduced an algorithm which

solves the isogeny problem over finite field Fq in Õ(q1/4), where Õ denotes the
complexity with the logarithmic factors omitted. In the case of supersingular
elliptic curves, one can use Delfs and Galbraith classical algorithm which solves
the isogeny problem in Õ(p1/2) operations, where p is the characteristic of the
base field [4]. Also the quantum algorithm proposed by Biass et al. [1] solves

the isogeny problem with complexity Õ(p1/4).
Problem 2 is even harder, because it must satisfy the extra condition Q =

ϕ(P ). In general, there is no effective algorithm to find an isogeny between two
elliptic curves as mentioned before and it seems hard to determine the structure
of Hom(E,E′). Note that in supersingular elliptic curve E, the endomorphism
ring of E has rank four, while E[n] is generated by two elements. So for
the basis {1, α1, α2, α3} of End(E), the coefficients of the equation ϕ(P ) =
mP + nα1(P ) + rα2(P ) + sα3(P ) can not be uniquely determined. Therefore,
finding the isogeny ϕ = m + nα1 + rα2 + sα3 from ϕ(P ) = mP + nα1(P ) +
rα2(P ) + sα3(P ) seems to be hard.

In Problem 3, since the isogeny problem has not yet been solved, it is reason-
able to assume that the question of computational isogeny-based Diffie-Hellman
problem is hard to solve.
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